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ON THE CLASSES OF D–NORMAL OPERATORS AND

D–QUASI–NORMAL OPERATORS ON HILBERT SPACE
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(Communicated by I. M. Spitkovsky)

Abstract. The purpose of this paper is to introduce some new classes of operators, called [DN] ,
[nDN] , [DQN] , [nDQN] , associated with a Drazin invertible operator using its Drazin inverse.
[nDN] and [nDQN] operatots extend the notion of [DN] and [DQN] operators, respectively.
The relations between these classes and some basic properties of these operators are studied in
this study.

1. Introduction

One important research field of the algebra of all bounded linear operators acting
on Hilbert space is the class of normal operators (TT ∗ = T ∗T ). Normal operators
comprise a broad class of interesting operators. The theory of these operators was
investigated in [10] and [7]. There are other classes of interesting non-normal operators
such as n-normal, quasi-normal and n-power quasi-normal operators. They have been
of interest to many mathematicians and have been extensively investigated. There are
several well-known relationships among these classes. See for instance [1], [2] and [4].

The purpose of this paper is to generalize this classes, in some sense, to the
larger sets of so-called D-normal, n-power D-normal, D-quasi-normal, n-power D-
quasi-normal, operators on Hilbert spaces.

Throughout, H represents a complex Hilbert space, B(H ) is the space of all
bounded linear operators on a complex Hilbert space H and I = IH being the identity
operator. For T ∈ B(H ) , denote by T ∗ , N (T ) , R(T ) and W (T ) the adjoint, the
null space, the range and the numerical range of T , respectively.

A subspace M ⊂H is said to be invariant for an operator T ∈B(H ) if TM⊂M ,
and in this situation we denote by T | M the restriction of T to M .

For any arbitrary operator T ∈ B(H ) , | T |= (T ∗T )1/2 and

[T ∗,T ] = T ∗T −TT ∗ =| T |2 − | T ∗ |2

(the self-commutator of T).
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An operator T ∈ B(H ) is called n-normal if TnT ∗ = T ∗Tn, quasi-normal if
TT ∗T = T ∗TT, n-power quasi-normal if TnT ∗T = T ∗TTn. n-normal operators were
introduced by Al-zuraiqi and Patel [2], quasi-normal by Brown [4], and n-power quasi-
normal by Ahmed [1].

REMARK 1.1. Let [N] , [nN] , [QN] and [nQN] denote the classes constituting of
normal, n-normal, quasi-normal and n-power quasi-normal operators. Then

1. [N] ⊂ [QN] ⊂ [nQN] ,

2. [N] ⊂ [nN] ⊂ [nQN].

An operator T is n-isometry if

T ∗nTn −
(

n
1

)
T ∗n−1Tn−1 +

(
n
2

)
T ∗n−2Tn−2 . . .+(−1)nI = 0.

The Drazin inverse for bounded linear operators on complex Banach spaces was
investigated by Caradus [6]. The Drazin inverse finds its applications in a number of
areas such that differential and difference equations, Markov chains and control theory
[3, 5].

An operator T ∈ B(H ) is said to be Drazin invertible if there exists an operator
TD ∈ B(H ) such that

TTD = TDT, TDTTD = TD, Tk+1TD = Tk

for some integer k � 0. The smallest integer k � 0, in the latter identity is called the
index of T , denoted by ind(T ) . Specifically, if ind(T )= 1, then TD is called the group
inverse of T and denoted by T � . Clearly, ind(T ) = 0 if and only if T is invertible and
in this case TD = T−1 . If T is Drazin invertible, then the spectral idempotent T π of T
corresponding to {0} is given by T π = I−TTD . We note that if T is nilpotent, then
it is Drazin invertible, TD = 0, and ind(T ) = r , where r is the power of nilpotency of
T .

For T ∈ B(H ) , the Drazin inverse TD of T is unique if it exists and (T ∗)D =
(TD)∗ . The Drazin invertibility of an operator in B(H ) is similarly invariant, i.e. if
T is Drazin invertible and S ∈ B(H ) is an invertible operator, then S−1TS is Drazin
invertible and (S−1TS)D = S−1TDS .

This article has been organized in five sections. In section 2, A new class of
generalized normal operator, namely the D-normal, using the Drazin TD inverse of T
is given. One important motivation for this classification comes from the problem of
finding operators that their Drazin inverses are normal. We give necessary and sufficient
conditions for an operator to be D-normal. We also discuss some conditions on an D-
normal operator implying normality.

In section 3, the class D-normal by considering operators in B(H ) is enlarged,
whose n-power are D-normal. Sufficient conditions implying D-normality for n-power
D-normal operators are investigated.



D-NORMAL AND D-QUASI-NORMAL OPERATORS ON HILBERT SPACE 467

In Section 4, the concept of D-quasi-normal is defined, and we show that the D-
quasi-normal operators form a larger class than the D-normal operators. Also, we obtain
necessary and sufficient conditions for an operator to be D-quasi-normal.

Finally, in Section 5, the class of n-power D-quasi-normal operators as a general-
ization of the class of D-quasi-normal operators is introduced and also some properties
of such class are given.

Before our main results are presented, we state some auxiliary lemmas as follows.

LEMMA 1.2. ([5]) Let A,B ∈ B(H ) be Drazin invertible. Then

(i) AB is Drazin invertible if and only if BA is Drazin invertible, ind(AB)� ind(BA)+
1 and (AB)D = A[(BA)D]2B.

(ii) If A is idempotent, then AD = A� = A.

(iii) If AB = BA, then (AB)D = BDAD = ADBD, ADB = BAD and ABD = BDA.

(v) If AB = BA = 0, then (A+B)D = AD +BD.

LEMMA 1.3. ([5]) If A∈B(X ) and B∈B(Y ) are Drazin invertible with ind(A)

= m and ind(B) = n. Then M =
(

A C
0 B

)
is also Drazin invertible and

MD =
(

AD X
0 BD

)
,

where

X =
n−1

∑
i=0

(AD)i+2CBiBπ +Aπ
m−1

∑
i=0

AiC(BD)i+2−ADCBD. (1.1)

2. D-normal operators

This section is started by defining the class of D-normal operators on Hilbert
spaces. In order to do this, we use the Drazin inverse (D) and therefore we name
this new class of generalized normal operators as D-normal. Also, several properties of
D-normal operators are studied.

DEFINITION 2.1. Let T ∈ B(H ) be Drazin invertible. T is called an D-normal
operator if

TDT ∗ = T ∗TD.

The class of all D-normal operators is denoted by [DN].

PROPOSITION 2.2. Let T ∈ B(H ) be Drazin invertible. Then T is D-normal if
and only if TD is normal.
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Proof. Let T be D-normal, TDT ∗ = T ∗TD, by Lemma 1.2, TD(T ∗)D =(T ∗)DTD.
Since (T ∗)D = (TD)∗ , TD is normal. Now, let TD be normal. Since TDT = TTD, by
Fuglede theorem [7], TDT ∗ = T ∗TD. Therefore T is D-normal. �

D-normal operators provide a new class of generalized normal operators because
in general the D-normal operator is different from normal operator.

EXAMPLE 2.3. Let T ∈ B(H ) be Drazin invertible normal operator then it is
clear that T is of class [DN] . But the converse is not true.

Let H = C4 and let T =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ∈B(C4), we have TD =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , then by

simple calculations we see that T is of class [DN] which is not normal.

In the next remark we give a condition that the class of [DN] operators coincide
with class of [N] operators.

REMARK 2.4. Let T ∈ [DN]. If ind(T ) � 1 then T ∈ [N].

PROPOSITION 2.5. The set of all D-normal operators on H is closed subset of
B(H ) which is closed under scalar multiplication.

Proof. First if T is D-normal, and α is scalar, then it is easy to see that (αT ) is
D-normal. Now, suppose that (Tk) is sequence of D-normal operators converging to T
in B(H ). Now,

‖TDT ∗ −T∗TD‖ � ‖TDT ∗ −TD
k T ∗

k ‖+‖T∗
k TD

k −T ∗TD‖→ 0.

as k → ∞ . Hence TDT ∗ = T ∗TD. Thus T is D-normal. �

In the following proposition some properties of the class [DN] operators are col-
lected.

PROPOSITION 2.6. Let T ∈ [DN]. Then

1. T ∗ is of class [DN].

2. TD is of class [DN].

3. If S ∈ B(H ) is Drazin invertible and unitary equivalent to T, then S is of class
[DN].

4. If M is a closed subspace of H such that M reduces T, then S = T |M is of
class [DN].
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Proof. The proofs of (1)–(2) are straightforward.
(3) Let S ∈ B(H ) , which is unitarily equivalent to T, then there is a unitary

operator U ∈ B(H ) such that S = U∗TU, which implies that SD = U∗TDU . Since
TD is normal, SD is normal. Therefore S is D-normal.

(4) Since T is D-normal, TD is normal. So TD|M is normal. And since M
is invariant under T, TD|M = (T |M)D . Thus (T |M)D is normal. So (T |M) is D-
normal. �

PROPOSITION 2.7. If T ∈ [DN] is similar to an idempotent S ∈ B(H ) , then T
is a projection.

Proof. Since T is similar to S, there is an invertible operator N ∈ B(H ) such
that T = N−1SN, which implies that TD = N−1SDN = N−1SN. Thus T is normal. The
result now follows from ([10], p. 111). �

THEOREM 2.8. If T and S are of class [DN] such that [T,S] = 0, then TS is of
class [DN].

Proof. Since S,T are commuting D-normal operators, hence by Lemma 1.2 (iii),
SD and TD are commuting normal operator. So TDSD is a normal operator. Since
(TS)D = TDSD , (TS)D is normal. Hence TS is of class [DN]. �

The following example shows that Theorem 2.8 is not necessarily true if S,T are
not commuting.

EXAMPLE 2.9. Let S =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ and T =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0

⎞
⎟⎟⎠ be operators on the

Hilbert space C
4 . Then SD =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and TD =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . Hence S,T ∈

[DN]. We note that ST �= TS . But as (ST )D =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 1 1 0
0 0 0 0

⎞
⎟⎟⎠ is not normal, ST is not of

class [DN].

COROLLARY 2.10. If T is of class [DN], then Tm is of class [DN] for any posi-
tive integer m.

COROLLARY 2.11. If T is of class [DN], then TDT ∗ and T ∗TD are of class
[DN].
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THEOREM 2.12. If S and T are of class [DN] such that ST = TS = 0, then S+T
is of class [DN].

Proof. First frome Lemma 1.2, item (4), it follows that (S+T )D = SD+TD . From
ST = TS = 0 we get SDT = TSD = 0. Now, since SD is normal by Fuglede theorem
SDT ∗ = T ∗SD = 0. Similarly S∗TD = TDS∗ = 0. Thus

(S+T)D(S+T )∗ = (SD +TD)(S∗ +T ∗)

= SDS∗ +SDT ∗ +TDS∗+TDT ∗

= S∗SD +T∗TD

= (S+T )∗(S+T )D.

Which implies that T +S is of class [DN]. �

REMARK 2.13. It is well known that if T is normal and α is scalar, then T +αI
is normal.

The following example shows that this need not be true in case of D-normal oper-
ator.

EXAMPLE 2.14. Let T =
(

0 1
0 0

)
be operator on the Hilbert space C2 and α = 1.

After computation we get (T + αI)D =
(

1 −1
0 1

)
. So (T + αI) is not of class [DN].

PROPOSITION 2.15. The direct sum and the tensor product of two operators in
[DN] are in [DN] .

Proof. Let S,T ∈ [DN], then

(S⊕T )D(S⊕T)∗ = (SD⊕TD)(S∗ ⊕T∗)

= SDS∗⊕TDT ∗

= S∗SD⊕T ∗TD

= (S∗ ⊕T∗)(SD ⊕TD)

= (S⊕T )∗(S⊕T)D.

Then (S⊕T ) is of class [DN]. Now, for x1,x2 ∈ H

(S⊗T )D(S⊗T )∗(x1 ⊗ x2) = (SD⊗TD)(S∗ ⊗T∗)(x1 ⊗ x2)

= SDS∗x1⊗TDT ∗x2

= S∗SDx1⊗T ∗TDx2

= (S∗ ⊗T∗)(SD ⊗TD)(x1 ⊗ x2)

= (S⊗T )∗(S⊗T)D(x1⊗ x2).
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Then (S⊗T ) is of class [DN]. �
For A ∈ Cn×n , denote by At and A the transpose and the conjugate of A, respec-

tively.

PROPOSITION 2.16. Let A be a square complex matrix. If A∈ [DN] , then ADA =
AAD if and only if ADAt = AtAD.

Proof. Suppose that ADA = AAD . Since A ∈ [DN] , hence AD is normal. Then
ADAt = AtAD by Fuglede theorem. In a similar way, it can be seen that if ADAt = AtAD ,
then ADA = AAD , so these two statements are equivalent when A is D-normal. �

PROPOSITION 2.17. If T ∈ [DN] such that TD is unitarily equivalent to T , then
T is normal.

PROPOSITION 2.18. Let T ∈ [DN] . Then TπT ∗ = T ∗Tπ .

Proof. Since T ∈ [DN] , we can easily get TDT ∗T = T ∗TTD = TT ∗TD. Hence
the result follows. �

LEMMA 2.19. Let M =
(

A C
0 B

)
∈Mn(C) ( A and B are square matrices). Then

M is of class [DN] if and only if A and B are of class [DN] and X = 0 , where X is
defined by (1.1).

Proof. Let M be of class [DN] , then MD is normal. Using condition 8 in [9], we
have AD and BD are of class [N] and X = 0. In a similar way, it is obvious that if A
and B are of class [DN] and X = 0, then MD is normal. �

COROLLARY 2.20. Let M =
(

A C
0 B

)
∈ Mn(C) ( A and B are square matrices)

be of class [DN] . Then A and B are of class [DN] and ADCBD = 0.

COROLLARY 2.21. Let M =
(

a c
0 b

)
where a,b,c ∈ C and a,b �= 0. Then M is

of class [DN] if and only if c = 0 .

Throughout this paper, some notations are needed. Let TD = U + iV, where U =
ReTD = TD+TD∗

2 and V = ImTD = TD−TD∗
2i are the real and imaginary parts of T . Then

write B2 = TT ∗ and C2 = T ∗T, where B and C are non-negative definite.
We give necessary and sufficient conditions for an operator to be D-normal.

PROPOSITION 2.22. T is of class [DN] if and only if T commutes with ReTD .

PROPOSITION 2.23. T is of class [DN] if and only if T commutes with ImTD .
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PROPOSITION 2.24. Let T ∈B(H ) be Drazin invertible and F =TD+T ∗, G =
TD −T∗. Then

1. T is of class [DN] if and only if G commutes with F.

2. If T is of class [DN] , then S = TDT ∗ commutes with F and G.

3. T is of class [DN] if and only if TD commutes with F .

4. T is of class [DN] if and only if TD commutes with G.

3. n-power D-normal operators

In this section, the class of n-power D-normal operators as a generalization of the
classes of D-normal and n-normal operators is introduced. In addition, we make several
observations about members from this class.

DEFINITION 3.1. Let T ∈ B(H ) be Drazin invertible. For n ∈ N, T is said to
be n-power D-normal operator if

(TD)nT ∗ = T ∗(TD)n.

The class of all n-power D-normal operators is denoted by [nDN].

PROPOSITION 3.2. Let T ∈ B(H ) be Drazin invertible. Then T is n-power
D-normal if and only if (TD)n is normal.

Proof. Let T be n-power D-normal, (TD)nT ∗ = T ∗(TD)n by Lemma 1.2 (iii),
(TD)nT ∗D = T ∗D(TD)n . Then (TD)n is normal. Now, let (TD)n be normal. Since
(TD)nT = T (TD)n, by Fuglede theorem, (TD)nT ∗ =T ∗(TD)n. Therefore T is n-power
D-normal. �

It can be noted that the class of n-power D-normal operators properly includes
classes of n-normal operators and D-normal operators, i.e., the following inclusions
hold

[nN] ⊂ [nDN] and [DN] ⊂ [nDN].

REMARK 3.3.

1. A 1-power D-normal operator is D-normal.

2. Every D-normal operator is n-power D-normal for each n.

3. It is clear that a n-normal operator is also n-power D-normal. That the converse

need not hold. Consider the operator T =

⎛
⎝0 1 1

0 0 1
0 0 0

⎞
⎠ acting on C3, then T is

2-power D-normal but T is not 2-normal.
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In the next remark, a condition is presented where the class of [nDN] operators
coincide with class of [nN] operators.

REMARK 3.4. Let T ∈ [nDN]. If ind(T ) � 1 then T ∈ [nN].

REMARK 3.5. All nonzero nilpotent operators are of class [nDN] , for any n.
However they are not normal.

We record some elementary properties of [nDN] .

PROPOSITION 3.6. The set of all n-power D-normal operators on H is closed
subset of B(H ) which is closed under scalar multiplication.

PROPOSITION 3.7. Let T ∈ [nDN]. Then

1. T is of class [2nDN].

2. T ∗ is of class [nDN].

3. TD is of class [nDN].

4. If S ∈ B(H ) is Drazin invertible and unitary equivalent to T, then S is of class
[nDN].

5. If M is a closed subspace of H such that M reduces T, then S = T |M is of
class [nDN].

PROPOSITION 3.8. If T ∈ [nDN] is similar to an idempotent S ∈B(H ) , then T
is a projection.

THEOREM 3.9. If T and S are of class [nDN] such that [T,S] = 0, then TS is of
class [nDN].

The following example shows that Theorem 3.9 is not necessarily true if S,T are
not commuting.

EXAMPLE 3.10. Let S =
(

i 2
0 −i

)
and T =

(
1 0
0 2

)
be operators on the Hilbert

space C
2 . Then SD =

(−i −2
0 i

)
and TD =

(
1 0
0 1/2

)
. Hence S,T ∈ [2DN]. We

note that ST �= TS . But as ((ST )D)2 =
(−1 i

0 −1/4

)
is not normal, ST is not of class

[2DN].

COROLLARY 3.11. If T is of class [nDN], then Tm is of class [nDN] for any
positive integer m.
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COROLLARY 3.12. If T is of class [nDN], then (TD)nT ∗ and T ∗(TD)n are of
class [nDN].

THEOREM 3.13. If S and T are of class [nDN] such that ST = TS = 0, then
S+T is of class [nDN].

LEMMA 3.14. If S and T are of class [2DN] such that ST +TS = 0, then ST is
of class [2DN].

Proof. Since ST + TS = 0, (ST )2 = −S2T 2 = −T 2S2. Hence by Lemma 1.2
(iii) ((ST )2)D = −(S2)D(T 2)D = −(T 2)D(S2)D. Hence by Theorem 3.9 ST is of class
[2DN]. �

PROPOSITION 3.15. The direct sum and the tensor product of two operators in
[nDN] are in [nDN] .

PROPOSITION 3.16. If T ∈ [nDN] such that (TD)n is unitarily equivalent to T ,
then T is normal.

It is clear that if T is of class [2DN] then it is of class [2kDN] and if T is of
class [3DN] then it is of class [3kDN] . The following examples show that a 2-power
D-normal operator need not be 3-power D-normal operator and vice versa.

EXAMPLE 3.17. Let T =
(

3 −2
0 −3

)
be operators on the Hilbert space C2 . Then

TD = T−1 =
(

1/3 −2/9
0 −1/3

)
hence (TD)2 =

(
1/9 0
0 1/9

)
is a normal operator. But

(TD)3 =
(

1/27 −2/81
0 −1/27

)
is not normal. So T is of class [2DN] but it is not of class

[3DN].

EXAMPLE 3.18. Let T =
(

1 1
−1 0

)
be operators on the Hilbert space C2 . Then

(TD)3 =
(−1 0

0 −1

)
is a normal operator. But (TD)2 =

(−1 −1
1 0

)
is not normal. So

T is of class [3DN] but it is not of class [2DN].

PROPOSITION 3.19. Suppose that T is both in [kDN] and in [(k + 1)DN] for
some positive integer k. Then T is in [(k+2)DN] . In addition, T is in [nDN] for all
n � k.

Proof. Since T is of class [kDN] ,

(TD)kT ∗ = T ∗(TD)k. (3.1)
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Multiplying (3.1) to the left and right by TD we get

TD(TD)kT ∗TD = TDT ∗(TD)kTD.

So
(TD)k+1T ∗TD = TDT ∗(TD)k+1.

Since T is of class [(k+1)DN] ,

T ∗(TD)k+2 = (TD)k+2T ∗.

Thus T is of class [(k+2)DN] . �

COROLLARY 3.20. If T is both in [2DN] and in [3DN] . Then T is in [nDN] for
all n � 2.

PROPOSITION 3.21. Suppose that T is in [kDN] for some positive integer k and
it is a partial isometry. Then T is in [(k + 1)DN] . In addition, T is in [nDN] for all
n � k.

Proof. Since T is partial isometry by [7],

TT ∗T = T. (3.2)

Multiplying (3.2) to the left by (TD)2 and to the right by (TD)k+1 we get

TDT ∗(TD)k = (TD)k+2. (3.3)

Multiplying (3.2) to the left by (TD)k+1 and to the right by (TD)2 we get

(TD)kT ∗TD = (TD)k+2. (3.4)

From T ∈ [kDN] and (3.3), then,

T ∗(TD)k+1 = (TD)k+2. (3.5)

Also, from T ∈ [kDN] and (3.4), then,

(TD)k+1T ∗ = (TD)k+2. (3.6)

In view of (3.5) and (3.6), we conclude T ∈ [(k+1)DN] . Finally, by Proposition 3.19,
T is of class [nDN] for all n � k. �

COROLLARY 3.22. If T is in [2DN] and it is a partial isometry, then T is in
[nDN] for all n � 2.

LEMMA 3.23. Let T be both in [kDN] and in [(k+1)DN] . If either T or T ∗ is
injective, then T is of class [DN] .
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Proof. Since T is of class [kDN] ,

T ∗(TD)k = (TD)kT ∗. (3.7)

And since T is of class [(k+1)DN] ,

T ∗(TD)k+1 = (TD)k+1T ∗. (3.8)

From (3.7) and (3.8)
(TD)k(T ∗TD −TDT ∗) = 0.

Since T is injective,
(T ∗TD −TDT ∗) = 0.

Then T is of class [DN] . In the case that T ∗ is injective, since T ∗ is of class [kDN] ,
and [(k+1)DN] , T ∗ is of class [DN] . Hence T is of class [DN] . �

LEMMA 3.24. If A ∈ B(X ) and B ∈ B(Y ) are Drazin invertible. Then

M =
(

A C
0 B

)
is of class [nDN] if and only if A and B are of class [nDN] and

∑n
i=0(A

D)iX(BD)n−i = 0 , where X is defined by (1.1).

PROPOSITION 3.25. T is of class [DN] if and only if T commutes with Re(TD)n .

PROPOSITION 3.26. T is of class [DN] if and only if T commutes with Im(TD)n .

PROPOSITION 3.27. Let T ∈ B(H ) be Drazin invertible and F = (TD)n +T ∗,
G = (TD)n−T ∗. Then

1. T is of class [nDN] if and only if G commutes with F.

2. If T is of class [nDN] , then S = (TD)nT ∗ commutes with F and G.

3. T is of class [nDN] if and only if (TD)n commutes with F .

4. T is of class [nDN] if and only if (TD)n commutes with G.

4. D-quasi-normal operators

In this section, a definition of D-quasi-normal operators is presented. We investi-
gate some basic properties of such operators and study the relation among the D-quasi-
normal operators and some other operators.

DEFINITION 4.1. Let T ∈B(H ) be Drazin invertible. T is said D-quasi-normal
if

TDT ∗T = T ∗TTD.

The class of all D-quasi-normal operators is denoted by [DQN].
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REMARK 4.2. Let T ∈ B(H ) be Drazin invertible. T is D-quasi-normal if and
only if

[TD,T ∗T ] = 0.

REMARK 4.3. Let T ∈ B(H ) be Drazin invertible. T is D-quasi-normal if and
only if

TD|T |2 = |T |2TD.

Obviously, that the class of D-quasi-normal operators includes classes of quasi-
normal operators and D-normal operators, i.e., the following inclusions holds

[N] ⊂ [QN] ⊂ [DQN] and [N] ⊂ [DN] ⊂ [DQN].

we give some sufficient conditions for a D-quasi-normal operator to be quasi-normal.

REMARK 4.4. Let T ∈ [DQN]. If ind(T ) < 1 then T ∈ [N].

REMARK 4.5. Let T ∈ [DN]. If ind(T ) = 1 then T ∈ [QN].

PROPOSITION 4.6. The set of all D-quasi-normal operators on H is closed sub-
set of B(H ) which is closed under scalar multiplication.

Let us now examine some of the basic properties of the class of [DQN].

THEOREM 4.7. If T ∈ [DQN], then

1. If S ∈ B(H ) is Drazin invertible and unitary equivalent to T, then S is of class
[DQN].

2. If M is a closed subspace of H such that M reduces T, then S = T |M is of
class [DQN].

3. If T has a dense range in H , T is of class [DN] .

4. If S is of class [DQN] such that [T,S] = [T,S∗] = 0, then TS is of class [DQN] .

5. If S is of class [N] such that [T,S] = 0, then TS is of class [DQN] .

6. If S is of class [DQN] such that ST = TS = T ∗S = ST ∗ = 0, then S +T is of
class [DQN] .

7. If S is of class [N] such that ST = TS = 0, then S+T is of class [DQN] .

Proof. (1), (2) are trivial.
(3) Since T is of class [DQN], we have for y ∈ R(T ) : y = Tx,x ∈ H,

‖(TDT ∗ −T ∗TD)y‖ = ‖(TDT ∗ −T ∗TD)Tx‖ = ‖(TDT ∗T −T ∗TTD)x‖ = 0.

Thus, T is D-normal on R(T ) and hence T is of class [DN].
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(4) Since [T,S] = [T,S∗] = 0, by Lemma 1.2 (iii), we have that [T,SD] = [TD,S] =
[TD,S∗] = [T ∗,SD] = 0. So

(ST )D(ST )∗(ST ) = TDSDT ∗S∗ST

= TDT ∗SDS∗ST

= TDT ∗S∗SSDT

= TDT ∗S∗STSD

= TDT ∗S∗TSSD

= TDT ∗TS∗SSD

= T ∗TTDS∗SSD

= T ∗TS∗TDSSD

= T ∗TS∗STDSD

= T ∗S∗STTDSD

= (ST )∗(ST )(ST )D.

Which implies that ST is of class [DQN].
(5) Using the item (4) and the Fuglede theorem, the following results are obtained.
(6)

(S+T)D(S+T )∗(S+T) = (SD +TD)(T ∗T +S∗S)

= SDS∗S+TDT ∗T

= S∗SSD +T∗TTD

= (S+T )∗(S+T)(S+T )D.

Thus T is of class [DQN].
(7) Immediate from the item (6) and the Fuglede theorem. �

PROPOSITION 4.8. The direct sum and the tensor product of two operators in
[DQN] are in [DQN].

The following example shows that Remark 2.13 need not be true in case of D-
quasi-normal operator.

EXAMPLE 4.9. Let T =
(

0 2
0 0

)
be operator on the Hilbert space C2 and α is

scalar. After computation we get (T + αI)D =
(

1/α −2/α
0 1/α

)
. So (T + αI) is not of

class [DQN].

PROPOSITION 4.10. If T ∈ [DQN] is similar to an idempotent S ∈ B(H ) , then
T is a projection.
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Proof. Since T is similar to S, there is an invertible operator N ∈ B(H ) such
that T = N−1SN, which implies that TD = N−1SDN = N−1SN. Thus T is quasi-
normal. The result now follows from ([10], p. 111). �

Necessary and sufficient conditions for an operator to be D-quasi-normal are pro-
vided.

THEOREM 4.11. T is of class [DQN] if and only if C commutes with ReTD and
ImTD.

Proof. It is easy to see that C2ReTD = ReTDC2. Since C is non-negative definite
it follows that CReTD = ReTDC. Similarly CImTD = ImTDC.

Conversely, let CReTD = ReTDC and CImTD = ImTDC. Then C2ReTD = ReTDC2

and C2ImTD = ImTDC2. Hence C2(ReTD + iImTD) = (ReTD + iImTD)C2 and then,
C2TD = TDC2. Therefore T ∗TTD = TDT ∗T . �

THEOREM 4.12. Let T is of class [DQN] and C2TD = TDB2. Then B commutes
with ReTD and ImTD.

Proof. Since C2TD = TDB2 we have T ∗TTD = TDTT ∗ . Hence

(T ∗)DT ∗T = TT ∗(T ∗)D.

Now

B2ReTD = 1/2[TT ∗(TD +TD∗
)]

= 1/2[TT ∗T (TD)2 +TTD∗
T ∗]

= 1/2[T (TD)2T ∗T +TT ∗(TD∗
)2T ∗]

= 1/2[T ∗TTD +TD∗
T ∗TTD∗

T ∗]

= 1/2[TDTT ∗ +(TD∗
)2T ∗TT ∗]

= 1/2[TDTT ∗ +TD∗
TT ∗]

= ReTDB2.

Hence BReTD = ReTDB. Similarly BImTD = ImTDB. �

PROPOSITION 4.13. Let T ∈ B(H ) be Drazin invertible and F = TD + T ∗T,
G = TD −T ∗T. Then

1. T is of class [DQN] if and only if G commutes with F.

2. If T is of class [DQN] , then B = TDT ∗T commutes with F and G.

3. T is of class [DQN] if and only if TD commutes with F .

4. T is of class [DQN] if and only if TD commutes with G.
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PROPOSITION 4.14. If T is of class [DQN] such that N (T ∗D) ⊂ N (TD) then
T is of class [DN].

Proof. Since T is of [DQN], [T ∗TD−TDT ∗]T = 0, i.e. [T ∗TD−TDT ∗] = 0, on
clR(T ) . Also the fact that N (T ∗D) is a subset of N (TD) gives [T ∗TD−TDT ∗] = 0,
on N (T ∗) . Hence the result follows. �

LEMMA 4.15. If T is of class [DQN], then N (Tn)⊂N (T ∗D) for every n∈ N.

Proof. If n = 1 then we show that N (T ) ⊂ N (T ∗D) . Suppose that Tx = 0.
Then

T ∗DT ∗Tx = 0.

By hypotheses,
T ∗TT ∗Dx = 0,

which implies
TT ∗Dx = 0.

Hence
TDT ∗Dx = 0.

We deduce that
T ∗Dx = 0.

Now, taking n � 2. Let Tnx = 0. Then

T ∗DT ∗TTn−1x = 0.

By hypotheses,
T ∗TT ∗DTn−1x = 0.

Which implies
TT ∗DTn−1x = 0. (4.1)

Multiplying (4.1) to the left by (TD)2, then,

TDT ∗DTn−1x = 0.

Hence
T ∗DTn−1x = 0.

Under the condition on T, then,

T ∗TT ∗DTn−2x = 0.

Hence
T ∗DTn−2x = 0.

By repeating this process,
T ∗Dx = 0. �
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COROLLARY 4.16. If T is of class [DQN], then N (TD) ⊂ N (T ∗D) .

Proof. If T has index k then it is easy to see that N (TD) = N (T l) for all l � k.
Now the conclusion follows form Lemma 4.15. �

THEOREM 4.17. If T and T ∗are of class [DQN], then TD is normal.

Proof. By hypotheses and Lemma 4.15

N (Tn) ⊂ N (T ∗D), N (T ∗n) ⊂ N (TD).

for every n∈N. Since T is of [DQN], [T ∗TD−TDT ∗]T = 0, i.e. [T ∗TD−TDT ∗] = 0,
on clR(T ) . Also the fact that N (T ∗) is a subset of N (TD) gives [T ∗TD −TDT ∗] =
0, on N (T ∗) . Hence the result follows. �

5. n-power D-quasi-normal operators

As an extension of the class of D-quasi-normal operators, the following definition
describes the class of operators.

DEFINITION 5.1. Let T ∈ B(H ) be Drazin invertible. For n ∈ N, T is said to
be n-power D-quasi-normal operator if

(TD)nT ∗T = T ∗T (TD)n.

The class of all n-power D-quasi-normal operators is denoted by [nDQN].

REMARK 5.2.

1. A 1-power D-quasi-normal operator is D-quasi-normal.

2. Every D-quasi-normal operator is n-power D-quasi-normal for each n.

3. It is clear that a n-power D-normal operator is also n-power D-quasi-normal. That

the converse need not hold. Consider the operator T =
(

0 −1
1 1

)
acting on C

2,

then T is 2-power D-quasi-normal but T is not 2-power D-normal.

REMARK 5.3. Let T ∈ B(H ) be Drazin invertible. T is n-power D-quasi-
normal if and only if

[(TD)n,T ∗T ] = 0.

REMARK 5.4. Let T ∈ B(H ) be Drazin invertible. T is n-power D-quasi-
normal if and only if

(TD)n|T |2 = |T |2(TD)n.
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Some sufficient conditions for a n-power D-quasi-normal operator to be n-power
quasi-normal are presented.

REMARK 5.5. Let T ∈ [nDQN]. If ind(T ) � 1 then T ∈ [nQN].

PROPOSITION 5.6. The set of all n-power D-quasi-normal operators on H is
closed subset of B(H ) which is closed under scalar multiplication.

Next results state some properties of the class [nDQN].

THEOREM 5.7. If T ∈ [nDQN], then

1. T is of class [2nDQN].

2. If S ∈ B(H ) is Drazin invertible and unitary equivalent to T, then S is of class
[nDQN].

3. If M is a closed subspace of H such that M reduces T, then S = T |M is of
class [nDQN].

4. If T has a dense range in H , T is of class [nDN] .

5. If T and S are of class [nDQN] such that [T,S] = [T,S∗] = 0, then TS is of class
[nDQN] .

6. If S is normal such that [T,S] = 0, then TS is of class [nDQN] .

7. If S and T are of class [nDQN] such that ST = TS = T ∗S = ST∗ = 0, then
S+T is of class [nDQN] .

8. If S is normal such that ST = TS = 0, then S+T is of class [nDQN] .

Proof. (1) Since T is of [nDQN], then

(TD)nT ∗T = T ∗T (TD)n. (5.1)

Multiplying (5.1) to the left by (TD)n, then (TD)2nT ∗T = T ∗T (TD)2n. Thus T is of
class [2nDQN].

Using similar methods as in Theorem 4.7 the statement (2)-(8) of the theorem is
true. �

PROPOSITION 5.8. If T ∈ [nDQN] is similar to an idempotent S ∈ B(H ) , then
T is a projection.

PROPOSITION 5.9. The direct sum and the tensor product of two operators in
[nDQN] are in [nDQN].
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THEOREM 5.10. T is of class [nDQN] if and only if C commutes with Re(TD)n

and Im(TD)n.

THEOREM 5.11. Let T is of class [nDQN] and C2(TD)n = (TD)nB2. Then B
commutes with Re(TD)n and Im(TD)n.

PROPOSITION 5.12. Let T ∈B(H ) be Drazin invertible and F = (TD)n +T ∗T,
G = (TD)n−T ∗T. Then

1. T is of class [nDQN] if and only if G commutes with F.

2. If T is of class [nDQN] , then S = (TD)nT ∗T commutes with F and G.

3. T is of class [nDQN] if and only if (TD)n commutes with F .

4. T is of class [nDQN] if and only if (TD)n commutes with G.

It is clear that if T is of class [2DQN] then it is of class [2kDQN] if T is of class
[3DQN] then it is of class [3kDQN] . The following examples show that the two classes
[2DQN] and [3DQN] are not the same.

EXAMPLE 5.13. Let T =
(

2 −2
0 −2

)
be operator on the Hilbert space C2 . Then

(TD)2 =
(

1/4 0
0 1/4

)
and (TD)3 =

(
1/8 −1/8
0 −1/8

)
. Hence by simple calculations we

see that T is not of class [3DQN] but of class [2DQN].

EXAMPLE 5.14. Let T =
(

0 −1
1 1

)
be operators on the Hilbert space C2 . Then

TD =
(

1 1
−1 0

)
, so by simple calculations we see that T is not of class [2DQN] but of

class [3DQN].

PROPOSITION 5.15. Let T ∈ B(H ) such that T is of class [kDQN] ∩ [(k +
1)DQN], for some positive integer k. Then T is in [(k + 2)DN] . In addition, T is
in [nDN] for all n � k.

Proof. Since T is of class [kDQN] ,

(TD)kT ∗T = T ∗T (TD)k. (5.2)

Multiplying (5.2) to the left and right by TD we get

TD(TD)kT ∗TTD = TDT ∗T (TD)kTD.

So
(TD)k+1T ∗TTD = TDT ∗T (TD)k+1.
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Since T is of class [(k+1)DQN] ,

T ∗T (TD)k+2 = (TD)k+2T ∗T.

Thus T is of class [(k+2)DQN] . �

COROLLARY 5.16. Let T ∈ B(H ) such that T is of class [2DQN]∩ [3DQN],
then T is of class [nDQN] for all positive integer n � 2.

COROLLARY 5.17. If T is in the class [2DQN] and T is an 2-isometry, then T 2

is in the class [nDQN] for all positive integer n � 2.

Proof. From Proposition 5.15, it suffices to prove that T 2 is in the class [2DQN]
and T 2 is in the class [3DQN] .

Since T is in the class [2DQN] and T is an 2-isometry, then,

(TD)4(T ∗2T 2) = (TD)4(2T ∗T − I)

= 2T ∗T (TD)4 − (TD)4

= (2T ∗T − I)(TD)4

= (T ∗2T 2)(TD)4.

Thus, T 2 is in the class [2DQN] .
On the other hand,

(TD)6(T ∗2T 2) = (TD)6(2T ∗T − I)

= 2T ∗T (TD)6 − (TD)6

= (2T ∗T − I)(TD)6

= (T ∗2T 2)(TD)6.

Thus, T 2 is in the class [3DQN] . �

THEOREM 5.18. Suppose that T is in [kDQN] for some positive integer k and it
is a partial isometry. Then T is in [(k+1)DQN] . In addition, T is in [nDQN] for all
n � k.

Proof. Since T is a partial isometry by [7],

TT ∗T = T. (5.3)

Multiplying (5.3) to the left by (TD)k+1 and to the right by TD , then,

(TD)k+1TT ∗TTD = (TD)k+1. (5.4)

Also, multiplying (5.3) to the left by (TD)2 and to the right by (TD)k ,

(TD)2TT ∗T (TD)k = (TD)k+1. (5.5)
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In view of (5.4) and (5.5), we conclude

(TD)k+1TT ∗TTD = (TD)2TT ∗T (TD)k. (5.6)

Using the fact that T is of class [kDQN], we get that T is of class [(k+1)DQN]. �

LEMMA 5.19. Let T be both in [kDQN] and in [(k+1)DQN] . If T is injective,
then T is of class [DQN] .

Proof. Since T is of class [kDQN] ,

T ∗T (TD)k = (TD)kT ∗T. (5.7)

And since T is of class [(k+1)DN] ,

T ∗T (TD)k+1 = (TD)k+1T ∗T. (5.8)

From (5.7) and (5.8)
(TD)k(T ∗TTD −TDT ∗T ) = 0.

Since T is injective,
(T ∗TTD −TDT ∗T ) = 0.

Then T is of class [DQN] . �

PROPOSITION 5.20. If T is of class [nDQN] such that N(T ∗D)⊂N(TD) then T
is of class [nDN].

LEMMA 5.21. If T is of class [nDQN], then N(Tn) ⊂ N(T ∗D) for every n ∈ N.

COROLLARY 5.22. If T is of class [nDQN], then N (TD) ⊂ N (T ∗D) .

THEOREM 5.23. If T and T ∗are of class [nDQN], then (TD)n is normal.

THEOREM 5.24. If T is of class [2DQN] and T 2 is of class [3DQN] , then T 2 is
D-quasi-normal.

Proof. By the condition that T 2 is of class [3DQN] , we have

(T ∗2T 2)(T ∗D)6 = (T ∗D)6(T ∗2T 2)

= T ∗(T ∗D)6(T ∗T )T

= T ∗(T ∗T )(T ∗D)6T (T ∈ [2DQN])

= T ∗(T ∗T )T ∗D(T ∗D)6(T ∗T )

= T ∗(T ∗T )T ∗D(T ∗T )(T ∗D)6 (T ∈ [2DQN])

= T ∗(T ∗T )T ∗(T ∗D)2(T ∗T )(T ∗D)6

= T ∗(T ∗T )T ∗(T ∗T )(T ∗D)8 (T ∈ [2DQN])

= [T ∗(T ∗T )]2(T ∗D)8.
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Thus we have

{(T ∗2T 2)(T ∗D)2− [T ∗(T ∗T )]2(T ∗D)4}(T ∗D)4 = 0

or

(T 4)D{(TD)2(T ∗2T 2)− (TD)4[(T ∗T )T ]2} = 0.

Then

TD{(TD)2(T ∗2T 2)− (TD)4[(T ∗T )T ]2} = 0.

or

{(T ∗2T 2)(T ∗D)2 − [T∗(T ∗T )]2(T ∗D)4}x = 0 f or x ∈ clR(T ∗D).

Hence from Corollary 5.22,

{(T ∗2T 2)(T ∗D)2 − [T∗(T ∗T )]2(T ∗D)4}y = 0 f or y ∈ N(TD).

Thus

{(T ∗2T 2)(T ∗D)2 − [T ∗(T ∗T )]2(T ∗D)4} = 0

or

(TD)2(T ∗2T 2) = (TD)4[(T ∗T )T ]2

= (TD)4(T ∗T 2)(T ∗T 2)

= T ∗T (TD)4T (T ∗T 2) (T ∈ [2DQN])

= T ∗(TD)2(T ∗T 2) (T ∈ [2DQN])

= T ∗T ∗T (TD)2T (T ∈ [2DQN])

= (T ∗2T 2)(TD)2,

and the results are proven. �

COROLLARY 5.25. If T is of class [2DQN] and 0 /∈W (TD), then T is of class
[DN]

Proof. Since 0 /∈ W (TD), gives N (TD) = N (T ∗D) = 0 and so by our Propo-
sition 5.20, T is of class [2DN] . Then [T ∗DTD,TDT ∗D] = 0. Now the conclusion
follows form [8]. �

Finally, it seems to be natural to enquire Fuglede-Putnam theorem for these gen-
eralized normal operators. This problem will be addressed in a forthcoming paper.
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