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EIGENVALUE INTERLACING FOR FIRST ORDER

DIFFERENTIAL SYSTEMS WITH PERIODIC 2× 2 MATRIX

POTENTIALS AND QUASI–PERIODIC BOUNDARY CONDITIONS

SONJA CURRIE, THOMAS T. ROTH AND BRUCE A. WATSON

Abstract. The self-adjoint first order system, JY ′+QY = λY , with locally integrable, real, sym-

metric, π -periodic, 2×2 matrix potential Q is considered, where J =
(

0 1
−1 0

)
. By means of

a unitary transformation applied to the boundary value problem considered in [6], it is shown that
all eigenvalues to the above equation with boundary conditions Y (π) =±R(θ )Y(0) , where R(θ )

is the rotation matrix

(
cosθ sinθ
−sinθ cosθ

)
, occur when the discriminant Δθ = Tr(Y(π)T R(θ )) is

equal to ±2 . Here Y is the solution of the first order system obeying the initial condition
Y(0) = I . In addition, an expression for the λ -derivative of the discriminant Δθ is given and
some monotonicity results are obtained. Interlacing/indexing properties for the eigenvalues of
various operator eigenvalue problems are proved.
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2013.

[5] E. A. CODDINGTON, N. LEVINSON, Theory of ordinary differential equations, McGraw-Hill Pub-
lishing, 1955.

[6] S. CURRIE, B. A. WATSON, T. T. ROTH, First order systems in C2 on R with periodic matrix
potentials and vanishing instability intervals, Math. Meth. Appl. Sci. 38 (2015), 4435–4447.

[7] L. H. ELIASSON, Discrete one-dimensional quasi-periodic Schrödinger operators with pure point
spectrum, Acta. Math. 179 (1997), 153–196.

[8] S. G. KREIN, Functional Analysis, Nauka, Moskow, 1972.
[9] B. M. LEVITAN, I. S. SARGSJAN, Sturm-Liouville and Dirac operators, Kluwer Academic Publish-

ers, 1991.
[10] E. J. MCSHANE, Integration, Princeton University Press, 1944.
[11] T. V. MISYURA, Characterization of the spectra of the periodic and antiperiodic boundary value

problems that are generated by the Dirac operator I, Teor. Funktsiĭ Funktsional. Anal. i Prolozhen.,
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