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SPECTRAL ANALYSIS OF THE DIRAC OPERATOR ON A 3–SPHERE

YAN-LONG FANG, MICHAEL LEVITIN AND DMITRI VASSILIEV

(Communicated by F. Gesztesy)

Abstract. We study the (massless) Dirac operator on a 3-sphere equipped with Riemannian met-
ric. For the standard metric the spectrum is known. In particular, the eigenvalues closest to
zero are the two double eigenvalues +3/2 and −3/2 . Our aim is to analyse the behaviour of
eigenvalues when the metric is perturbed in an arbitrary smooth fashion from the standard one.
We derive explicit perturbation formulae for the two eigenvalues closest to zero, taking account
of the second variations. Note that these eigenvalues remain double eigenvalues under perturba-
tions of the metric: they cannot split because of a particular symmetry of the Dirac operator in
dimension three (it commutes with the antilinear operator of charge conjugation). Our perturba-
tion formulae show that in the first approximation our two eigenvalues maintain symmetry about
zero and are completely determined by the increment of Riemannian volume. Spectral asym-
metry is observed only in the second approximation of the perturbation process. As an example
we consider a special family of metrics, the so-called generalized Berger spheres, for which the
eigenvalues can be evaluated explicitly.

1. Introduction

In this paper we study the spectrum of the (massless) Dirac operator on a 3-sphere,
S3 , equipped with Riemannian metric.

By yα , α = 1,2,3, we denote local coordinates. We specify an orientation, see
Appendix A, and use only local coordinates with positive orientation.

We will use the following conventions. Sometimes it will be convenient for us
to view the 3-sphere as the hypersurface (A.1) in Euclidean space R4 , in which case
Cartesian coordinates in R

4 will be denoted by xαααα , αααα = 1,2,3,4. Hereinafter we will
use bold script for 4-dimensional objects and normal script for 3-dimensional objects.
We will use Latin letters for anholonomic (frame) indices and Greek letters for holo-
nomic (tensor) indices. We will use the convention of summation over repeated indices;
this will apply both to Greek and to Latin indices. Also, we will heavily use the analytic
concepts of principal and subprincipal symbol of a differential operator; see definitions
in [25, subsection 2.1.3] for the case of a scalar operator acting on a single half-density
and, more relevantly, [19, Section 1] and [16, Appendix A] for the case of a matrix
operator acting on a column of half-densities.

We equip S3 with a Riemannian metric tensor gαβ (y) , α,β = 1,2,3, and study
the corresponding (massless) Dirac operator W . The Dirac operator on a 3-manifold

Mathematics subject classification (2010): 35Q41, 35P15, 58J50, 53C25.
Keywords and phrases: Dirac operator, spectral asymmetry, generalized Berger spheres.
D. V. was supported by EPSRC grant EP/M000079/1.

c© � � , Zagreb
Paper OaM-12-31

501

http://dx.doi.org/10.7153/oam-2018-12-31


502 Y.-L. FANG, M. LEVITIN AND D. VASSILIEV

is a particular operator that can be represented as a first order elliptic linear differential
operator acting on 2-columns of complex-valued scalar fields (components of a Weyl
spinor). It is written down explicitly in Appendix B; note that the definition depends
on the choice of orientation, see formula (B.15) or formula (B.7). It is known that the
Dirac operator W is a self-adjoint operator in L2(S3;C2) whose domain is the Sobolev
space H1(S3;C2) , and that the spectrum of W is discrete, accumulating to +∞ and
to −∞ . Here the inner product in L2(S3;C2) is defined as

〈v,w〉 :=
∫

S3

(
w∗v
√

detgαβ
)
dy , (1.1)

where the star stands for Hermitian conjugation and dy = dy1dy2dy3 . Furthermore, it
is known that all eigenvalues have even multiplicity because the linear Dirac operator
commutes with the antilinear operator of charge conjugation

v =
(

v1

v2

)
�→
(−v2

v1

)
=: C(v),

see [12, Appendix A] for details.
A detailed analysis of different definitions of the massless Dirac operator and their

equivalence was performed in [17]. Let us emphasise that the underlying reason why
we can use three equivalent definitions presented in subsections B.1, B.2 and B.3 is that
our manifold is 3-dimensional. One can define the Dirac operator via frames (subsec-
tion B.2) or the covariant symbol (subsection B.3) in dimension 3 (Riemannian signa-
ture) or in dimension 3+ 1 (Lorentzian signature), see [18] for details, but for higher
dimensions these approaches do not seem to work.

The Dirac operator is uniquely defined by the metric modulo the gauge transfor-
mation

W �→ R∗WR, (1.2)

where
R : S

3 → SU(2) (1.3)

is an arbitrary smooth special unitary matrix-function; see also subsection B.4 for a
discussion of spin structure. Obviously, the transformation (1.2), (1.3) does not affect
the spectrum.

The Dirac operator W describes the massless neutrino. We are looking at a single
neutrino living in a closed 3-dimensional Riemannian universe. The eigenvalues are
the energy levels of the particle. The tradition is to associate positive eigenvalues with
the energy levels of the neutrino and negative eigenvalues with the energy levels of
the antineutrino. In theoretical physics literature the (massless) Dirac operator is often
referred to as the Weyl operator which explains our notation.

In what follows we will mostly conduct a perturbation analysis: starting from the
standard metric on the 3-sphere and perturbing this metric in an arbitrary fashion, we
will write down explicit asymptotic formulae for the two eigenvalues closest to zero. At
a more abstract level the behaviour of eigenvalues of the massless Dirac operator under
perturbations of the metric was studied in [11]. Our analysis is very specific in that
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• the dimension is three,

• our manifold is a topological sphere,

• the unperturbed metric is the standard metric for the sphere,

• we study only the two eigenvalues closest to zero and

• we calculate the second variations for the perturbed eigenvalues (Theorem 2.2),
which is necessary for the observation of spectral asymmetry.

We are motivated by the desire to analyse, in detail and explicitly, the problem in a phys-
ically meaningful setting. Namely, we are trying to understand the difference between
neutrinos and antineutrinos in curved space. For other related problems in mathematics
and physics literature see, e.g., [13, 14].

Finally, in Section 6 and Appendix F we study, non-perturbatively, all the eigen-
values for a particular three-parameter family of metrics known as generalized Berger
spheres, cf. [20]. This extends previous results of [7, 9].

2. Main results

The standard metric (g0)αβ (y) on S3 is obtained by restricting the Euclidean met-
ric from R4 to S3 . For the standard metric the spectrum of the (massless) Dirac opera-
tor on S3 has been computed by different authors using different methods [26, 27, 8, 10]
and reads as follows: the eigenvalues are

±
(

k+
1
2

)
, k = 1,2, . . . ,

with multiplicity k(k+1) .
We now perturb the metric, i.e. consider a metric gαβ = gαβ (y;ε) whose compo-

nents are smooth functions of local coordinates yα , α = 1,2,3, and small real param-
eter ε , and which turns into the standard metric for ε = 0:

gαβ (y;0) = (g0)αβ (y).

Let λ+(ε) and λ−(ε) be the lowest, in terms of absolute value, positive and neg-
ative eigenvalues of the Dirac operator W (ε) . Our aim is to derive the asymptotic
expansions

λ±(ε) = ±3
2

+ λ (1)
± ε + λ (2)

± ε2 +O(ε3) as ε → 0. (2.1)

Note that λ±(ε) are double eigenvalues which cannot split because eigenvalues of the
Dirac operator have even multiplicity. Note also that the arguments presented in [15]
apply to any double eigenvalue of the Dirac operator on any closed orientable Rieman-
nian 3-manifold, so we know a priori that λ±(ε) admit the asymptotic expansions (2.1).

The issue at hand is the evaluation of the asymptotic coefficients λ (1)
± and λ (2)

± .
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Let
V (ε) :=

∫
S3

ρ(ε)dy , (2.2)

dy = dy1dy2dy3 , be the Riemannian volume of our manifold. Here

ρ(ε) = ρ(y;ε) :=
√

detgμν(y;ε)

is the Riemannian density for the perturbed metric.
Then

V (ε) = V (0) +V (1)ε +O(ε2) as ε → 0, (2.3)

where
V (0) =

∫
S3

ρ0 dy = 2π2 (2.4)

is the volume of the unperturbed 3-sphere,

ρ0 = ρ0(y) :=
√

det(g0)μν (y)

is the standard Riemannian density on the 3-sphere,

V (1) =
1
2

∫
S3

hαβ (g0)αβ ρ0 dy (2.5)

and

hαβ :=
∂gαβ

∂ε

∣∣∣∣
ε=0

. (2.6)

THEOREM 2.1. We have

λ (1)
± = ∓ 1

4π2V (1). (2.7)

We see that the dependence of the two lowest eigenvalues, λ±(ε) , on the small
parameter ε is, in the first approximation, very simple: it is determined by the change
of volume only. As expected, an increase of the volume of the resonator (volume of
our Riemannian manifold) leads to a decrease of the two lowest natural frequencies
(absolute values of the two lowest eigenvalues). Furthermore, formulae (2.3), (2.4) and
(2.7) imply

λ (1)
±

λ (0)
±

= −1
3

V (1)

V (0) , (2.8)

where by λ (0)
± = ± 3

2 we denoted the unperturbed values of the two lowest eigenval-

ues. Now put �(ε) := (V (ε))1/3 = �(0)
(
1+ 1

3
V (1)

V (0) ε +O(ε2)
)

, where �(0) = �(0) =

(2π2)1/3 . The quantity �(ε) can be interpreted as the characteristic length of our Rie-
mannian manifold. It is easy to see that formula (2.8) is equivalent to the statement

λ±(ε) =
λ (0)
±

�(ε)
+O(ε2) as ε → 0,
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which shows that in the first approximation the two lowest eigenvalues are inversely
proportional to the characteristic length of our Riemannian manifold.

An important topic in the spectral theory of first order elliptic systems is the issue
of spectral asymmetry [1, 2, 3, 4, 15], i.e. asymmetry of the spectrum about zero. From
a physics perspective spectral asymmetry describes the difference between a particle
(in our case massless neutrino) and an antiparticle (in our case massless antineutrino).
Formulae (2.1) and (2.7) imply

λ+(ε)+ λ−(ε) =
(
λ (2)

+ + λ (2)
−
)
ε2 +O(ε3) as ε → 0,

which means that there is no spectral asymmetry in the first approximation in ε but
there may be spectral asymmetry in terms quadratic in ε .

We will now evaluate the asymptotic coefficients λ (2)
± . We will do this under the

simplifying assumption that the Riemannian density does not depend on ε :√
detgμν(y;ε) =

√
det(g0)μν (y) , (2.9)

so that V (1) = 0. In mechanics such a deformation is called shear. Then Theorem 2.1
implies λ (1)

± = 0, so formula (2.1) now reads

λ±(ε) = ±3
2

+ λ (2)
± ε2 +O(ε3) as ε → 0. (2.10)

In order to evaluate the asymptotic coefficients λ (2)
± we need to introduce triples

of special vector fields (K±) j , j = 1,2,3. For their definitions and properties see
Appendix C. Here we mention only that these are triples of orthonormal Killing fields
with respect to the standard (unperturbed) metric.

Put
(h±) jk := hαβ (K±) j

α (K±)k
β , (2.11)

where hαβ is the real symmetric tensor from (2.6). Note that the elements of the 3×3
real symmetric matrix-function (h±) jk(y) are scalars, i.e. they do not change under
changes of local coordinates y . Further on we sometimes raise and lower frame in-
dices (see subsection B.2) and we do this using the Euclidean metric. This means, in
particular, that raising a frame index in (h±) jk does not change anything.

Put also

(L±) j := (K±) j
α ∂

∂yα , j = 1,2,3. (2.12)

The operators (2.12) are first order linear differential operators acting on scalar fields
over S3 . The fact that our (K±) j are Killing vector fields implies that the operators
(2.12) are formally anti-self-adjoint with respect to the standard inner product on scalar
fields over S3 . It is also easy to see that our operators (L±) j , j = 1,2,3, satisfy the
commutator identities

[(L±) j,(L±)k] = ∓2ε jkl(L±)l , (2.13)

where ε jkl is the totally antisymmetric quantity, ε123 := +1.
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Let Δ be the Laplacian on scalar fields over S3 with standard (unperturbed) met-
ric. Our Δ is a nonpositive operator, so our definition agrees with the one from basic
calculus. By (−Δ)−1 we shall denote the pseudoinverse of the non-negative differential
operator −Δ , see Appendix D for explicit definition. Obviously, (−Δ)−1 is a classical
pseudodifferential operator of order minus two.

THEOREM 2.2. Under the assumption (2.9) we have

λ (2)
± =

1
2π2

∫
S3

P±ρ0 dy , (2.14)

where

P± = ±1
4
(h±) jk(h±) jk

− 1
16

εqks(h±) jq
[
(L±)s(h±) jk

]
± 1

8
(h±)ks

[
(−Δ)−1(L±)s(L±) j(h±) jk

]
− 1

16
εqks(h±)rq

[
(−Δ)−1(L±)r(L±)s(L±) j(h±) jk

]
.

(2.15)

Theorem 2.2 warrants the following remarks.

REMARK 2.3.

(a) We chose the factor 1
2π2 in the RHS of (2.14) based on the observation that the

volume of the unperturbed 3-sphere is 2π2 , see formula (2.4). This will simplify
the comparison with the appropriate formulae previously derived for the 3-torus,
see item (f) below, and it will also simplify calculations that will be carried out
in subsection 6.3.

(b) The terms in the RHS of (2.15) are written in such an order that each subsequent
term has an extra appearance of a first order differential operator L± .

(c) The operators (−Δ)−1(L±)s(L±) j and (−Δ)−1(L±)r(L±)s(L±) j appearing in
the last two terms in the RHS of (2.15) are pseudodifferential operators of or-
der 0 and 1 respectively.

(d) The fact that the operators (L±) j , j = 1,2,3, are formally anti-self-adjoint with
respect to the standard inner product on S3 implies that for any scalar field f :
S3 → C we have ∫

S3
[(L±) j f ]ρ0 dy = 0 . (2.16)

Formula (2.16) implies that in the last two terms in the RHS of (2.15) the operator
(−Δ)−1 acts on functions from (KerΔ)⊥ .
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(e) The operators (L±) j commute with the scalar Laplacian, hence, they also com-
mute with (−Δ)−1 . Therefore, the last two terms in the RHS of (2.15) can be
written in a number of equivalent ways.

(f) The second and fourth terms in the RHS of (2.15) have a structure similar to that
of formula (2.5) from [15]. In fact, if one adjusts notation to agree with that of
[15], then it turns out that the second and fourth terms in the RHS of (2.15) are,
in effect, an equivalent way of writing formula (2.5) from [15]. See Appendix E
for more details.

(g) The first and third terms in the RHS of (2.15) do not have an analogue for the
case of the 3-torus [15]. Their appearance is due to the curvature of the 3-sphere.

(h) The first term in the RHS of (2.15) can be rewritten as

± 1
4
hμν hστ (g0)μσ (g0)ντ , (2.17)

which means that this term does not feel the Killing vector fields (K±) j , j =
1,2,3, and, hence, does not contribute to spectral asymmetry. Put

h̃μν := hμν − 1
3

δμν hστ (g0)στ ,

which is the part of the deformation tensor hμν describing shear (deformation
preserving Riemannian density). Formula (2.9) implies hστ (g0)στ = 0 , so in
our case h̃μν = hμν and the expression (2.17) takes the form

±1
4
h̃μν h̃στ (g0)μσ (g0)ντ .

Such an expression describes the elastic potential energy generated by shear, see
formula (4.3) in [23].

(i) For a generic perturbation of the metric we expect

λ (2)
+ + λ (2)

− 	= 0, (2.18)

which means that we expect spectral asymmetry in terms quadratic in ε . An
example illustrating the inequality (2.18) will be provided in subsection 6.3: see
formulae (6.20) and (6.21).

(j) Let us expand the metric tensor in powers of the small parameter ε up to quadratic
terms:

gαβ (y;ε) = (g0)αβ (y)+hαβ(y)ε + kαβ (y)ε2 +O(ε3) as ε → 0.

Here the tensor hαβ is defined by (2.6) whereas kαβ := 1
2

∂ 2gαβ
∂ε2

∣∣∣∣
ε=0

. One would

expect the coefficients λ (2)
± in the asymptotic expansions (2.10) of the lowest
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eigenvalues to depend on the tensor kαβ , but Theorem 2.2 tells us that it is not the
case. Here a rough explanation is that the only way the tensor kαβ can appear in

the formulae for λ (2)
± is linearly, however, condition (2.9) ensures that the linear

terms in the map

perturbation of metric → perturbation of lowest eigenvalues

vanish.

3. Preparatory material

In this section we present auxiliary results which will be used later in the proofs of
Theorems 2.1 and 2.2. Both theorems offer a choice of signs, so for the sake of brevity
we present all our preparatory material in a form adapted to the case of upper signs.

3.1. The unperturbed Dirac operator

Suppose that ε = 0, i.e. suppose that we are working with the standard (un-
perturbed) metric. It is convenient to write the (massless) Dirac operator using the
triple of vector fields (K+) j , j = 1,2,3, defined in Appendix C as our frame, see sub-
section B.2 for the definition of a frame. Straightforward calculations show that in this
case the Dirac operator reads

W (0) = −is j(L+) j +
3
2
I , (3.1)

where s j are the standard Pauli matrices (B.9), (L+) j are the scalar first order linear
differential operators (2.12) and I is the 2×2 identity matrix. The superscript in W (0)

indicates that the metric is unperturbed.
Let v(0) be a normalised eigenfunction corresponding to the eigenvalue + 3

2 of the
unperturbed Dirac operator (3.1). For example, one can take

v(0) =
1√
2π

(
1
0

)
. (3.2)

Here one can replace

(
1
0

)
by any other constant complex 2-column of unit norm. The

freedom in the choice of v(0) is due to the fact that + 3
2 is a double eigenvalue of the

unperturbed Dirac operator. The choice of a particular v(0) does not affect subsequent
calculations, what matters is that v(0) is a constant spinor.

Choosing the optimal frame (gauge) is crucial for our subsequent arguments be-
cause we will heavily use the fact that the eigenspinor v(0) of the unperturbed Dirac
operator is a constant spinor. See also Remark C.1(c).

Observe that the triple of vector fields (K+) j
α uniquely defines a triple of covector

fields (K+) j
α : the relation between the two is specified by the condition

(K+) j
α(K+)k

α = δ j
k, j,k = 1,2,3. (3.3)
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Of course, the covector (K+) j
α is obtained by lowering the tensor index in the vector

(K+) j
α by means of the standard metric on S3 . Here the position of the frame index

j , as a subscript or superscript, is irrelevant.
In the next subsection we will make use of both the vector fields (K+) j

α and the
covector fields (K+) j

α .

3.2. The perturbed Dirac operator

Let e j
α(y;ε) be a frame corresponding to the perturbed metric gαβ (y;ε) . This

frame can be written as

e j
α(y;ε) = (c+) j

k(y;ε)(K+)k
α(y) , (3.4)

where (c+) j
k are some real scalar fields. Without loss of generality we choose to work

with frames satisfying the symmetry condition

(c+) j
k = (c+)k

j, (3.5)

which can always be achieved by an application of a gauge transformation — multipli-
cation by a 3× 3 orthogonal matrix-function. Then formulae (2.6), (2.11), (3.4) and
(3.5) imply

(c+) j
k(y;ε) = δ j

k − ε
2
(h+) jk(y)+O(ε2) . (3.6)

The frame (3.4) uniquely defines the corresponding coframe e j
α analogously to

(3.3):
e j

αek
α = δ j

k, j,k = 1,2,3. (3.7)

Of course, the covector e j
α is obtained by lowering the tensor index in the vector e j

α

by means of the perturbed metric gαβ (y;ε) on S3 . Formulae (3.4), (3.3) and (3.7)
imply

e j
α(y;ε) = (d+) j

k(y;ε)(K+)k
α(y) , (3.8)

where
(c+) j

k(d+)l
k = δ j

l , j, l = 1,2,3. (3.9)

By (3.9) and (3.5), the matrix of scalar coefficients (d+) j
k is also symmetric,

(d+) j
k = (d+)k

j . (3.10)

Formulae (3.6), (3.9), (3.5) and (3.10) give

(d+) j
k(y;ε) = δ j

k +
ε
2
(h+) jk(y)+O(ε2) . (3.11)

Let W (ε) be the perturbed Dirac operator and let W1/2(ε) be the corresponding
perturbed Dirac operator on half-densities. According to (B.16), the two are related as

W (ε) = (ρ(ε))−1/2W1/2(ε)(ρ(ε))1/2. (3.12)
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LEMMA 3.1. The perturbed Dirac operator on half-densities W1/2(ε) acts on 2-
columns of complex-valued half-densities v1/2 as

v1/2 �→− i
2
s j (ρ0)1/2

[
(c+) j

k(L+)k +(L+)k(c+) j
k
]
(ρ0)−1/2 v1/2

+(W1/2(ε))sub v1/2 ,
(3.13)

where (W1/2(ε))sub is its subprincipal symbol.

Let us emphasise that the Riemannian density appearing in (3.13) is the unperturbed
density ρ0 and not the perturbed density ρ(ε) as in (3.12).

Proof of Lemma 3.1. Formulae (B.11) and (3.12) tell us that the principal symbol
of the operator W1/2(ε) is σα(y;ε)pα . Using formulae (B.8), (3.4) and (2.12) we can
rewrite this principal symbol as

− is j (c+) j
k[(L+)k]prin . (3.14)

But (3.14) is also the principal symbol of the operator (3.13), so the proof reduces to
proving that the operator

v1/2 �→ − i
2
s j (ρ0)1/2

[
(c+) j

k(L+)k +(L+)k(c+) j
k
]
(ρ0)−1/2 v1/2

has zero subprincipal symbol. By [25, Proposition 2.1.13] it is sufficient to prove that
the operators (ρ0)1/2(L+)k(ρ0)−1/2 , k = 1,2,3, have zero subprincipal symbols. But
the latter is a consequence of (2.12) and the fact that our (K+)k

α , being Killing vector
fields with respect to the unperturbed metric, are divergence-free. �

According to [12, formulae (6.1) and (8.1)] the explicit formula for the subprincipal
symbol of the Dirac operator on half-densities reads

(W1/2(ε))sub = I f (ε), (3.15)

where I is the 2×2 identity matrix and f (ε) = f (y;ε) is the scalar function

f (ε) :=
δkl

4ρ(ε)

[
ek

1
∂el

3

∂y2 + ek
2

∂el
1

∂y3 + ek
3

∂el
2

∂y1

− ek
1

∂el
2

∂y3 − ek
2

∂el
3

∂y1 − ek
3

∂el
1

∂y2

]
,

(3.16)

with ek
j = ek

j(y;ε) .
Combining formulae (3.12), (3.13), (3.15) and (3.16) we conclude that the per-

turbed Dirac operator W (ε) acts on 2-columns of complex-valued scalar fields v as

v �→ − i
2
s j
√

ρ0

ρ(ε)

[
(c+) j

k(L+)k +(L+)k(c+) j
k
]√ρ(ε)

ρ0
v + f (ε)v . (3.17)

Of course, when ε = 0 formulae (3.17) and (3.16) turn into formula (3.1) with
W (0) = W (0) .
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3.3. Half-densities versus scalar fields

Given a pair of 2-columns of complex-valued half-densities, v1/2 and w1/2 , we
define their inner product as

〈v1/2 ,w1/2〉 :=
∫

S3
(w1/2)

∗ v1/2 dy . (3.18)

The advantage of (3.18) over (1.1) is that the inner product (3.18) does not depend on
the metric. Consequently, if we work with half-densities, perturbations of the metric
will not change our Hilbert space. And, unsurprisingly, the perturbation process de-
scribed in [15, Section 4] was written in terms of half-densities.

The explicit formula for the action of the operator W1/2(ε) reads

v1/2 �→ − i
2
s j (ρ0)1/2

[
(c+) j

k(L+)k +(L+)k(c+) j
k
]
(ρ0)−1/2 v1/2 + f (ε)v1/2 , (3.19)

where f (ε) is the scalar function (3.16).
Formulae (3.19) and (3.16) give us a convenient explicit representation of the per-

turbed Dirac operator on half-densities W1/2(ε) . We will use this representation in the
next two sections when proving Theorems 2.1 and 2.2.

When ε = 0 formulae (3.19) and (3.16) turn into

v1/2 �→ −is j(ρ0)1/2(L+)k(ρ0)−1/2v1/2 +
3
2
v1/2 ,

which is the action of the unperturbed Dirac operator on half-densities W (0)
1/2 =W1/2(0) .

The normalised eigenfunction of the operator W (0)
1/2 corresponding to the eigenvalue + 3

2
reads

v(0)
1/2 = ρ1/2

0 v(0), (3.20)

where v(0) is given by formula (3.2).

3.4. Asymptotic process

Let us expand our Dirac operator on half-densities in powers of ε ,

W1/2(ε) =W (0)
1/2 + εW (1)

1/2 + ε2W (2)
1/2 + . . . . (3.21)

Then, according to [15, formulae (4.12) and (4.13)], formula (2.1) holds with

λ (1)
+ =

〈
W (1)

1/2 v(0)
1/2 ,v(0)

1/2

〉
, (3.22)

λ (2)
+ =

〈
W (2)

1/2 v(0)
1/2 ,v(0)

1/2

〉− 〈(W (1)
1/2 −λ (1)

+ I
)
Q1/2
(
W (1)

1/2−λ (1)
+ I
)
v(0)
1/2 ,v(0)

1/2

〉
, (3.23)

where Q1/2 is the pseudoinverse of the operator W (0)
1/2 − 3

2 I . See [15, Section 3] for
definition of pseudoinverse.
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LEMMA 3.2. We have〈
W1/2(ε)v(0)

1/2 ,v(0)
1/2

〉
=
〈

f (ε)v(0)
1/2 ,v(0)

1/2

〉
=

1
2π2

∫
S3

f (ε)ρ0 dy . (3.24)

Proof. Substituting (3.19), (3.20) and (3.2) into the LHS of (3.24) and using Re-
mark 2.3(d), we see that the terms with (L+)k integrate to zero, which leaves us with
the RHS of (3.24). �

Let us now expand the scalar function f (ε) in powers of our ε ,

f (ε) = f (0) + ε f (1) + ε2 f (2) + . . . . (3.25)

Here, of course, f (0) = f (0) = 3
2 .

Formulae (3.24), (3.21) and (3.25) imply

〈
W (n)

1/2 v(0)
1/2 ,v(0)

1/2

〉
=
〈

f (n) v(0)
1/2 ,v(0)

1/2

〉
=

1
2π2

∫
S3

f (n) ρ0 dy , n = 0,1, . . . .

Then formulae (3.22) and (3.23) become

λ (1)
+ =

1
2π2

∫
S3

f (1) ρ0 dy , (3.26)

λ (2)
+ =

1
2π2

∫
S3

f (2) ρ0 dy − 〈(W (1)
1/2−λ (1)

+ I
)
Q1/2
(
W (1)

1/2−λ (1)
+ I
)
v(0)
1/2 ,v(0)

1/2

〉
=

1
2π2

∫
S3

f (2) ρ0 dy − 〈Q1/2
(
W (1)

1/2 −λ (1)
+ I
)
v(0)
1/2 ,
(
W (1)

1/2−λ (1)
+ I
)
v(0)
1/2

〉
.

(3.27)

4. Proof of Theorem 2.1

We prove Theorem 2.1 for the case of upper signs.
We have

ρ(ε) = ρ0

(
1+

ε
2
hαβ (g0)αβ +O(ε2)

)
. (4.1)

Using formulae (3.8), (3.10) and (3.11), we get

δkl

[
ek

1
∂el

3

∂y2 + ek
2

∂el
1

∂y3 + ek
3

∂el
2

∂y1 − ek
1

∂el
2

∂y3 − ek
2

∂el
3

∂y1 − ek
3

∂el
1

∂y2

]
= 6ρ0

(
1+

ε
3
(h+) j j +O(ε2)

)
= 6ρ0

(
1+

ε
3
hαβ (g0)αβ +O(ε2)

)
.

(4.2)

Substitution of (4.1) and (4.2) into (3.16) gives us

f (1) = −1
4
hαβ (g0)αβ . (4.3)

Finally, substituting (4.3) into (3.26) and using (2.5), we arrive at (2.7). �
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5. Proof of Theorem 2.2

We prove Theorem 2.2 for the case of upper signs.
Recall also that we are proving this theorem under the assumption (2.9). This

implies, in particular, that

λ (1)
+ = 0. (5.1)

With account of (5.1), in order to use formula (3.27) we require the expressions for the

scalar function f (2) and for W (1)
1/2 v(0)

1/2 .
Substituting (3.8) and (3.11) into (3.16) and using (2.9) and (3.10), we get

f (1) = 0, (5.2)

f (2) =
1
4
(h+) jk(h+) jk − 1

16
εqks(h+) jq

[
(L+)s(h+) jk

]
. (5.3)

Examination of formulae (3.19), (3.6) and (5.2) gives us the explicit formula for

the action of the operator W (1)
1/2 :

v1/2 �→
i
4
s j (ρ0)1/2 [(h+) jk(L+)k +(L+)k(h+) jk

]
(ρ0)−1/2 v1/2. (5.4)

Acting with the operator (5.4) on the eigenfunction (3.20) of the unperturbed massless
Dirac operator on half-densities, we obtain

W (1)
1/2 v(0)

1/2 =
i
4
(ρ0)1/2 s j v(0) [(L+)k(h+) jk

]
. (5.5)

Using formula (5.5), we get

− 〈Q1/2W (1)
1/2 v(0)

1/2 ,W (1)
1/2 v(0)

1/2

〉
= − 1

16

∫
S3

[
(L+)r(h+)qr

]([[
v(0)]∗sq(ρ0)−1/2Q1/2(ρ0)1/2s jv(0)

][
(L+)k(h+) jk

])
ρ0 dy.

(5.6)

But (ρ0)−1/2 Q1/2 (ρ0)1/2 = Q , the pseudoinverse of the operator W (0) − 3
2 I . Hence,

formula (5.6) simplifies and reads now

− 〈Q1/2W (1)
1/2 v(0)

1/2 ,W (1)
1/2 v(0)

1/2

〉
= − 1

16

∫
S3

[
(L+)r(h+)qr

]([[
v(0)]∗sq Qs j v(0)

][
(L+)k(h+) jk

])
ρ0 dy .

(5.7)

Observe now that we have the identity(
W (0)− 1

2
I

)2

= (−Δ +1)I, (5.8)

where I is the 2× 2 identity matrix and Δ is the Laplacian on scalar fields over S3

with standard metric. Formula (5.8) can be established by direct substitution of (3.1)
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and the use of the commutator formula (2.13). Formula (5.8) appears also as Lemma 2
in [8].

Formula (5.8) implies

Q = (−Δ)−1
(

W (0) +
1
2
I

)
= (−Δ)−1

(
−isl(L+)l +2I

)
. (5.9)

Formula (5.9), in turn, gives us the following representation for the scalar pseudodiffer-
ential operator

[
v(0)]∗sq Qs j v(0) :[

v(0)]∗sq Qs j v(0)

= 2
([

v(0)]∗sq s j v(0)
)

(−Δ)−1− i
([

v(0)]∗sq sl s j v(0)
)

(−Δ)−1(L+)l .
(5.10)

Substituting (5.10) into (5.7), we get

−〈Q1/2W (1)
1/2 v(0)

1/2 ,W (1)
1/2 v(0)

1/2

〉
= −1

8

([
v(0)]∗sq s j v(0)

)∫
S3

[
(L+)r(h+)qr

][
(−Δ)−1(L+)k(h+) jk

]
ρ0 dy

+
1
16

(
i
[
v(0)]∗sq sl s j v(0)

)∫
S3

[
(L+)r(h+)qr

][
(−Δ)−1(L+)l(L+)k(h+) jk

]
ρ0 dy

=
1
8

Re
([

v(0)]∗sq s j v(0)
)∫

S3
(h+)qr

[
(−Δ)−1(L+)r(L+)k(h+) jk

]
ρ0 dy

− 1
16

Re
(
i
[
v(0)]∗sq sl s j v(0)

)∫
S3

(h+)qr
[
(−Δ)−1(L+)r(L+)l(L+)k(h+) jk

]
ρ0 dy .

(5.11)

But

Re
([

v(0)]∗sq s j v(0)
)

=
1
2

([
v(0)]∗(sqs j + s jsq)v(0)

)
= δ q j

([
v(0)]∗ I v(0)

)
=

1
2π2 δ q j,

Re
(
i
[
v(0)]∗sq sl s j v(0)

)
=

i
2

([
v(0)]∗(sqsls j − s jslsq)v(0)

)
= −εql j

([
v(0)]∗ I v(0)

)
= − 1

2π2 εql j,

where we made use of (3.2). Hence, formula (5.11) simplifies and reads now

−〈Q1/2W (1)
1/2 v(0)

1/2 ,W (1)
1/2 v(0)

1/2

〉
=

1
16π2

∫
S3

(h+) jr
[
(−Δ)−1(L+)r(L+)k(h+) jk

]
ρ0 dy

+
1

32π2 εql j

∫
S3

(h+)qr
[
(−Δ)−1(L+)r(L+)l(L+)k(h+) jk

]
ρ0 dy.

(5.12)

Substituting (5.3) and (5.12) into (3.27) we arrive at (2.14), (2.15) with upper
signs. �
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6. Generalized Berger spheres

A left-handed generalized Berger sphere is a 3-sphere equipped with metric

gαβ = Cjk(K+) j
α(K+)k

β , (6.1)

where C = (Cjk)3
j,k=1 is a constant 3×3 positive real symmetric matrix and (K+) j

α ,
j = 1,2,3, are our special covector fields defined in accordance with Section 2 and
formula (3.3). One can, of course, define in a similar fashion right-handed generalized
Berger spheres: these involve the covector fields (K−) j

α , j = 1,2,3. However, in this
paper, as in [21], we restrict our analysis to left-handed ones.

One can always perform a rotation in R4 so that (6.1) turns to

gαβ =
3

∑
j=1

a2
j(K+) j

α(K+) j
β , (6.2)

where a j , j = 1,2,3, are some positive constants. In formula (6.2) the (K+) j
α ,

j = 1,2,3, are new covector fields defined in the new Cartesian coordinate system
in accordance with formulae (C.1) and (3.3). Of course, a2

j are the eigenvalues of the
matrix C . Further on we assume that our generalized Berger metric has the form (6.2).

To the authors’ knowledge, metrics of the type (6.2) were first considered in
Section 3 of [21]. The expression “generalized Berger sphere” first appears in [20].
The standard (as opposed to the generalized) Berger sphere corresponds to the case
a2 = a3 = 1, and the standard sphere corresponds to the case a1 = a2 = a3 = 1.

For future reference, let us give the formula for the Riemannian volume (2.2) of
the generalized Berger sphere:

V = 2π2a1a2a3 . (6.3)

6.1. Dirac operator on generalized Berger spheres

The remarkable feature of generalized Berger spheres is that for these metrics the
calculation of eigenvalues of the (massless) Dirac operator reduces to finding roots of
polynomials.

The Dirac operator (3.17) corresponding to the generalized Berger metric reads

W = −i
3

∑
j=1

1
a j

s j(L+) j + νI , (6.4)

where

ν =
a2

1 +a2
2 +a2

3

2a1a2a3
. (6.5)

In writing (6.4) we followed the convention of choosing the symmetric gauge, see for-
mulae (3.5) and (3.10). The constant (6.5) was written down by means of a careful
application of formula (3.16).
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Note that formula (6.4) appears also in Proposition 3.1 of [21].
Examination of formula (6.4) shows that λ = ν is an eigenvalue of the Dirac

operator, with the corresponding eigenspinors being constant spinors.
In order to calculate other eigenvalues of the Dirac operator it is convenient to

extend our spinor field from S3 to a neighbourhoodof S3 in R4 and rewrite the operator
in Cartesian coordinates. Substituting (C.1) into (6.4), we get

W = −i
3

∑
j=1

1
a j

s j(L+) j + νI , (6.6)

where
(L+)1 = −x4∂1 −x3∂2 +x2∂3 +x1∂4 ,

(L+)2 = x3∂1 −x4∂2−x1∂3 +x2∂4 ,

(L+)3 = −x2∂1 +x1∂2−x4∂3 +x3∂4 .

(6.7)

Here the way to work with the Cartesian representation of the Dirac operator is to act
with (6.6), (6.7) on a spinor field defined in a neighbourhood of S3 and then restrict
the result to (A.1). It is easy to see that under this procedure the resulting spinor field
on S3 does not depend on the way we extended our original spinor field from S3 to a
neighbourhood of S3 in R4 .

The operators (6.7) commute with the scalar Laplacian in R4 . This implies that
these operators map homogeneous harmonic polynomials of degree k to homogeneous
harmonic polynomials of degree less than or equal to k . Hence, the eigenspinors of
the Dirac operator can be written in terms of homogeneous harmonic polynomials. Of
course, the restriction of homogeneous harmonic polynomials to the 3-sphere (A.1)
gives spherical functions, but we find working with polynomials in Cartesian coordi-
nates more convenient than working with spherical functions in spherical coordinates
(A.2).

Let us seek an eigenspinor which is linear in Cartesian coordinates xαααα , αααα =
1,2,3,4. Such an eigenspinor is determined by eight complex constants and finding
the corresponding eigenvalues reduces to finding the eigenvalues of a particular 8× 8
Hermitian matrix. Explicit calculations (which we omit for the sake of brevity) show
that the characteristic polynomial of this 8× 8 Hermitian matrix is the square of a
polynomial of degree four whose roots are

ν − 1
a1

− 1
a2

− 1
a3

, (6.8)

ν − 1
a1

+
1
a2

+
1
a3

, (6.9)

ν +
1
a1

− 1
a2

+
1
a3

, (6.10)

ν +
1
a1

+
1
a2

− 1
a3

. (6.11)
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One can repeat the above procedure for homogeneous harmonic polynomials of
degree n = 2,3, . . . , thus reducing the problem of finding eigenvalues of the Dirac op-
erator on a generalized Berger sphere to finding roots of polynomials. See Appendix F
for further details.

Note that for the standard Berger sphere (a2 = a3 = 1) the spectrum of the Dirac
operator was previously calculated in [7, 9].

6.2. Testing Theorem 2.1 on generalized Berger spheres

From now on we will assume that the positive constants a j are close to 1. This as-
sumption will allow us to identify the lowest, in terms of modulus, positive and negative
eigenvalues of the Dirac operator.

When a1 = a2 = a3 = 1 the expression (6.5) takes the value + 3
2 and the expres-

sion (6.8) takes the value − 3
2 . Hence,

λ+ = ν (6.12)

is the lowest positive eigenvalue of the Dirac operator and

λ− = ν − 1
a1

− 1
a2

− 1
a3

(6.13)

is the lowest, in terms of modulus, negative eigenvalue of the Dirac operator. Recall
that ν is given by formula (6.5). As for the expressions (6.9)–(6.11), their values are
close to + 5

2 .
In this subsection and the next one we assume that the constants a j appearing in

formula (6.2) are smooth functions of the small parameter ε and that a j(0) = 1.
Expanding (6.3), (6.12) and (6.13) in powers of ε , we get

V (ε) = 2π2 (1+(a′1 +a′2 +a′3)ε +O(ε2)
)
, (6.14)

λ±(ε) = ±3
2
∓ 1

2
(a′1 +a′2 +a′3)ε +O(ε2) , (6.15)

where

a′j :=
da j

dε

∣∣∣∣
ε=0

.

Formulae (2.1), (2.3), (2.4), (6.14) and (6.15) imply (2.7). Thus, we are in agreement
with Theorem 2.1.

6.3. Testing Theorem 2.2 on generalized Berger spheres

In this subsection we make the additional assumption

a1(ε)a2(ε)a3(ε) = 1 , (6.16)

which ensures the preservation of Riemannian volume (6.3) under perturbations. But
generalized Berger spheres are homogeneous Riemannian spaces, so preservation of
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Riemannian volume is equivalent to preservation of Riemannian density. Hence, (6.16)
implies (2.9), which is required for testing Theorem 2.2.

For future reference note that formula (6.16) implies

a′1 +a′2 +a′3 = 0 , (6.17)

a′′1 +a′′2 +a′′3 +2(a′1a
′
2 +a′2a

′
3 +a′3a

′
1) = 0 , (6.18)

where

a′′j :=
d2a j

dε2

∣∣∣∣
ε=0

. (6.19)

Expanding (6.12) and (6.13) in powers of ε and using formulae (6.17) and (6.18),
we get

λ+(ε) =
3
2

+
(
(a′1)

2 +(a′2)
2 +(a′3)

2)ε2 +O(ε3) , (6.20)

λ−(ε) = −3
2

+
1
2

(
(a′1)

2 +(a′2)
2 +(a′3)

2)ε2 +O(ε3) . (6.21)

Note that the second derivatives (6.19) do not appear in formulae (6.20) and (6.21),
which is in agreement with Remark 2.3(j).

We first test whether formula (6.20) agrees with Theorem 2.2. Calculating the
scalars (2.11) with upper sign, we get

(h+) jk = 2
3

∑
l=1

a′l δl j δlk . (6.22)

Formulae (2.15) and (6.22) imply

P+ = (a′1)
2 +(a′2)

2 +(a′3)
2. (6.23)

Substituting (6.23) into (2.14) and using (2.4), we get λ (2)
+ = (a′1)

2 + (a′2)
2 + (a′3)

2 ,
which is in agreement with (6.20).

In the remainder of this subsection we test whether formula (6.21) agrees with
Theorem 2.2. This is trickier because the scalar fields (h−) jk are not constant.

Consider the matrix-function⎛⎝(x1)2−(x2)2−(x3)2+(x4)2 2(x1x2−x3x4) 2(x1x3+x2x4)
2(x1x2+x3x4) −(x1)2+(x2)2−(x3)2+(x4)2 2(x2x3−x1x4)
2(x1x3−x2x4) 2(x1x4+x2x3) −(x1)2−(x2)2+(x3)2+(x4)2

⎞⎠
whose elements are homogeneous harmonic quadratic polynomials. Let O be the
restriction of the above matrix-function to the 3-sphere (A.1). Note that the matrix-
function O is orthogonal. Let us denote the elements the matrix-function O by Ojk ,
with the first subscript enumerating rows and the second enumerating columns. The
two sets of scalar fields, (h+) jk and (h−) jk , are related as

(h−)il = Oi j(h+) jkOlk . (6.24)
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Substitution of (6.22) into (6.24) gives us explicit formulae for the scalar fields (h−) jk .
We now need to substitute (6.24) into the formula for P− , see (2.15).
Observe that the (spherical) functions Ojk satisfy the identity

(L−)i O jk = 2εi jl Olk . (6.25)

Formulae (6.24) and (6.25) and the fact that the matrix of constants (h+) jk is symmetric
imply (L−)s(L−) j(h−) jk = 0, so the last two terms in the RHS of (2.15) vanish, giving
us

P− = −1
4
(h−) jk(h−) jk − 1

16
εqks(h−) jq

[
(L−)s(h−) jk

]
. (6.26)

We examine the two terms in the RHS of (6.26) separately. As the matrix O is
orthogonal, we have, with account of (6.22),

− 1
4
(h−) jk(h−) jk = −1

4
(h+) jk(h+) jk = −[(a′1)2 +(a′2)

2 +(a′3)
2]. (6.27)

The other term is evaluated by substituting (6.24), using the identity (6.25) and the fact
that our perturbation of the metric is pointwise trace-free (h±) j j = 0, which gives us

− 1
16

εqks(h−) jq
[
(L−)s(h−) jk

]
=

3
8
(h+) jk(h+) jk =

3
2

[
(a′1)

2 +(a′2)
2 +(a′3)

2]. (6.28)

Substituting (6.27) and (6.28) into the RHS of (6.26), we arrive at

P− =
1
2

[
(a′1)

2 +(a′2)
2 +(a′3)

2]. (6.29)

Substituting (6.29) into (2.14) and using (2.4), we get λ (2)
− = 1

2 [(a′1)
2 +(a′2)

2 +(a′3)
2] ,

which is in agreement with (6.21).
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Appendix A Orientation

The unit 3-sphere, S3 , is the hypersurface in R4 defined by the equation

‖x‖ = 1, (A.1)

where ‖ · ‖ is the standard Euclidean norm. Spherical coordinates⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠=

⎛⎜⎜⎝
cosy1

siny1 cosy2

siny1 siny2 cosy3

siny1 siny2 siny3

⎞⎟⎟⎠ , y1,y2 ∈ (0,π), y3 ∈ [0,2π), (A.2)

are an example of local coordinates on S3 . We define the orientation of spherical coor-
dinates (A.2) to be positive.
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Appendix B The Dirac operator

B.1 Classical geometric definition

Unlike the rest of the paper, in this subsection we work in a more general setting.
Namely, we do not assume our base manifold to be 3-dimensional.

The material presented in this subsection can be found in many classical books
on spin geometry. We follow the notation from [22]. Let X be an m-dimensional
connected manifold and E be an n -dimensional oriented Riemannian vector bundle
with a spin structure. Recall that a complex spin bundle of E is given by SC(E) =
PSpin(E)×μ MC , where PSpin(E) is the principal Spinn bundle associated with E , MC

is an N -dimensional left complex module for Cl(Rn) = Cl(Rn)⊗C and μ : Spinn �→
SO(MC) is the representation induced by left multiplication by elements of Spinn ⊂
Cl0(Rn) ⊂ Cl(Rn) .

THEOREM B.1. ([22, Chapter II, Section 4]) Let ω be a connection 1 -form on
the bundle of PSO(E) oriented orthonormal bases of E , which can be expressed as
ω = ∑i< j ωi j ei∧e j . Here ei∧e j is the elementary skew-symmetric (i, j) matrix. Then
the covariant derivative ∇s on S(E) is given locally by the formula

∇sbα =
1
2 ∑

i< j
ω̃i j ⊗ eie j ·bα , (B.1)

where E = (e1, . . . ,en) is a local section of PSO(E) on U , ω̃ = E ∗(ω) , and (b1, . . . ,bN)
is a local section of PSO(S(E)) .

REMARK B.2. A local section (b1, . . . ,bN) corresponds to the choice of basis in
the module MC , that is, a basis in the representation μ . Once the representation μ and
basis (b1, . . . ,bN) are chosen, spinor fields ϕ can be written locally as

ϕ = ϕαbα ,

where ϕα ∈C∞(U) . We also have

μ(e j)bα = μ(e j)β
α bβ .

Hence, formula (B.1) is equivalent to

∇sϕα = dϕα +
1
2 ∑

i< j
ω̃i j ⊗ μ(eie j)α

β ϕβ ,

or abbreviated as

∇sϕ = dϕ +
1
2 ∑

i< j
ω̃i j ⊗ μ(eie j) ·ϕ . (B.2)
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The (massless) Dirac operator acting on S(E) is defined as

Dsϕ = ei∇s
ei

ϕ . (B.3)

It is well known that any spinor bundle of E on a connected manifold can be
decomposed into a direct sum of irreducible spinor bundles. However, the most inter-
esting case is when E = TX , which implies n = m . Therefore, we will only consider
the irreducible complex spinor bundle on TX , which further implies that the module
has complex dimension N = 2�

n
2 � , where � ·� stands for the integer part.

Let ΔC
n be the representation of Spinn given by restricting an irreducible complex

representation Cl(Rn) �→ HomC(SN ,SN) to Spinn ⊂Cl0(Rn) ⊂ Cl(Rn) .

REMARK B.3. When n is odd, this representation of Spinn is independent of
which irreducible representations of Cl(Rn) are used.

As we only work in odd dimension(s), we focus on the spin bundle Δn(X) :=
PSpin(TX)×ΔC

n
SN . Furthermore, we consider the Levi-Civita connection on PSO(TM) ,

which induces a connection on PSpin(TM) as given in Theorem B.1. We use ∇ to
denote covariant derivatives induced by the Levi-Civita connection. In this case the ωi j

in Theorem B.1 are given by
ωi j = g(∇ei,e j) . (B.4)

Hence, formulae (B.2) and (B.3) become

∇ϕ = dφ +
1
4
g(∇ei,e j)⊗ΔC

n (eie j) ·ϕ (B.5)

and
Wϕ = ΔC

n (ei)∇eiϕ , (B.6)

where we use W to denote the Dirac operator.
Now, we further assume that our manifold is parallelizable. In particular, this

assumption is satisfied for any 3-dimensional oriented manifold. Then PSO(TX) is
trivial. Thus, there exists a global section E = (e1, . . . ,en) of PSO(TX) . This implies
that formulae (B.5) and (B.6) can be extended globally.

B.2 Definition via frames

In this subsection we set n = 3. Hence, N = 2 and Δ3(X) := PSpin(TX)×ΔC
3

S2 .
Consider a triple of orthonormal (with respect to the given metric g ) smooth real vector
fields e j , j = 1,2,3. Each vector e j(y) has coordinate components e j

α(y) , α = 1,2,3.
The triple of vector fields e j , j = 1,2,3, is called an orthonormal frame. We assume
that

dete j
α > 0 , (B.7)

which means that the orientation of our frame agrees with the orientation of our local
coordinates.
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Define Pauli matrices
σα(y) := s j e j

α(y) , (B.8)

where

s1 :=
(

0 1
1 0

)
, s2 :=

(
0 −i
i 0

)
, s3 :=

(
1 0
0 −1

)
. (B.9)

Note that formula (B.8) is equivalent to choosing a particular representation of ΔC
3

which is given by
ΔC

3 (e j) = −is j . (B.10)

It is not hard to see that this representation is an irreducible representation of Cl(R3) .
Let {

β
αγ

}
:=

1
2
gβ δ
(∂gγδ

∂yα +
∂gαδ
∂yγ − ∂gαγ

∂yδ

)
be the Christoffel symbols.

Using formulae (B.4) to (B.6), we conclude that the massless Dirac operator is the
2×2 matrix first order linear differential operator given by

W := −iσα

(
∂

∂yα +
1
4

σβ

(
∂σβ

∂yα +
{

β
αγ

}
σγ

))
(B.11)

acting on sections of Δ3 . Note that the standard basis for the representation (B.10) is
used here and hence W can be thought of as acting on 2-columns of complex-valued
scalar fields. See also Remark B.2 and [12, Appendix A].

B.3 Analytic definition

Since we are working on a connected oriented 3-manifold, by picking a global
section of PSO(TX) we can regard the operator W as an operator acting on 2-columns
of complex-valued scalar fields. Now we shall extend it to an operator on half-densities.

The massless Dirac operator on half-densities, W1/2 , corresponding to the given
metric g is a particular 2× 2 matrix first order linear differential operator acting on
2-columns of complex-valued half-densities. It is defined by the following four condi-
tions:

tr(W1/2)prin = 0 , (B.12)

det(W1/2)prin(y, p) = −gαβ (y) pα pβ , (B.13)

(W1/2)sub =
i

16
gαβ{(W1/2)prin,(W1/2)prin,(W1/2)prin}pα pβ , (B.14)

−i tr
[
((W1/2)prin)p1((W1/2)prin)p2((W1/2)prin)p3

]
> 0 . (B.15)

Here y = (y1,y2,y3) denotes local coordinates, p = (p1, p2, p3) denotes the dual vari-
able (momentum), (W1/2)prin(y, p) is the principal symbol, (W1/2)sub(y) is the subprin-
cipal symbol, curly brackets denote the generalized Poisson bracket on matrix-functions

{F,G,H} := Fyα GHpα −Fpα GHyα ,
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and the subscripts yα and pα indicate partial derivatives.
The massless Dirac operator, W , is defined as

W := (detgκλ )−1/4W1/2 (detgμν)1/4. (B.16)

It acts on 2-columns of complex-valued scalar fields.
The analytic definition of the massless Dirac operator given in this subsection

originates from [5, Section 8] and is equivalent to the traditional geometric definition
presented in subsection B.1.

B.4 Spin structure

The definitions from subsections B.2 and B.3 work for any connected oriented
Riemannian 3-manifold and are equivalent. Note, however, that they do not define the
massless Dirac operator uniquely. Namely, let W be a massless Dirac operator and let
R(y) be an arbitrary smooth 2×2 special unitary matrix-function (1.3). One can check
that then R∗WR is also a massless Dirac operator.

Let us now look at the issue of non-uniqueness of the massless Dirac operator the
other way round. Suppose that W and W̃ are two massless Dirac operators. Does there
exist a smooth matrix-function (1.3) such that W̃ = R∗WR ? If the operators W and W̃
are in a certain sense ‘close’ then the answer is yes, but in general there are topological
obstructions and the answer is no. This motivates the introduction of the concept of
spin structure, see [5, Section 7] and [6] for details.

Fortunately, for the purposes of our paper the issue of spin structure is irrelevant
because it is known [10, Section 5], that the 3-sphere admits a unique spin structure. In
other words, when we work on S3 equipped with a Riemannian metric g the construc-
tions from subsections B.3 and B.2 define the massless Dirac operator uniquely modulo
the gauge transformation (1.2), (1.3).

Appendix C Special vector fields on the 3-sphere

Working in R4 and using Cartesian coordinates, consider the triple of vector fields
(K±) j

αααα , j = 1,2,3, αααα = 1,2,3,4, defined as

(K±)1 =
(−x4 ∓x3 ±x2 x1

)
,

(K±)2 =
(±x3 −x4 ∓x1 x2

)
,

(K±)3 =
(∓x2 ±x1 −x4 x3

)
.

(C.1)

Observe that the vector fields (C.1) are tangent to the 3-sphere (A.1), so let us
denote by (K±) j

α the restrictions of the vector fields (C.1) to the 3-sphere. Here the
tensor index α = 1,2,3 corresponds to local coordinates yα on S3 . Note that we have
det{(K±) j

α} > 0, which is in agreement with (B.7).

REMARK C.1. The vector fields (K±) j , j = 1,2,3, constructed above are special
because with the standard metric on S

3 they possess the following properties.
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(a) The vector fields (K±) j are orthonormal,

(b) The vector fields (K±) j are Killing vector fields.

(c) If we write down the Dirac operator W± using (K±) j as a frame, then the eigen-
spinors corresponding to the eigenvalue ± 3

2 are constant spinors. Of course, for a
given operator W+ or W− one cannot have constant eigenspinors for eigenvalues
+ 3

2 and − 3
2 because this would contradict the fact that eigenspinors correspond-

ing to different eigenvalues are orthogonal.

Note that the operators W+ and W− defined in Remark C.1(c) are related as W− =
R∗W+R , where R : S3 → SU(2) is the restriction of the matrix-function

±
(

x4 + ix3 x2 + ix1

−x2 + ix1 x4− ix3

)
to the 3-sphere (A.1).

The construction of the unperturbed Dirac operator by means of a triple of or-
thonormal Killing vector fields and an immersion of S3 in R4 was previously used in
[24].

Appendix D The scalar Laplacian and its pseudoinverse

In this appendix we work on the 3-sphere equipped with standard metric (g0)αβ (y) .
Let f be a smooth scalar function on S3 . Then there exists a unique sequence

of homogeneous harmonic polynomials pn(x) of degree n = 0,1,2, . . . such that the

series
+∞
∑

n=0
pn(x) converges uniformly, together with all its partial derivatives, on the

closed unit ball in R4 , and coincides with f on S3 .
It is known that the eigenvalues of the operator −Δ acting on S3 are n(n + 2) ,

n = 0,1,2, . . . , and their multiplicity is (n+ 1)2 , which is the dimension of the vector
space of homogeneous harmonic polynomials of degree n . The explicit formula for the
action of the operator (−Δ)−1 , the pseudoinverse of −Δ , on our function f is

(−Δ)−1 f =
+∞

∑
n=1

pn(x)
n(n+2)

∣∣∣∣∣‖x‖=1

.

Appendix E Comparison with the 3-torus

If we leave only the second and fourth terms in the RHS of (2.15), substitute this
expression into (2.14), drop the subscripts ± and use (2.4), we get

λ (2) = − 1

16V (0) εqks

∫
S3

(
h jq
[
Lsh jk

]
+hrq

[
(−Δ)−1LrLsL jh jk

])
ρ0 dy . (E.1)

Formula (E.1) coincides with the result from [15, Theorem 2.1] if we put V (0) = (2π)3

(volume of the unperturbed torus), ρ0 = 1 and Lj = δ j
α ∂α , with ∂α denoting partial

differentiation in the α th cyclic coordinate on the 3-torus.
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Appendix F Eigenvalues for generalized Berger spheres

Here we give further explicit expressions for the eigenvalues using the procedure
from Section 6.1 where we apply the operator to harmonic polynomials of degree n .
For convenience we seek eigenvalues μ of the operator W̃ = W− νI obtained by
dropping the constant term from (6.6).

Let κ = (κ1,κ2,κ3) ∈ {±1}3 , and let

N+ := {κ ∈ {±1}3 : κ1κ2κ3 = +1}= {(1,1,1),(1,−1,−1),(−1,1,−1),(−1,−1,1)}.

For each n � 4 we give below an explicit formula for the characteristic polyno-
mial χn(μ) whose roots give the eigenvalues of W̃ . For n � 5 formulae become too
cumbersome to list, and we do not have a general formula yet.

Degree n = 0 .
χ0(μ) = μ2.

Degree n = 1 .

χ1(μ) = ∏
κ∈N+

[
μ +

3

∑
j=1

κ j

a j

]2

.

See also formulae (6.8)–(6.11).

Degree n = 2 .

χ2(μ) =

[
μ3−

(
4

3

∑
j=1

a−2
j

)
μ +

16

∏3
j=1 a j

]6

.

Degree n = 3 .

χ3(μ) = ∏
κ∈N+

⎡⎢⎣μ2−
(

3

∑
j=1

κ j

a j

)
μ −3

⎛⎜⎝ 3

∑
j=1

a−2
j −

3

∑
j,k=1
j 	=k

κ jκk

a jak

⎞⎟⎠
⎤⎥⎦

4

.

Degree n = 4 .

χ4(μ) =

⎡⎢⎣μ5−
(

20
3

∑
j=1

a−2
j

)
μ3 +

(
80

∏3
j=1 a j

)
μ2

+64

⎛⎜⎝ 3

∑
j=1

a−4
j +2

3

∑
j,k=1
j 	=k

a−2
j a−2

k

⎞⎟⎠μ −768
∑3

j=1 a−2
j

∏3
j=1 a j

⎤⎥⎦
10

.
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tkrümmung, Ph.D. thesis, Humboldt Universität zu Berlin, 1981.

[27] A. TRAUTMAN, The Dirac operator on hypersurfaces, Acta Physica Polonica B 26 (1995), 1283–
1310.

(Received October 29, 2017) Yan-Long Fang
Department of Mathematics
University College London

Gower Street, London WC1E 6BT, UK
and

London Centre for Nanotechnology
University College London

17-19 Gordon Street, London WC1H 0AH, UK
e-mail: yanlong.fang@ucl.ac.uk

Michael Levitin
Department of Mathematics and Statistics

University of Reading
Whiteknights, P. O. Box 220, Reading RG6 6AX, UK

e-mail: M.Levitin@reading.ac.uk

Dmitri Vassiliev
Department of Mathematics
University College London

Gower Street, London WC1E 6BT, UK
e-mail: D.Vassiliev@ucl.ac.uk

Operators and Matrices
www.ele-math.com
oam@ele-math.com


