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(Communicated by C.-K. Li)

Abstract. Let M, (D) be the ring of all n x n matrices over a division ring D, where n > 2
is an integer and let . be the set of all rank-k matrices in M, (D), where k is an integer with
1 <k < n. We characterize maps f:.% — M, (D) such that [f(x), f(y)] = [x,y] forall x,y € .7

1. Introduction and results

Let <7 be aring with center Z(«7). For x,y € o/, let [x,y] denote the commutator
of x and y, that is, [x,y] = xy —yx. We say that amap [ : &/ — &/ preserves commu-
tativity if [f(x),f(y)] = 0 whenever [x,y] =0 for x,y € 7. The study of describing
maps that preserve commutativity has become an active research area in matrix theory,
operator theory and ring theory. In [5] Bell and Mason introduced the notion of a cer-
tain kind of commutativity preserving maps as follows: For a subset . of <7, a map
[ — & issaid to be strong commutativity preserving on . if [f(x), f(y)] = [x,]
for all x,y € .. Bell and Daif [4] proved that if a semiprime ring .7 admits a deriva-
tion d satisfying [d(x),d(y)] = [x,y] for all x,y € 7, then </ is commutative. BreSar
and Miers [9] characterized additive maps f : .«f — o/ which is strong commutativity
preserving on the entire semiprime ring <7 and showed that f must be of the form
f(x) = Ax+pu(x) for all x € o7, where 4 is an element in the extended centroid €
of @/, A =1 and pu : &/ — € is an additive map. In [39] Qi and Hou studied non-
additive strong commutativity preserving maps and proved that if 7 is a unital prime
ring containing nontrivial idempotents, then every nonadditive surjective strong com-
mutativity preserving maps f on ./ must be of the form f(x) = Ax+ u(x) for all
x€ o, where A € {l1,—1} and u: &/ — Z(</) is a map. Later Lee and Wong [24]
generalized the result of Qi and Hou by removing the surjection of the map f and the
assumption on the existence of nontrivial idempotents in .#'. These results have been
now generalized in various directions [2, 3, 11, 15, 26, 27, 29, 31, 37, 38, 40, 41, 45].
Many important results on linear preserver problems treat subsets of matrices that are
not closed under addition such as invertible matrices, singular matrices, nilpotent ma-
trices, matrices of rank one, etc (see the survey paper [25] for details). In [16, 17, 21]
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Franca initiated the study of functional identities on invertible matrices, singular ma-
trices or rank-k matrices. Precisely, he successfully described the structure of additive
maps f : M,(K) — M,(K) such that [f(x),x] = 0 for every invertible matrix (singular
matrix, rank- k matrix) x € M, (K), where M,,(K) denotes the ring of all n x n matrices
over a field K. Since then, several related results had been obtained in the literature
[18-21, 30, 33, 34, 42-44]. Recently, Liu [34] characterized nonadditive maps which
are strong commutativity preserving on the set of invertible matrices or singular matri-
ces as follows:

THEOREM L. ([34, Theorem 2.2 and Theorem 2.4]) Let M, (D) be the ring of all
n X n matrices over a division ring D, where n > 2 is an integer and let ¥ be a subset
of M,(D) containing all invertible (singular) matrices in M, (D). Suppose that f :
S — My(D) is a map satisfying [f(x), f(y)] = [x,y] forall x,y € .. Then there exists
amap U : .S — Z(D)I, suchthat f(x) =x+pu(x) forall x € .7 or f(x) = —x+ u(x)
Sorall x € 7, where I, denotes the identity matrix of M,(ID).

Let D be a division ring and let D" =D @ --- & D be the left D-vector space
consisting of all 1 x n row vectors over . Given a matrix x € M, (D), the row space
of x over D is the D-subspace of D" generated by the rows of x and the rank of x,
denoted by rankx, is the dimension of the row space of x over . As usual, for a matrix
x € M,(D), there are three kinds of elementary row operations on x: (i) interchange
two rows of x; (ii) left multiply a row of x by a nonzero o € D; (iii) for ¢ € D and
i# j,add a times row j to row i. It is known that every matrix x € M,(ID) can be
changed to a matrix y in reduced row echelon form by a finite sequence of elementary
row operations. In particular, rankx = ranky, ranky is the number of nonzero rows
in y and x is invertible in M, (D) iff rankx = n (see [23, Chapter VII]). Thus, writing
Theorem L in terms of rank, we can say that every strong commutativity preserving
maps f on the set . of all rank-n matrices in M, (D) is of the form f(x) = Ax+ pu(x)
forall x € ., where A € {1,—1} and u : . — Z(D)I, is a map. So it gives rise to a
natural question: For an integer k with 1 <k <n—1, does every strong commutativity
preserving maps on the set of all rank-k matrices in M, (D) have the standard form
described in Theorem L? The goal of this paper is to give a positive answer to this
question. Our main result is as follows:

THEOREM 1.1. Let M, (D) be the ring of all n x n matrices over a division ring
D, where n > 2 is an integer and let % be a subset of M, (D) containing all rank-k
matrices in M, (D), where k is an integer such that 1 <k <n.If f:. — M,(D) isa
map satisfying [f(x),f(y)] = [x,y] for all x,y € .7, then there exists a map | : .S —
Z(D)I, such that f(x) =x+ pu(x) forall x € .7 or f(x) = —x+u(x) forall x€ .,
where I, denotes the identity matrix of M,(D).

Let o be an automorphism of ./ and let 1, denote the identity automorphism of
</ . An additive map § : &/ — <7 is called a o -derivationif 6(xy) = o(x)3(y)+ 0 (x)y
for all x,y € o7. Clearly, 1, -derivations are just ordinary derivations. An additive
map g: .o/ — o/ is called a generalized o -derivation if there exists a o -derivation
0 : 9/ — o such that g(xy) = g(x)y+o(x)0(y) for all x,y € & (see [1, 6, 12-14,
28, 32, 35]). Generally, we call generalized o -derivations generalized skew deriva-
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tions. Generalized 1., -derivations are just generalized derivations. A map g: &/ — o/
is called a multiplicative generalized o -derivation if there exists a map 0 : &/ — &/
such that g(xy) = g(x)y+ o (x)8(y) for all x,y € o/. Recently, strong commutativity
preserving generalized derivations and skew derivations had been widely studied in the
literature [2, 11, 27, 31, 38, 45]. As an application of Theorem 1.1, we obtain the
analogous result for multiplicative generalized ¢ -derivations on rank-k matrices over
division rings.

COROLLARY 1.2. Let M, (D) be the ring of all n X n matrices over a division ring
D, where n > 2 is an integer and let 6 be an automorphism of M,(ID). Suppose that g :
M, (D) — M, (D) is a multiplicative generalized © -derivation satisfying [g(x),g(y)] =
[x,¥] for all rank-k matrices x,y € M, (D), where k is an integer such that 1 < k < n.
Then g(x) = x for all x € M,,(D) or g(x) = —x forall x € M,(D).

2. The Jacobi type identity

As usual, let M, (D) denote the ring of all n x n matrices over a division ring I,
let 7, be the identity matrix of M, (ID) and let {¢;; | 1 <i,j <n} be the set of matrix
units in M, (D). Note that the center of M,(D) is Z(M,(D)) =Z(D)1,.

The following two lemmas are obvious.

LEMMA 2.1. Let D be a division ring and o, € D. If ou = uf3 forall 0#u €
D, then o = B € Z(D).

LEMMA 2.2. Let M, (D) be the ring of all n x n matrices over a division ring D,
where n > 2 is an integer. If a € M, (D) and [a,de;j] =0 for all distinct integers i, j
with 1 <i,j<nandd e, then a € Z(D)I,.

In [34], Liu proved the following result:

PROPOSITION 2.3. ([34, Proposition 2.1]) Let M, (D) be the ring of all n X n
matrices over a division ring D, where n > 3 is an integer and let . be a subset of
M, (D). Suppose that for every d € D and every distinct integers i,j with 1 <i,j<n,
there exists at least one element 2;j q € Z(D) such that de;j+ Ajjal, € . If . —
M, (D) is a map satisfying [f(x),[y.2]] + [f (), [2.x]] + [f(2), [x,]] = O for all x,y,z €
7, then there exist A € Z(D) and amap | : S — Z(D)I, such that f(x) = Ax+ u(x)
forall x € ..

As an immediate consequence of Proposition 2.3, we have:

LEMMA 2.4. Let M, (D) be the ring of all n x n matrices over a division ring
D, where n > 3 is an integer and let % be a subset of M,(D) containing all rank-1
matrices in My(D). If f: . — M, (D) is a map satisfying [f(x),[y,z)] + [f (), [z,x]] +
[f(2),[x,y]] =0 for all x,y,z € ., then there exist . € Z(D) and a map U : . —
Z(D)I, suchthat f(x) = Ax+ u(x) forall x € ..

Proof. Let &' =.U{0}. Clearly, for every d € D and every distinct integers
i,j with 1 <i,j<n, dejj+0I, €. . Let g:. — M,(D) be the map defined by the
rules as follows: (a) g(s) = f(s) if s€ .\ {0}; (b) g(0) = f(0) if 0€.¥ and g(0) =0
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if 0 ¢ .. Then by assumption, we have [g(x), [v,z]] + [g(), [z,x]] + [g(2), [x,y]] = O for
all x,y,z € .. By Proposition 2.3, there exist A € Z(D) and amap u : .’ — Z(D)l,
such that g(x) = Ax+ u(x) forall x € .. Hence f(x) = Ax+ p(x) forall x € .7, as
desired. [l

PROPOSITION 2.5. Let M,(ID) be the ring of all n x n matrices over a division
ring D, where n > 3 is an integer and let . be a subset of M,,(D) containing all rank-
k matrices in M, (D), where k is an integer such that | <k <n.If f:.7 — M,(D) is
a map satisfying

[f(x)7[ vZH + [f(y)» [ZJC]] + [f(Z)7 [x7y]] =0 (2'1)

Sfor all x,y,z € .7, then there exist . € Z(D) and a map u : .7 — Z(D)I, such that
f(xX)=Ax+u(x) forall xe 7.

Proof. Note that if k = n, then for every d € D and every distinct integers i, j
with 1 <i,j <n, de;j +1, € ¥ and hence we are done by Proposition 2.3. Clearly,
when k = 1, the proposition follows directly from Lemma 2.4. So from now on we
assume 2 < k <n— 1. For simplicity, if U = {sy,...,s;} C {1,2,...,n}, then we let
Yrcu ere denote the matrix Y, eys, .

Let U be a set such that U C {1,2,...,n} and |U| =k. Then Y cyen € 7.
Fix this U and write f(3,cyen) = Z _, 04je;j, where o;; € D. Let i, j,¢ be three
distinct integers such that 1 < i, j,7 < n i,jeUandt¢U.LetV=U\{ij}. Note
that i, j,t ¢ V. Then Y ey eqr+ulejj+eji), Xocy err+eii+ ey € S forall 0 £ u € D.
Setting x =Y ey ew, y = Yyey eee+u(eij+eji), 2= Ypey ew +eii+ e, in (2.1), where

0#u €D, since [y,z] = —u(e;j—eji), [z,x] =0 and [x,y] = 0, we obtain
O:[f(zeﬁf):_u(eij_ejl = ZeM elj_ejl +u el]_e]l Zeﬁ
et et et

for all 0 # u € D. Multiplying (2.2) by e;; from the left and by e;; from the right, we
obtain —e;; f (X ey err)ueij +ueijf (Xoey eer)ej; = 0. This implies og;u = uctj; for all
0#ueD. By Lemma 2.1, o;; = otj; € Z(DD). Let s be an integer with s # 7, j and
1 <5 <n. Multiplying (2.2) by ey, from the left and by e¢;; from the right, we obtain
—essf(Zpev eee)ueij = 0. This implies ogu = 0 for all 0 # u € D. Thus o = 0.
Similarly, multiplying (2.2) by ey, from the right and by e;; from the left, we obtain
a;s = 0. Since i, j can be chosen arbitrary from U and s can be chosen arbitrary from
U\ {i,j}, now we have

oy = 0 € Z(]D) forall i,jeU (2.3)

and
05i=0s =0 forall icU and s¢ U with 1 <s<n. (2.4)

Let i,t be two distinct integers such that 1 <i,t <n, i€ U and t ¢ U. Let
V= (U\{i})U{t}. Then Tsey e = (Zieuv\ (i) o) +en, (Teevn iy eve) + uew € 7 for
all 0 #u € D. Setting x = Ypepen, y = Xpevew, 2= (Zrev\(iy eur) + ueir in (2.1),
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where 0 # u € D, since [y,z] = —ue;, [z,x] = —ue; and [x,y] = 0, we obtain
0=[f(D ew),—uex] + [f( Y, ew),—uei
e lev
=—f( Y ew)uei +uei f( D, ew) — f( D, eww)uey +uerf (D, ew) (2.5)
e e lev lev

forall 0 #u e D. Write f(Xjevew) =X Bijeij, where fi; € D. In view of (2.3)
and (2.4), we have
By = Bu € Z(D) forall L€V (2.6)

ast €V and
Bii=Bi=0 forall LeV (2.7)

as i¢ V. Let j €U and j#i. Multiplying (2.5) by ej; from the left and by e,
from the right, we obtain —e;;f(Xscy eor)ueis — ejif (Tocy ere)ueir = 0. This implies
—ojiu—Bjiu=0forall 0£uecD. By (2.7) Bji=0as jeV and i¢ V. Thus aj; =0.
Since i, j can be chosen arbitrary from U, we obtain

0q =0 forall p,gcU with p#q. (2.8)

Next multiplying (2.5) by e;; from the left and by e; from the right, we obtain
—eiif (Zoey ewr)uei + uei f(Xocy ewr)en — eif (Zocy eor)uei + uey f(Xpey ece)en = 0.
This implies —ogiu + uoy; — Biiu+ ufy; = 0 for all 0 #u € D. By (2.3) and (2.6),
i, By € Z(D). Thus (B — Bii)u = u(0y; — oy ) forall 0 # u € D. So by Lemma 2.1

B — Bii = otii — oy € Z(D). (2.9)

Moreover,
attaﬂii S Z(D) (2-10)

as 0, B € Z(D). Let p be an integer such that p ¢ U, p# 1t and 1 < p < n and let
W = (U\{i})U{p}. Note that p,t ¢ U, r ¢ W and p ¢ V = (U\ {i})U{r}. Then
(Zrew ew) +erp € 7. Setting x =Y ep e, y = ey e 2= (Zpew eu) +erp in (2.1),
since [y,z] = e:p, [z,x] =0 and [x,y] = 0, we obtain

0=1[f(D ew) ep) = F( Y ew)erp —erpf( Y ew). (2.11)

et e letu

Now multiplying (2.11) by e,,, on both sides, we obtain e,,f(Xscy ew)e;p = 0. This
implies oy, = 0. Since p,r can be chosen arbitrary from {1,2,...,n}\ U with p #1,
we have

0pg =0 forall pgq¢ U, p#q and 1 <p,g<n. (2.12)

Next multiplying (2.11) by e, from the left and by e, from the right, we obtain

enf(Soev ew)ep — epf (Sicv ew)epp = 0. This implies oy = o,,. Since p can be
chosen arbitrary from {1,2,...,n} \ (UU{r}), we get

oy =0y forall p¢ U, p#t and 1 <p<n. (2.13)
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In view of (2.4), (2.8) and (2.12), f(Yscy err) is a diagonal matrix. Moreover, using
(2.3) and (2.13), we obtain

F(Y ew) =2 owew+ Y, owen

ey ey e{1.2,..n}\U

= O Z ep + Oy Z en

= te{12,.n\U

= (04 — o) Y, e+ Ol (2.14)
et
Recall that oy, 04 € Z(ID) by (2.3) and (2.10). Let A = o4 — oy € Z(D). From (2.14),
it follows that f (Y ,cy err) — A (Zpey €e) € Z(D)I, . By symmetry, f(Xsey eer) = (B —
Bii) Xecv eor+ Biily and Bij, By € Z(D). In view of (2.9), similarly, we obtain f (Y, ,cy )
—A(Zpev ew) € Z(D)I,. Now we conclude that there exists A € Z(ID) such that for ev-
ery set U with U C {1,2,...,n} and |U| =k,

f(Ze/j/j)—l(Ze/j/j) € Z(D)1,. (2.15)
et leu

Let U be asetsuch that U C {1,2,...,n} with |[U| =k, leti,j €U with i# j and
let u € D. Clearly, Yy e+ uejj € . Fix these U, i,j and u. Write f(Xscp e+
ue;j) = 2?,,‘:1 o;je;j, where oy; € . Let 7 be an integer such that t ¢ U, 1 <t <n
and let V be a set such that V C {1,2,...,n}, |V| =k, i,;t €V and j ¢ V. Then
Dieu €ets ey e+ ueij, Xoey e +vey € S for v e D, Setting x = Y ey e + uejj,
Y= Ysevew, 7= dyeyeu+vey in (2.1), where v € D, since [y,z] = —vey;, [z,x] =
ue;j + ve;i +vuej, [x,y] =0 and by (2.15) f(y) = Ay + vl, for some y € Z(D), we

have

0=[f(D ew+ueij),—vei] + [f( D ew),ueij+ vesi + vuey ]

et e
=[f(D] eww+ueij), —vei] + [A (Y, ew) + Yl ueij + veri + vuer )
letu et
=—f( 2 epr+uejj)vei +veif( 2 eq + uejj)
leu leu
+A( Z er) (ueij+vei+vue ) — (uejj+vey +vue; ) A( Z ew)
letu e
=—f( 2 eq +ueij)ve +vef( 2 e +ueij) — Averj — Avue; (2.16)
leu leu

forall ve . Let s be an integer such that s #¢ and 1 < s < n. Multiplying (2.16) by
egs from the left, we obtain —eg f(X ey eor + ueij)ve; = 0. Thus oy = 0. Since ¢ can
be chosen arbitrary from {1,2,...,n} \ U, we get

Opg =0 forall p#¢q, q¢U and 1< p,g<n. (2.17)

Now multiplying (2.16) by e, from the left and by e;; from the right, we obtain
verif(Xoey e+ uejj)ejj — Avue;j = 0. Thus vey; — Avu =0 for all v € D, implying

a,-jzku. (2.18)



MAPS ON RANK-k MATRICES OVER DIVISION RINGS 569

Next multiplying (2.16) by e, from the left and by e; from the right, we obtain
—en f(Zocv ew + ueij)ves; +veiif (Spcy eoe + ueij)eii — Ave; = 0. Thus (o4 +A)v =
voy; for all v € D. By Lemma 2.1, o;; = o + A € Z(D). In particular, o, € Z(D) as
A € Z(D). Since ¢ can be chosen arbitrary from {1,2,...,n}\ U, we have

opp=05i—A €Z(D) forall p¢ U and 1< p<n. (2.19)

Let ¢ be an integer such that r ¢ U, 1 <7 < n and let V' be a set such that
V' C{L,2,...,n}, |V/|=k, j,t€V' and i ¢ V'. Then Y ey ep+vej € . forveD.
Setting x = Yy epe +ueij, y = Ypepy €, 2= Zpey’ €o +vej in (2.1), where v € D,
since [y,z] =vej, [z,x] = —uejj —vej; —uvey, [x,y] =0 and by (2.15) f(y) = Ay+ 7,
for some y € Z(D), we have

2 (7] + ue,J ve,, 2 eM ue,-j - V€jt — uve,-,]
leu leu
= [f( 2 ew +ueij),vej| + [?L(E ew) + Yy, —uejj — vej; — uvey|
leu leu
= f( Z ep+ueij)ve —veji f( Z eq + uejj)
et et
+A( 2 ew)(—uejj—vej —uvey) — (—uejj —vej; — uvej )A( 2 ew)
leu leu
= f( Z ep+ueij)ve —veji f( Z eq +uejj) — Avej; — Auvejs (2.20)
et et

for all v € D. Multiplying (2.20) by e;; from the left and by e;; from the right, we
obtain e;;f(Xsey ew + ueij)vejs —veji f(Xpey e + ueij)en — Avej = 0. Thus ajjv =
v(oy +A) forall veD. By Lemma 2.1, oj; = o + A € Z(D) and hence by (2.19)

Qi = Ojj € Z(D). (2.21)

Let s be an integer such that s # ¢ and 1 < s <¢. Multiplying (2.20) by ey from the
right, we obtain —ve; f(X ey o +uejj)ess = 0. Thus oy = 0. Since ¢ can be chosen
arbitrary from {1,2,...,n}\ U, we get

Opg =0 forall p#¢q, p¢U and 1< p,g<n. (2.22)

Let p be an integer such that p € U and p #i,j and let W be a set such that W C
{1,2,...,n} with |W| =k, i,jeW and p ¢ W. Then Yscy epr, Xpew er+ eip € 7.
Setting x = Yyep o +ueij, y = Ypew err» 2= Spew € +eip in (2.1), since [y,z] = e;p,
[z,x] =0 and [x,y] = 0, we obtain

[F(Y eor+ueij),eip] = f( D, ew+ueij)eip — einf( D, ew + ueij). (2.23)
ey ey et

Now multiplying (2.23) by e; from the left and by e,, from the right, we obtain
eif (Xoey eo +uejj)eip —eip f(Xpey ew + ueij)epp = 0. Thus o — o, = 0. This im-
plies

oy =0y forall pe U with p#£i,j. (2.24)
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Let g be an integer such that ¢ # p and 1 < g < n. Multiplying (2.23) by ey, from the
right, we get —e;,f(Xocy err + ueij)eqq = 0. Thus oy, = 0. Since p can be chosen
arbitrary from p € U\ {4, j}, we have

Opg =0 forall p#¢q, peU with p#i,j and 1 <g<n. (2.25)
Multiplying (2.23) by ¢;; from the left, we get e;; f(Xscp ee + ueij)ei, = 0. Thus
Clearly, Y pewew+epj €S . Setting x =Y ey epr+ueij, y= Jycw € 2= 2pew €t +
epj in (2 1), since [y,z] = —ep;, [z,x] =0 and [x,y] = 0, we obtain

2 ew +ueij), —epjl = 2 e +ueijlepi+epif( 2 e +ueij). (2.27)
teu teu et

Let g be an integer such that g # p and 1 < ¢ < n. Multiplying (2.27) by ¢,, from
the left, we get —eyqf(Xscy eor + uejj)e,; = 0. Thus oy, = 0. Since p can be chosen
arbitrary from p € U \ {7, j}, we have

o4p =0 forall p#¢q, peU with p#i,j and 1 <g<n. (2.28)
By (2.17), (2.18), (2.19), (2.21), (2.22), (2.24), (2.25), (2.26) and (2.28), we have
(Y eww+ueij) = Aueij+ Y, qupesr+ Y, oyre

e lteu e{1.2,..n}\U
= Aueij+ i Y, e+ (04— A) Y ew
iU te{12,.a\U
= lue,-j + A(E ep) + (o — M),
et

Hence we conclude that for every set U with U C {1,2,...,n} and |U| = k, for every
i,j € U with i # j and for every u € D,

(3 eww+ueis) = A(Y, e+ ueij) € Z(D),.
et et
Let x € .7, let i,j be two distinct integers with 1 <i,j < n and let u € D.
Choose a set U such that U C {1,2,...,n}, |U| =k and i,j € U and choose a set
V suchthat V. C {1,2,...,n} suchthat |[V| =k, j€V and i ¢ V. Clearly, Y,y e +
ueij, Ypcy e € L. Setting y = Y ey ep + uejj, 2= Ypey e, in (2.1), since [y,z] =
ueij, [v[z.x]] + [z, [x,y]] = —[x,[y,z]] by Jacobi identity and there exist ¥, 7. € Z(DD)
such that f(y) = Ay+ %1, and f(z) = Az+ Y1, we obtain

0= [f(x), 2] + [f»), [z:x]] + [ (2), [x,]]
= [f(0), 2] + Ay + Wlo, [2,X]] + [Az+ ed, [x, Y]]
= [f(x), v, ]l + Ay, [z, 4] + [Az, [x, ]
= [f(x), 2] + A ([, [z,x]] + [z, [x,¥]])
= [f(x), [.2]] = Alx, [.2]]
= [f(x) = Ax, [y, 2]]
= [f(x) — Ax,ue;j]
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This implies [f(x) — Ax,ue;;] = 0 for all distinct integers 7, j with 1 <i,j <n and
ueD.ByLemma2.2, f(x)—Ax € Z(D)I, forall xe .. Let u : 5’—>Z( )1, be the
map defined by u(x) = f(x) — Ax for x € .. Then f(x) = Ax+ pu(x) forall x € .7.
This proves the proposition. [

LEMMA 2.6. ([10, p. 239, Theorem A7]) Let D be a division ring and a;,b;,c;,d;
€ D. Suppose that 3" | ajub; +Z;?:1 cjudj =0 forallu e D. If ay,...,a, are Z(D)-
independent, then each b; is a Z(D) -linear combination of dy,...,dy. If by,... by are
Z(D)-independent, then each a; is a Z(D)-linear combination of cy,...,c,.

PROPOSITION 2.7. Let My(D) be the ring of all 2 x 2 matrices over a non-
commutative division ring D and let . be a subset of My(D) such that for every
d €D and every distinct integers i, j with 1 <1i,j < 2, there exists at least one element
Aija € Z(D) such that de;j+ Aij ql> € 7 and for every d € D\ Z(D) and every integer
i with 1 <i< 2, there exists at least one element Ajj g € Z(D) such that dej; + Ajj 41> €
Ff £.F — Mo(D) is amap satisfying [(x), 2] + (£, [ex]] + [£(2), [, 7] =0
Sor all x,y,z € .7, then there exist A € Z(D) and a map U : ¥ — Z(D)I such that
f(x)=2Ax+ u(x) forall x€ .7

Proof. Forevery d € D and every distinct integers i, j with 1 <i, j <2, we choose
and fix A;j 4 € Z(D) such that de;; +A;j 41> € .. Also, forevery d € D\ Z(D) and ev-
ery integer i with 1 <i <2, we choose and fix 4;; 4 € Z(ID) such that de;; + A;; 4I» € 7.
Let ay,by : D — D and ¢y : D\ Z(D) — D be maps such that f(uejn + Ai2,uls) =

a1 (u) () _ (bn() bialv) =
(ot ) et = (GRETEECT) st s+ 2t =
(w

cri(w) cia(w)
foru,veD and w e D\ Z(D).
<C21( ) caa(w )) \2(D)
Setting x = wey —|—All’wlg, y=ue +112’u12, Z=ven —|—2,217V12 in (2.1), where
u,v €D and w € D\ Z(D), since [y,z] = uvey; —vuer, [z,x] = vwen; and [x,y] =

wueyy, we obtain
{ (cll(W) zlz(w ) <uo" _?)u)} + [(Z;EZ; ZZEZ;) ’ (v?v 8)}
“[(ont)e))- (6]

ca1(w) ca(w
forall u,v €D and w € D\ Z(D). In view of corresponding entries, we obtain that

NN

ap(u)yw —wuby (v) +ci1(w)uv —uvey(w) =0, (2.29)
—cro(w)vu —uverp(w) + b1 (v)wu — wubsy(v) =0, (2.30)
an (u)vyw —vway (u) + ca1(w)uv + vucy (w) =0, (2.31)
and
boy (v)wu —vwayn(u) — cop(w)vu+ vucy(w) =0 (2.32)

forall u,v € D and w € D\ Z(D). Replacing w with w+ 1 in (2.29) for w € D\ Z(D)
and using (2.29), we obtain a2 (u)v —uby(v) + (cii(w+ 1) —c11(w))uv —uv(cy (w+
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1) —c1i(w)) =0 for all u,v €D and w € D\ Z(D). Let wy € D\ Z(ID) and let o =
cri(wo + 1) —c11(wo). Then we have (aj2(u)+ au)v —u(ba(v) +vo) =0 for all
u,v€D. Setting u =v =1, we obtain aj2(1) = b2 (1). Next setting u = 1, we get

by (v) = (an(1)+ o)y —va = (b2 (1) + a)v —vo (2.33)
and setting v=1, we get
ap(u) =u(by(1)+ o) —oau (2.34)
for all u,v € D. Using (2.34) and letting v = 1 in (2.29), we have
L-u((ba()+o)w—cii(w)) —w-uby (1) —au-w+cii(wu-1=0 (2.35)

forall u €D and w € D\ Z(ID). Clearly, 1,w are Z(DD)-independent for every w € D\
Z(D). Applying Lemma 2.6 to (2.35), we obtain o € Z(D)1+Z(D)w. Thus [c;,w] =0
for every w € D\ Z(D) and hence [a,w] =0 for all w € D, implying o € Z(D). By
(2.33) and (2.34), ajp(u) = uby1(1) and by (v) = byi(1)v for all u,v € D. Similarly,
using (2.32), we obtain ajp(u) = boy(1)u. Thus aa(u) = ubyi(1) = by (1)u for all
u € D. This implies by (1) € Z(D). Hence a12(u) = Au and by (v) = Av for u,v €D,
where A = by1(1) € Z(D). With these, (2.29) and (2.32) can be reduced to [cj1(w) —
Aw,uv] =0 and [co2(w),vu] =0 for all u,v € D and w € D\ Z(D). Thus ¢ (w) =
Aw+c (w) and cp(w) € Z(D) for all w e D\ Z(D), where ¢}, : D\ Z(D) — Z(D
is a map.

Replacing w with w+ 1 in (2.31) for w € D\ Z(D) and using (2.31), we obtain
an(u)v—vay(u)+(ca(w+1)—ca(w))uv+vu(car(w+1) —ca1(w)) =0 forall u,v e
D and w e D\ Z(D). Let wo € D\ Z(D) and let B = cp1(wo + 1) — c21(wo). Then we
have (ax(u) + Bu)v —v(ayi(u) —uf) =0 for all u,v € D. By Lemma 2.1, ag(u) +
Bu=ay;1(u) —uP € Z(D) for all u € D. Thus there exists a map y: D — Z(ID) such
that ay(u) + Bu = a1 (u) —uf = y(u) for all u € D. Then ay(u) = —Pu+ y(u) and
ayi(u) = uf + y(u) for all u € D. With these, (2.31) can be reduced to

—Buv-w+cri(w)uv- 14 1-v(ucyi(w) —wuff) =0 (2.36)

forall u,v €D and w € D\ Z(D). Clearly, 1,w are Z(ID)-independent for every w €
D\ Z(D). Applying Lemma 2.6 to (2.36), we obtain Bu € Z(D)1 and ¢p; (w)u € Z(D)1
for all u €D and w € D\ Z(D). Note that B = 0; otherwise u € Z(D)B~" for all
u € D, implying D is commutative, a contradiction. Similarly, cp;(w) =0 for all w €
D\ Z(D). Hence ax(u) =aj1(u) =y(u) € Z(D) forall u € D and cp; = 0. Similarly,
using (2.30), we obtain b1 (v) = bya(v) € Z(D) for all v € D and c¢1p = 0. Now we
have f(uelz—kllz’ulg) = <a210(u) Ab”) +a11(u)lg, f(V€21 —|-121’V12) — (}?v b12O(V)) +

Aw+E(w) 0
b11(v)L, and f(wer + Ai1wh) = ( 05( ) 0
D\ Z(D), where ayi(u),b11(v),c20(w), & (w) = ¢ (W) —c22(w) € Z(D) forall u,v €D
and w € D\ Z(D). By symmetry, setting x = wexs + A whr, y = uein +Ain b, 2=
vea1 + 21 vk in (2.1), where u,v € D and w € D\ Z(D), we obtain f(wex + A2 ) =

+en(w)h for u,y €D and w €
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(8 7Lw+O§(w)) +dy1(w)l for we D\ Z(D), where §,dy; : D\ Z(D) — Z(D) are

maps. Next, setting x = seq1 + A1, y =ten +An b, 2= uein+ Al in (2.1),
where 5,7 € D\ Z(D) and u € D, since [y,z| = —utein, [z,x| = —sue;z and [x,y] =0,
we obtain

0= [f(se11 +M1sh), —utern] + [f(tear + A2z 12), —suer]
= [(AS_F é (s))ell + C22(5)I2, —Mfelz} + [(Al‘ + C(I))EQQ +d11(w)12, —suelg}
( — (As+&(s))ut + su(At + C(t)))elg.

Thus
—(As+&E(s))ut +su(At+ § (1)) = =& (s)ut + & (¢)su (2.37)

forall s, € D\ Z(D) and u € D. Let 1y € D\ Z(D). Thus 1,#, are Z(ID)-independent.
By (2.37), =&(s)u-to+ C(tp)su-1 =10 forall u € D and s € D\ Z(D). So by Lemma
2.6, we have £(s) =0 for all s € D\ Z(D). Then (2.37) implies that {(¢)su =0 for
all s,t € D\ Z(D) and u € D. Thus {(r) =0 forall e D\ Z(D). From £ ={ =0 it
follows that f(weH + All,wb) = Aweq; + sz(w)lz and f(W622 + )LzQ’WIz) = Awey +
dyi(w)l for we D\ Z(D).

Setting x = uei + Apula, y = weir + A wlz, 2= e12+ A2,12 in (2.1), where
uecD and we D\ Z(D), since [y,z] = wej2, [z,x] =0 and [x,y] = —wue;>, we obtain

= [f(ueir + Ao ula), wern] + [f(e1a + Ain,1 1), —wuey)

{(@ )+au< (561 (et o)+t (5 75")]
(1)

B (I az (u)w — 6121(1) ”)

Thus a1 (u)w — a1 (1)wu =0 for all u € D and w € D\ Z(D). Replacing w with
w41, we get ap; (1) = az;(1)u and then 0 = ap; (u)w — az; (1)wu = az;(1)[u,w] for
all ue D and w € D\ Z(D). Clearly, [u,w] # 0 for some u € D and w € D\ Z(D).
Thus as;(1) = 0 and hence ay(u) = 0 for all u € D, that is, ap; = 0. By symmetry,
setting x = veyy + Ag1 2, y = weas + A whh, 2= €31 + A21,11 in (2.1), where v € D
and w € D\ Z(D), we obtain b1, =0. Hence f(uei»+Ai2ulr) = Auein+aii (u)l, and
Sfvey —|-121’V12) = Avey1 + b1 (V)L for u,v € D.

Let x € ., let i,j be distinct integers with 1<i,j<2, let weD\Z(D) and
let u € D. Setting y = wej; + ;i 11r and z=w" ue,, —|—7L 11> in (2.1) and recalling
that there exist %,y € Z(D) such that fO)=Ay+ ’]/ylz and f(z) = Az+ 1L, by
the same proof of Proposition 2.5, we obtain [f(x) — Ax,ue;;] = 0. By Lemma 2.2,
f(x) —Ax € Z(D)I, for all x € .. This proves the proposition. [J

COROLLARY 2.8. Let My(ID) be the ring of all 2 X 2 matrices over a noncommu-
tative division ring D and let % be a subset of M (D) containing all rank-k matrices
in M>(ID), where k is an integer such that 1 <k <2.If f: . — My(D) is a map sat-
isfying [f(x), [y, 2]] + [f (), [z,x]] + [ (z), [x,¥]] =0 forall x,y,z € .7, then there exist
A€Z(D) andamap p: . — Z(D)L such that f(x) = Ax+ u(x) forall x€ ..
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Proof. Let ." = . U{0}. Suppose first k = 1. Then de;j + 0l € . for every
d € D and every integers i, j with 1 <i,j < 2. Suppose next k = 2. Then de;; + 1, €
' for every d € D and every distinct integers i, j with 1 <i,j <2 and de;;+ 1 € .’
for every d € D\ Z(D) and every integer i with 1 <i < 2. Using Proposition 2.7 and
by a similar proof of Lemma 2.4, we are done. [

The conclusion of Corollary 2.8 is false if D is commutative.

EXAMPLE. Let K be a field and let f : Mp(K) — M,(K) be the K-linear map
defined by f(e11) =e11+ein, flen) = —ei1 —eir, flern) =ern and f(ez) = e —
exs e Then [£(x), [, 2] + [F ), o]l + [£(2), ] = O for all x,y,z € Ma(K) and
hence for all rank-k matrices x,y,z € M,(K), where k is an integer such that 1 <
k < 2. However, f is not of the form described in Corollary 2.8 as f(e11) — Aej; =
(1=A)er1+ein ¢ Kl and f(ern+en+ex) —Alerr+enntex)=(2—A)err —en+
(2—Aepn+ (1 —2A)ey ¢ KL, forall A € K.

3. Proofs of main results

LEMMA 3.1. Let My(ID) be the ring of all 2 X 2 matrices over a division ring D
and let % be a subset of M (D) containing all rank-k matrices in M (D), where k is
an integer such that 1 < k< 2. If f: . — My(D) is a map satisfying [f(x), f(y)] =
[x,¥] for all x,y € ., then there exists a map U : . — Z(D)l, such that f(x) =
x+pu(x) forall x € .7 or f(x) = —x+u(x) forall xe 7.

Proof. If k=2, then . contains all invertible matrices in M, (D) and hence we
are done by Theorem L. Suppose now k= 1. Let ./ =.U{0} and let g: . —
M;(D) be the map defined by the rules as follows: (a) g(s) = f(s) if s € .\ {0};
(b) g(0) = f(0) if 0 € . and g(0) =0 if 0 ¢ .. Then by assumption, we have
[g(x),g(y)] = [x,y] for all x,y € .’. Clearly, .#’ contains all singular matrices in
M;(D). By Theorem L, there exists a map p : " — Z(D)I, such that g(x) = x+ u(x)
forall x € . or g(x) = —x+ u(x) forall x € . So f(x) =x+ u(x) forall x € .5
or f(x) = —x+ u(x) forall x € .. This proves the lemma. [J

LEMMA 3.2. Let M, (D) be the ring of all n x n matrices over a division ring D,
where n > 2 is an integer and let k be an integer such that 1 < k < n. Then for every
integers i, j with 1 <i,j <n andevery d € D, there exist rank-k matrices y,z € M, (D)
such that de;jj =y —z.

Proof. Let i,j be distinct integers such that 1 <i,j<nandletd € D. If d =0,
then de;; =y —y and de;; =y —y for every rank-k matrix y € M,(ID). So we may
assume d # 0. Suppose first that k = 1. Clearly, de;;, d(eji+e;;) and de;; are all rank-
1 matrices in M,(ID). In view of de;; = d(eji+e;j) —de;j and de;; = d(e;i+e;j) — deiji,
we are done. Suppose next that k > 2. Let U be a set such that U C {1,2,...,n},
|U‘ =k—2and UN {i7j} = 0. Clearly, d(e; + eij +eji) + e e, d(e,-j +€j5) +
Yoev e, d(eii+eij+ej;)+ ey e and d(eji+ejj) + Yy epe are all rank- k matrices
in M,(D). In view of de;; = (d(e;i +eij+ eji) + Xpepy ewr) — (d(eij + eji) + Xpev ew)
and de;; = (d(eii+eij+ejj) + Xoey ew) — (d(eii+ejj) + Ypey ewr) , we are done. [
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Deng and Ashraf [15] proved that if <7 is a prime ring of characteristic not 2 and
there exists a non-identity endomorphism T of ./ such that [T (x),T (y)] — [x,y] € Z(/)
for all x,y in some essential right ideal of <7, then /' is commutative. Lee and Wong
[24] proved that if f: % — <7 is a map, where Z is a noncentral Lie ideal of a prime
ring o/, satisfying [f(x), f(v)] — [x,y] € Z(«/) for all x,y € Z, then f is of the form
f(x) = Ax+pu(x) forall x € #Z, where A> =1 and u : # — Z(.</) is a map, unless
chare/ =2 and o7 C M,(K) for a field K. Now we prove a more general version of
Theorem 1.1 as follows.

THEOREM 3.3. Let D be a division ring, let M,(D) be the ring of all n x n
matrices over D with center %, where n > 2 is an integer and let . be a subset
of M,(D) containing all rank-k matrices in M,(D), where k is an integer such that
1<k<n If f: — My(D) is a map satisfying [f(x),f(y)] — [x,y] € Z for all
x,y € .7, then there exists a map | : . — Z(D)I, such that f(x) =x+ pu(x) for
all x € . or f(x) = —x+u(x) for all x € S unless n =2, charD =2 and D is
commutative.

Proof. Suppose first that n > 3 or n =2 and D is noncommutative. From the
Jacobi identity, it follows that

), ) F @+ [F ), [ @), f ]+ [ (=), [F (), f ()]} = O

forall x,y,z € .. Since [f(x),f(y)] — [x,y] € & forall x,y €., we have

) 2l + ) [zl + [ (=) [ y]] = 0

for all x,y,z € .. By Proposition 2.5 and Corollary 2.8, there exist A € Z(ID) and a
map U :.% — Z(D)I, such that f(x) = Ax+ u(x) forall x € .. Then for x,y € .,

Z 3 [f(0),f()] = [ey] = At (), Ay +u(y)] = [x,y] = (A2 = 1)[x,y].

That is, (A2 —1)[x,y] € Z(D)I, for all x,y € .. Let % be the additive subgroup of
M, (D) generated by .#. Then (A% —1)[x,y] € Z(D)I, for all x,y € #. By Lemma
3.2, ei1,e12 € Z and from (2,2 — 1)[611,612] = (12 — Depp € Z(D)1,, it follows that
A2 =1.S0 A =1 or —1, proving the theorem.

Suppose now that n =2, I is commutative and charD # 2. By assumption, for
every x,y € ., there exists o, € D such that [f(x), f(y)] — [x,y] = oxyr € DL = Z .
From 0 = tr([f(x), f(y)] — [x,y]) = tr(oeylo) = 20t it follows that o, = 0. Thus
[f(x),f(»)] = [x,y] =0 forall x,y € .#. By Lemma 3.1, we are done. [

The conclusion of Theorem 3.2 is false if n =2, charD =2 and D is commutative.

EXAMPLE. Let K be a field with charK =2 and let f: M(K) — M>(K) be
the K-linear map defined by f(ei1) = ei1 +e12, flexn) = e +enn, flenn) =en
and f(ez;1) = ez1. Then [f(x),f(y)] — [x,y] € KL for all x,y € M>(K). In particular,
[f(x), f(y)] = [x,¥] € KL, for all rank-k matrices x,y € M(K), where k is an integer
such that 1 < k < 2. However, f is not of the form described in Theorem 3.2 as
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flen) —Aein = (1—A)en+en ¢ Kl and f(e1 +enn+e21) —Aen +enntex) =
(1 —?L)ell —Aepp+ (1 —?L)621 ¢ KL, forall A € K.
Clearly, Theorem 1.1 follows directly from Lemma 3.1 and Theorem 3.3.

Proof of Corollary 1.2. By assumption, there exists a map 6 : M,(D) — M,(D)
such that g(xy) = g(x)y + o(x)6(y) for all x,y € M, (D). Then

8(y) = g(ly) = 8(ln)y + 0(1)8(y) = g(I.)y +6() (3.1)

forall y € M, (D). We claim that 0 is a o -derivation. Let x,y,z € M,(ID). Then

8(x(yz)) = g(¥)yz + 0(x)8(yz) (3:2)

and

g((xy)z) = g(xy)z+ 0 (xy)0(z) = (g(x)y + 0(x)6(y))z+ 0 (xy)6(2). (3.3)

The difference of (3.2) and (3.3) yields o(x)(6(yz) — o(y)0(z) — 6(y)z) = 0 for all
x,y,z2 € M,(D). Thus 8(yz) = 6(y)0(z) + 6(v)z forall y,z € M, (D). By [22, Theorem
1], 6 is additive and hence 0 is a o -derivation, as claimed.

Let .7 be the set of all rank-k matrices in M, (D) and let % be the additive
subgroup of M, (D) generated by .. By Theorem 1.1, g(x) — Ax € Z(D)I, for all
xe ., where A € {1,—1}. In view of (3.1), g(x) = g(I,)x+ 8(x) for all x € M,(D).
Thus g(I,)x+ 8(x) — Ax € Z(D)I, for all x € .. By the additivity of &, we see that
g(L)x+6(x)—Ax € Z(D)I, for all x € Z. In view of Lemma 3.2, Z = M, (D). Thus

8(x) + (g(1,) — AL)x € Z(D)I, (3.4)

for all x € M, (D). Setting x = I, in (3.4), we obtain 6(I,) + (g(I,) — Al,) € Z(D)I,.
Note that 6(I,) = 8(I,I,) = o(I,)0(I,) + 6(Iy)I, = 28(I,), implying 6(I,) = 0. So
g(l,) — AL, € Z(D)I, and then by (3.4) we have [§(x),x] = 0 for all x € M,(D). By
[36, Theorem 1.2], § = 0. Then (3.4) is reduced to (g(I,) — Al,)x € Z(D)I, for all
x € M,(D). Since g(I,) — Al, € Z(D)I,, we see that g(I,,) — Al, = 0. Now from (3.1)
it follows that g(x) = Ax for all x € M,,(ID). This proves the corollary. [
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