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Abstract. Let Mn(D) be the ring of all n× n matrices over a division ring D , where n � 2
is an integer and let S be the set of all rank-k matrices in Mn(D) , where k is an integer with
1 � k � n . We characterize maps f : S →Mn(D) such that [ f (x), f (y)] = [x,y] for all x,y ∈S .

1. Introduction and results

Let A be a ring with center Z(A ) . For x,y∈A , let [x,y] denote the commutator
of x and y , that is, [x,y] = xy− yx . We say that a map f : A → A preserves commu-
tativity if [ f (x), f (y)] = 0 whenever [x,y] = 0 for x,y ∈ A . The study of describing
maps that preserve commutativity has become an active research area in matrix theory,
operator theory and ring theory. In [5] Bell and Mason introduced the notion of a cer-
tain kind of commutativity preserving maps as follows: For a subset S of A , a map
f : S → A is said to be strong commutativity preserving on S if [ f (x), f (y)] = [x,y]
for all x,y ∈ S . Bell and Daif [4] proved that if a semiprime ring A admits a deriva-
tion d satisfying [d(x),d(y)] = [x,y] for all x,y ∈ A , then A is commutative. Brešar
and Miers [9] characterized additive maps f : A → A which is strong commutativity
preserving on the entire semiprime ring A and showed that f must be of the form
f (x) = λx+ μ(x) for all x ∈ A , where λ is an element in the extended centroid C
of A , λ 2 = 1 and μ : A → C is an additive map. In [39] Qi and Hou studied non-
additive strong commutativity preserving maps and proved that if A is a unital prime
ring containing nontrivial idempotents, then every nonadditive surjective strong com-
mutativity preserving maps f on A must be of the form f (x) = λx + μ(x) for all
x ∈ A , where λ ∈ {1,−1} and μ : A → Z(A ) is a map. Later Lee and Wong [24]
generalized the result of Qi and Hou by removing the surjection of the map f and the
assumption on the existence of nontrivial idempotents in A . These results have been
now generalized in various directions [2, 3, 11, 15, 26, 27, 29, 31, 37, 38, 40, 41, 45].
Many important results on linear preserver problems treat subsets of matrices that are
not closed under addition such as invertible matrices, singular matrices, nilpotent ma-
trices, matrices of rank one, etc (see the survey paper [25] for details). In [16, 17, 21]
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Franca initiated the study of functional identities on invertible matrices, singular ma-
trices or rank-k matrices. Precisely, he successfully described the structure of additive
maps f : Mn(K) → Mn(K) such that [ f (x),x] = 0 for every invertible matrix (singular
matrix, rank-k matrix) x∈Mn(K) , where Mn(K) denotes the ring of all n×n matrices
over a field K . Since then, several related results had been obtained in the literature
[18–21, 30, 33, 34, 42–44]. Recently, Liu [34] characterized nonadditive maps which
are strong commutativity preserving on the set of invertible matrices or singular matri-
ces as follows:

THEOREM L. ([34, Theorem 2.2 and Theorem 2.4]) Let Mn(D) be the ring of all
n×n matrices over a division ring D , where n � 2 is an integer and let S be a subset
of Mn(D) containing all invertible (singular) matrices in Mn(D) . Suppose that f :
S →Mn(D) is a map satisfying [ f (x), f (y)] = [x,y] for all x,y ∈S . Then there exists
a map μ : S → Z(D)In such that f (x) = x+ μ(x) for all x ∈ S or f (x) = −x+ μ(x)
for all x ∈ S , where In denotes the identity matrix of Mn(D) .

Let D be a division ring and let D
n = D⊕ ·· · ⊕D be the left D-vector space

consisting of all 1×n row vectors over D . Given a matrix x ∈ Mn(D) , the row space
of x over D is the D-subspace of D

n generated by the rows of x and the rank of x ,
denoted by rankx , is the dimension of the row space of x over D . As usual, for a matrix
x ∈ Mn(D) , there are three kinds of elementary row operations on x : (i) interchange
two rows of x ; (ii) left multiply a row of x by a nonzero α ∈ D ; (iii) for α ∈ D and
i �= j , add α times row j to row i . It is known that every matrix x ∈ Mn(D) can be
changed to a matrix y in reduced row echelon form by a finite sequence of elementary
row operations. In particular, rankx = ranky , ranky is the number of nonzero rows
in y and x is invertible in Mn(D) iff rankx = n (see [23, Chapter VII]). Thus, writing
Theorem L in terms of rank, we can say that every strong commutativity preserving
maps f on the set S of all rank-n matrices in Mn(D) is of the form f (x) = λx+ μ(x)
for all x ∈ S , where λ ∈ {1,−1} and μ : S → Z(D)In is a map. So it gives rise to a
natural question: For an integer k with 1 � k � n−1, does every strong commutativity
preserving maps on the set of all rank-k matrices in Mn(D) have the standard form
described in Theorem L? The goal of this paper is to give a positive answer to this
question. Our main result is as follows:

THEOREM 1.1. Let Mn(D) be the ring of all n×n matrices over a division ring
D , where n � 2 is an integer and let S be a subset of Mn(D) containing all rank-k
matrices in Mn(D) , where k is an integer such that 1 � k � n. If f : S → Mn(D) is a
map satisfying [ f (x), f (y)] = [x,y] for all x,y ∈ S , then there exists a map μ : S →
Z(D)In such that f (x) = x+ μ(x) for all x ∈ S or f (x) = −x+ μ(x) for all x ∈ S ,
where In denotes the identity matrix of Mn(D) .

Let σ be an automorphism of A and let 1A denote the identity automorphism of
A . An additive map δ : A →A is called a σ -derivation if δ (xy) = σ(x)δ (y)+δ (x)y
for all x,y ∈ A . Clearly, 1A -derivations are just ordinary derivations. An additive
map g : A → A is called a generalized σ -derivation if there exists a σ -derivation
δ : A → A such that g(xy) = g(x)y + σ(x)δ (y) for all x,y ∈ A (see [1, 6, 12–14,
28, 32, 35]). Generally, we call generalized σ -derivations generalized skew deriva-
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tions. Generalized 1A -derivations are just generalized derivations. A map g : A →A
is called a multiplicative generalized σ -derivation if there exists a map δ : A → A
such that g(xy) = g(x)y+ σ(x)δ (y) for all x,y ∈ A . Recently, strong commutativity
preserving generalized derivations and skew derivations had been widely studied in the
literature [2, 11, 27, 31, 38, 45]. As an application of Theorem 1.1, we obtain the
analogous result for multiplicative generalized σ -derivations on rank-k matrices over
division rings.

COROLLARY 1.2. Let Mn(D) be the ring of all n×n matrices over a division ring
D , where n � 2 is an integer and let σ be an automorphism of Mn(D) . Suppose that g :
Mn(D) → Mn(D) is a multiplicative generalized σ -derivation satisfying [g(x),g(y)] =
[x,y] for all rank-k matrices x,y ∈ Mn(D) , where k is an integer such that 1 � k � n.
Then g(x) = x for all x ∈ Mn(D) or g(x) = −x for all x ∈ Mn(D) .

2. The Jacobi type identity

As usual, let Mn(D) denote the ring of all n×n matrices over a division ring D ,
let In be the identity matrix of Mn(D) and let {ei j | 1 � i, j � n} be the set of matrix
units in Mn(D) . Note that the center of Mn(D) is Z(Mn(D)) = Z(D)In .

The following two lemmas are obvious.

LEMMA 2.1. Let D be a division ring and α,β ∈ D . If αu = uβ for all 0 �= u ∈
D , then α = β ∈ Z(D) .

LEMMA 2.2. Let Mn(D) be the ring of all n×n matrices over a division ring D ,
where n � 2 is an integer. If a ∈ Mn(D) and [a,dei j] = 0 for all distinct integers i, j
with 1 � i, j � n and d ∈ D , then a ∈ Z(D)In .

In [34], Liu proved the following result:

PROPOSITION 2.3. ([34, Proposition 2.1]) Let Mn(D) be the ring of all n× n
matrices over a division ring D , where n � 3 is an integer and let S be a subset of
Mn(D) . Suppose that for every d ∈ D and every distinct integers i, j with 1 � i, j � n,
there exists at least one element λi j,d ∈ Z(D) such that dei j +λi j,dIn ∈ S . If f : S →
Mn(D) is a map satisfying [ f (x), [y,z]]+ [ f (y), [z,x]]+ [ f (z), [x,y]] = 0 for all x,y,z ∈
S , then there exist λ ∈ Z(D) and a map μ : S → Z(D)In such that f (x) = λx+ μ(x)
for all x ∈ S .

As an immediate consequence of Proposition 2.3, we have:

LEMMA 2.4. Let Mn(D) be the ring of all n× n matrices over a division ring
D , where n � 3 is an integer and let S be a subset of Mn(D) containing all rank-1
matrices in Mn(D) . If f : S → Mn(D) is a map satisfying [ f (x), [y,z]]+ [ f (y), [z,x]]+
[ f (z), [x,y]] = 0 for all x,y,z ∈ S , then there exist λ ∈ Z(D) and a map μ : S →
Z(D)In such that f (x) = λx+ μ(x) for all x ∈ S .

Proof. Let S ′ = S ∪{0} . Clearly, for every d ∈ D and every distinct integers
i, j with 1 � i, j � n , dei j +0In ∈ S ′ . Let g : S ′ → Mn(D) be the map defined by the
rules as follows: (a) g(s) = f (s) if s∈S \{0} ; (b) g(0)= f (0) if 0∈S and g(0)= 0
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if 0 /∈S . Then by assumption, we have [g(x), [y,z]]+[g(y), [z,x]]+[g(z), [x,y]] = 0 for
all x,y,z ∈ S ′ . By Proposition 2.3, there exist λ ∈ Z(D) and a map μ : S ′ → Z(D)In
such that g(x) = λx+ μ(x) for all x ∈ S ′ . Hence f (x) = λx+ μ(x) for all x ∈ S , as
desired. �

PROPOSITION 2.5. Let Mn(D) be the ring of all n× n matrices over a division
ring D , where n � 3 is an integer and let S be a subset of Mn(D) containing all rank-
k matrices in Mn(D) , where k is an integer such that 1 � k � n. If f : S → Mn(D) is
a map satisfying

[ f (x), [y,z]]+ [ f (y), [z,x]]+ [ f (z), [x,y]] = 0 (2.1)

for all x,y,z ∈ S , then there exist λ ∈ Z(D) and a map μ : S → Z(D)In such that
f (x) = λx+ μ(x) for all x ∈ S .

Proof. Note that if k = n , then for every d ∈ D and every distinct integers i, j
with 1 � i, j � n , dei j + In ∈ S and hence we are done by Proposition 2.3. Clearly,
when k = 1, the proposition follows directly from Lemma 2.4. So from now on we
assume 2 � k � n− 1. For simplicity, if U = {s1, . . . ,st} ⊆ {1,2, . . . ,n} , then we let
∑�∈U e�� denote the matrix ∑t

i=1 esisi .
Let U be a set such that U ⊆ {1,2, . . . ,n} and |U | = k . Then ∑�∈U e�� ∈ S .

Fix this U and write f (∑�∈U e��) = ∑n
i, j=1 αi jei j , where αi j ∈ D . Let i, j, t be three

distinct integers such that 1 � i, j,t � n , i, j ∈U and t /∈U . Let V = U \ {i, j} . Note
that i, j, t /∈V . Then ∑�∈V e�� +u(ei j + e ji),∑�∈V e�� + eii + ett ∈ S for all 0 �= u ∈ D .
Setting x = ∑�∈U e�� , y = ∑�∈V e�� +u(ei j +e ji) , z = ∑�∈V e�� +eii +ett in (2.1), where
0 �= u ∈ D , since [y,z] = −u(ei j − e ji) , [z,x] = 0 and [x,y] = 0, we obtain

0 = [ f ( ∑
�∈U

e��),−u(ei j − e ji)] = − f ( ∑
�∈U

e��)u(ei j − e ji)+u(ei j − e ji) f ( ∑
�∈U

e��) (2.2)

for all 0 �= u ∈ D . Multiplying (2.2) by eii from the left and by e j j from the right, we
obtain −eii f (∑�∈U e��)uei j +uei j f (∑�∈U e��)e j j = 0. This implies αiiu = uα j j for all
0 �= u ∈ D . By Lemma 2.1, αii = α j j ∈ Z(D) . Let s be an integer with s �= i, j and
1 � s � n . Multiplying (2.2) by ess from the left and by e j j from the right, we obtain
−ess f (∑�∈U e��)uei j = 0. This implies αsiu = 0 for all 0 �= u ∈ D . Thus αsi = 0.
Similarly, multiplying (2.2) by ess from the right and by e j j from the left, we obtain
αis = 0. Since i, j can be chosen arbitrary from U and s can be chosen arbitrary from
U \ {i, j} , now we have

αii = α j j ∈ Z(D) for all i, j ∈U (2.3)

and

αsi = αis = 0 for all i ∈U and s /∈U with 1 � s � n. (2.4)

Let i, t be two distinct integers such that 1 � i,t � n , i ∈ U and t /∈ U . Let
V = (U \{i})∪{t} . Then ∑�∈V e�� = (∑�∈U\{i} e��)+ ett ,(∑�∈U\{i} e��)+ueit ∈ S for
all 0 �= u ∈ D . Setting x = ∑�∈U e�� , y = ∑�∈V e�� , z = (∑�∈U\{i} e��)+ ueit in (2.1),
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where 0 �= u ∈ D , since [y,z] = −ueit , [z,x] = −ueit and [x,y] = 0, we obtain

0 = [ f ( ∑
�∈U

e��),−ueit ]+ [ f (∑
�∈V

e��),−ueit ]

= − f (∑
�∈U

e��)ueit +ueit f ( ∑
�∈U

e��)− f (∑
�∈V

e��)ueit +ueit f (∑
�∈V

e��) (2.5)

for all 0 �= u ∈ D . Write f (∑�∈V e��) = ∑n
i, j=1 βi jei j , where βi j ∈ D . In view of (2.3)

and (2.4) , we have
βtt = β�� ∈ Z(D) for all � ∈V (2.6)

as t ∈V and
β�i = βi� = 0 for all � ∈V (2.7)

as i /∈ V . Let j ∈ U and j �= i . Multiplying (2.5) by e j j from the left and by ett

from the right, we obtain −e j j f (∑�∈U e��)ueit − e j j f (∑�∈V e��)ueit = 0. This implies
−α jiu−β jiu = 0 for all 0 �= u∈D . By (2.7) β ji = 0 as j ∈V and i /∈V . Thus α ji = 0.
Since i, j can be chosen arbitrary from U , we obtain

αpq = 0 for all p,q ∈U with p �= q. (2.8)

Next multiplying (2.5) by eii from the left and by ett from the right, we obtain
−eii f (∑�∈U e��)ueit + ueit f (∑�∈U e��)ett − eii f (∑�∈V e��)ueit + ueit f (∑�∈V e��)ett = 0.
This implies −αiiu + uαtt − βiiu + uβtt = 0 for all 0 �= u ∈ D . By (2.3) and (2.6),
αii,βtt ∈ Z(D) . Thus (βtt −βii)u = u(αii −αtt) for all 0 �= u ∈ D . So by Lemma 2.1

βtt −βii = αii −αtt ∈ Z(D). (2.9)

Moreover,
αtt ,βii ∈ Z(D) (2.10)

as αii,βtt ∈ Z(D) . Let p be an integer such that p /∈U , p �= t and 1 � p � n and let
W = (U \ {i})∪{p} . Note that p,t /∈ U , t /∈W and p /∈ V = (U \ {i})∪{t} . Then
(∑�∈W e��)+et p ∈S . Setting x = ∑�∈U e�� , y = ∑�∈V e�� , z = (∑�∈W e��)+et p in (2.1),
since [y,z] = et p , [z,x] = 0 and [x,y] = 0, we obtain

0 = [ f ( ∑
�∈U

e��),et p] = f ( ∑
�∈U

e��)et p − et p f ( ∑
�∈U

e��). (2.11)

Now multiplying (2.11) by epp on both sides, we obtain epp f (∑�∈U e��)et p = 0. This
implies αpt = 0. Since p,t can be chosen arbitrary from {1,2, . . . ,n} \U with p �= t ,
we have

αpq = 0 for all p,q /∈U, p �= q and 1 � p,q � n. (2.12)

Next multiplying (2.11) by ett from the left and by epp from the right, we obtain
ett f (∑�∈U e��)et p − et p f (∑�∈U e��)epp = 0. This implies αtt = αpp . Since p can be
chosen arbitrary from {1,2, . . . ,n} \ (U ∪{t}) , we get

αtt = αpp for all p /∈U, p �= t and 1 � p � n. (2.13)



568 CHENG-KAI LIU, PAO-KUEI LIAU AND YUAN-TSUNG TSAI

In view of (2.4), (2.8) and (2.12), f (∑�∈U e��) is a diagonal matrix. Moreover, using
(2.3) and (2.13), we obtain

f ( ∑
�∈U

e��) = ∑
�∈U

α��e�� + ∑
�∈{1,2,...,n}\U

α��e��

= αii ∑
�∈U

e�� + αtt ∑
�∈{1,2,...,n}\U

e��

= (αii −αtt) ∑
�∈U

e�� + αtt In. (2.14)

Recall that αii,αtt ∈ Z(D) by (2.3) and (2.10). Let λ = αii −αtt ∈ Z(D) . From (2.14),
it follows that f (∑�∈U e��)−λ (∑�∈U e��)∈ Z(D)In . By symmetry, f (∑�∈V e��) = (βtt −
βii)∑�∈V e��+βiiIn and βii,βtt ∈Z(D) . In view of (2.9), similarly, we obtain f (∑�∈V e��)
−λ (∑�∈V e��) ∈ Z(D)In . Now we conclude that there exists λ ∈ Z(D) such that for ev-
ery set U with U ⊆ {1,2, . . . ,n} and |U | = k ,

f ( ∑
�∈U

e��)−λ (∑
�∈U

e��) ∈ Z(D)In. (2.15)

Let U be a set such that U ⊆{1,2, . . . ,n} with |U |= k , let i, j ∈U with i �= j and
let u ∈ D . Clearly, ∑�∈U e�� +uei j ∈ S . Fix these U , i, j and u . Write f (∑�∈U e�� +
uei j) = ∑n

i, j=1 αi jei j , where αi j ∈ D . Let t be an integer such that t /∈ U , 1 � t � n
and let V be a set such that V ⊆ {1,2, . . . ,n} , |V | = k , i,t ∈ V and j /∈ V . Then
∑�∈U e��,∑�∈U e�� + uei j,∑�∈V e�� + veti ∈ S for v ∈ D . Setting x = ∑�∈U e�� + uei j ,
y = ∑�∈U e�� , z = ∑�∈V e�� + veti in (2.1), where v ∈ D , since [y,z] = −veti , [z,x] =
uei j + veti + vuet j , [x,y] = 0 and by (2.15) f (y) = λy + γIn for some γ ∈ Z(D) , we
have

0 = [ f ( ∑
�∈U

e�� +uei j),−veti]+ [ f (∑
�∈U

e��),uei j + veti + vuet j]

= [ f ( ∑
�∈U

e�� +uei j),−veti]+ [λ (∑
�∈U

e��)+ γIn,uei j + veti + vuet j]

= − f ( ∑
�∈U

e�� +uei j)veti + veti f ( ∑
�∈U

e�� +uei j)

+ λ (∑
�∈U

e��)(uei j + veti + vuet j)− (uei j + veti + vuet j)λ (∑
�∈U

e��)

= − f ( ∑
�∈U

e�� +uei j)veti + veti f ( ∑
�∈U

e�� +uei j)−λveti−λvuet j (2.16)

for all v ∈ D . Let s be an integer such that s �= t and 1 � s � n . Multiplying (2.16) by
ess from the left, we obtain −ess f (∑�∈U e�� +uei j)veti = 0. Thus αst = 0. Since t can
be chosen arbitrary from {1,2, . . . ,n} \U , we get

αpq = 0 for all p �= q, q /∈U and 1 � p,q � n. (2.17)

Now multiplying (2.16) by ett from the left and by e j j from the right, we obtain
veti f (∑�∈U e�� +uei j)e j j −λvuet j = 0. Thus vαi j −λvu = 0 for all v ∈ D , implying

αi j = λu. (2.18)
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Next multiplying (2.16) by ett from the left and by eii from the right, we obtain
−ett f (∑�∈U e�� + uei j)veti + veti f (∑�∈U e�� + uei j)eii − λveti = 0. Thus (αtt + λ )v =
vαii for all v ∈ D . By Lemma 2.1, αii = αtt + λ ∈ Z(D) . In particular, αtt ∈ Z(D) as
λ ∈ Z(D) . Since t can be chosen arbitrary from {1,2, . . . ,n} \U , we have

αpp = αii −λ ∈ Z(D) for all p /∈U and 1 � p � n. (2.19)

Let t be an integer such that t /∈ U , 1 � t � n and let V ′ be a set such that
V ′ ⊆ {1,2, . . . ,n} , |V ′|= k , j,t ∈V ′ and i /∈V ′ . Then ∑�∈V ′ e�� +ve jt ∈S for v ∈ D .
Setting x = ∑�∈U e�� + uei j , y = ∑�∈U e�� , z = ∑�∈V ′ e�� + ve jt in (2.1), where v ∈ D ,
since [y,z] = ve jt , [z,x] =−uei j−ve jt −uveit , [x,y] = 0 and by (2.15) f (y) = λy+ γIn
for some γ ∈ Z(D) , we have

0 = [ f ( ∑
�∈U

e�� +uei j),ve jt ]+ [ f (∑
�∈U

e��),−uei j − ve jt −uveit]

= [ f ( ∑
�∈U

e�� +uei j),ve jt ]+ [λ (∑
�∈U

e��)+ γIn,−uei j − ve jt −uveit]

= f ( ∑
�∈U

e�� +uei j)ve jt − ve jt f ( ∑
�∈U

e�� +uei j)

+ λ (∑
�∈U

e��)(−uei j − ve jt −uveit)− (−uei j− ve jt −uveit)λ (∑
�∈U

e��)

= f ( ∑
�∈U

e�� +uei j)ve jt − ve jt f ( ∑
�∈U

e�� +uei j)−λve jt −λuveit (2.20)

for all v ∈ D . Multiplying (2.20) by e j j from the left and by ett from the right, we
obtain e j j f (∑�∈U e�� +uei j)ve jt − ve jt f (∑�∈U e�� +uei j)ett −λve jt = 0. Thus α j jv =
v(αtt + λ ) for all v ∈ D . By Lemma 2.1, α j j = αtt + λ ∈ Z(D) and hence by (2.19)

αii = α j j ∈ Z(D). (2.21)

Let s be an integer such that s �= t and 1 � s � t . Multiplying (2.20) by ess from the
right, we obtain −ve jt f (∑�∈U e�� +uei j)ess = 0. Thus αts = 0. Since t can be chosen
arbitrary from {1,2, . . . ,n} \U , we get

αpq = 0 for all p �= q, p /∈U and 1 � p,q � n. (2.22)

Let p be an integer such that p ∈ U and p �= i, j and let W be a set such that W ⊆
{1,2, . . . ,n} with |W | = k , i, j ∈W and p /∈W . Then ∑�∈W e��,∑�∈W e�� + eip ∈ S .
Setting x = ∑�∈U e�� +uei j , y = ∑�∈W e�� , z = ∑�∈W e�� +eip in (2.1), since [y,z] = eip ,
[z,x] = 0 and [x,y] = 0, we obtain

0 = [ f ( ∑
�∈U

e�� +uei j),eip] = f ( ∑
�∈U

e�� +uei j)eip− eip f ( ∑
�∈U

e�� +uei j). (2.23)

Now multiplying (2.23) by eii from the left and by epp from the right, we obtain
eii f (∑�∈U e�� +uei j)eip − eip f (∑�∈U e�� +uei j)epp = 0. Thus αii −αpp = 0. This im-
plies

αpp = αii for all p ∈U with p �= i, j. (2.24)
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Let q be an integer such that q �= p and 1 � q � n . Multiplying (2.23) by eqq from the
right, we get −eip f (∑�∈U e�� + uei j)eqq = 0. Thus αpq = 0. Since p can be chosen
arbitrary from p ∈U \ {i, j} , we have

αpq = 0 for all p �= q, p ∈U with p �= i, j and 1 � q � n. (2.25)

Multiplying (2.23) by e j j from the left, we get e j j f (∑�∈U e�� +uei j)eip = 0. Thus

α ji = 0. (2.26)

Clearly, ∑�∈W e�� +ep j ∈S . Setting x = ∑�∈U e��+uei j , y = ∑�∈W e�� , z = ∑�∈W e�� +
ep j in (2.1), since [y,z] = −ep j , [z,x] = 0 and [x,y] = 0, we obtain

0 = [ f ( ∑
�∈U

e�� +uei j),−ep j] = − f (∑
�∈U

e�� +uei j)ep j + ep j f ( ∑
�∈U

e�� +uei j). (2.27)

Let q be an integer such that q �= p and 1 � q � n . Multiplying (2.27) by eqq from
the left, we get −eqq f (∑�∈U e�� +uei j)ep j = 0. Thus αqp = 0. Since p can be chosen
arbitrary from p ∈U \ {i, j} , we have

αqp = 0 for all p �= q, p ∈U with p �= i, j and 1 � q � n. (2.28)

By (2.17), (2.18), (2.19), (2.21), (2.22), (2.24), (2.25), (2.26) and (2.28), we have

f ( ∑
�∈U

e�� +uei j) = λuei j + ∑
�∈U

α��e�� + ∑
�∈{1,2,...,n}\U

α��e��

= λuei j + αii ∑
�∈U

e�� +(αii−λ ) ∑
�∈{1,2,...,n}\U

e��

= λuei j + λ (∑
�∈U

e��)+ (αii−λ )In.

Hence we conclude that for every set U with U ⊆ {1,2, . . . ,n} and |U | = k , for every
i, j ∈U with i �= j and for every u ∈ D ,

f ( ∑
�∈U

e�� +uei j)−λ (∑
�∈U

e�� +uei j) ∈ Z(D)In.

Let x ∈ S , let i, j be two distinct integers with 1 � i, j � n and let u ∈ D .
Choose a set U such that U ⊆ {1,2, . . . ,n} , |U | = k and i, j ∈ U and choose a set
V such that V ⊆ {1,2, . . . ,n} such that |V | = k , j ∈ V and i /∈V . Clearly, ∑�∈U e�� +
uei j,∑�∈V e�� ∈ S . Setting y = ∑�∈U e�� + uei j , z = ∑�∈V e�� , in (2.1), since [y,z] =
uei j , [y, [z,x]] + [z, [x,y]] = −[x, [y,z]] by Jacobi identity and there exist γy,γz ∈ Z(D)
such that f (y) = λy+ γyIn and f (z) = λ z+ γzIn , we obtain

0 = [ f (x), [y,z]]+ [ f (y), [z,x]]+ [ f (z), [x,y]]
= [ f (x), [y,z]]+ [λy+ γyIn, [z,x]]+ [λ z+ γzIn, [x,y]]
= [ f (x), [y,z]]+ [λy, [z,x]]+ [λ z, [x,y]]
= [ f (x), [y,z]]+ λ ([y, [z,x]]+ [z, [x,y]])
= [ f (x), [y,z]]−λ [x, [y,z]]
= [ f (x)−λx, [y,z]]
= [ f (x)−λx,uei j].
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This implies [ f (x)− λx,uei j] = 0 for all distinct integers i, j with 1 � i, j � n and
u∈ D . By Lemma 2.2, f (x)−λx ∈ Z(D)In for all x ∈S . Let μ : S → Z(D)In be the
map defined by μ(x) = f (x)−λx for x ∈ S . Then f (x) = λx+ μ(x) for all x ∈ S .
This proves the proposition. �

LEMMA 2.6. ([10, p. 239, Theorem A7]) Let D be a division ring and ai,bi,c j,d j

∈ D . Suppose that ∑m
i=1 aiubi + ∑n

j=1 c jud j = 0 for all u ∈ D . If a1, . . . ,am are Z(D)-
independent, then each bi is a Z(D)-linear combination of d1, . . . ,dn . If b1, . . . ,bm are
Z(D)-independent, then each ai is a Z(D)-linear combination of c1, . . . ,cn .

PROPOSITION 2.7. Let M2(D) be the ring of all 2× 2 matrices over a non-
commutative division ring D and let S be a subset of M2(D) such that for every
d ∈ D and every distinct integers i, j with 1 � i, j � 2 , there exists at least one element
λi j,d ∈ Z(D) such that dei j +λi j,dI2 ∈S and for every d ∈ D\Z(D) and every integer
i with 1 � i � 2 , there exists at least one element λii,d ∈ Z(D) such that deii +λii,dI2 ∈
S . If f : S → M2(D) is a map satisfying [ f (x), [y,z]]+ [ f (y), [z,x]]+ [ f (z), [x,y]] = 0
for all x,y,z ∈ S , then there exist λ ∈ Z(D) and a map μ : S → Z(D)I2 such that
f (x) = λx+ μ(x) for all x ∈ S .

Proof. For every d ∈D and every distinct integers i, j with 1� i, j � 2, we choose
and fix λi j,d ∈ Z(D) such that dei j +λi j,dI2 ∈S . Also, for every d ∈ D\Z(D) and ev-
ery integer i with 1 � i � 2, we choose and fix λii,d ∈ Z(D) such that deii +λii,dI2 ∈S .
Let ast ,bst : D → D and cst : D \ Z(D) → D be maps such that f (ue12 + λ12,uI2) =(

a11(u) a12(u)
a21(u) a22(u)

)
, f (ve21 + λ21,vI2) =

(
b11(v) b12(v)
b21(v) b22(v)

)
and f (we11 + λ11,wI2) =(

c11(w) c12(w)
c21(w) c22(w)

)
for u,v ∈ D and w ∈ D\Z(D) .

Setting x = we11 + λ11,wI2 , y = ue12 + λ12,uI2 , z = ve21 + λ21,vI2 in (2.1), where
u,v ∈ D and w ∈ D \ Z(D) , since [y,z] = uve11 − vue22 , [z,x] = vwe21 and [x,y] =
wue12 , we obtain

0 =
[(

c11(w) c12(w)
c21(w) c22(w)

)
,

(
uv 0
0 −vu

)]
+

[(
a11(u) a12(u)
a21(u) a22(u)

)
,

(
0 0
vw 0

)]

+
[(

b11(v) b12(v)
b21(v) b22(v)

)
,

(
0 wu
0 0

)]

for all u,v ∈ D and w ∈ D\Z(D) . In view of corresponding entries, we obtain that

a12(u)vw−wub21(v)+ c11(w)uv−uvc11(w) = 0, (2.29)

−c12(w)vu−uvc12(w)+b11(v)wu−wub22(v) = 0, (2.30)

a22(u)vw− vwa11(u)+ c21(w)uv+ vuc21(w) = 0, (2.31)

and
b21(v)wu− vwa12(u)− c22(w)vu+ vuc22(w) = 0 (2.32)

for all u,v ∈ D and w ∈ D\Z(D) . Replacing w with w+1 in (2.29) for w ∈ D\Z(D)
and using (2.29), we obtain a12(u)v−ub21(v)+(c11(w+1)− c11(w))uv−uv(c11(w+
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1)− c11(w)) = 0 for all u,v ∈ D and w ∈ D \Z(D) . Let w0 ∈ D \Z(D) and let α =
c11(w0 + 1)− c11(w0) . Then we have (a12(u) + αu)v− u(b21(v) + vα) = 0 for all
u,v ∈ D . Setting u = v = 1, we obtain a12(1) = b21(1) . Next setting u = 1, we get

b21(v) = (a12(1)+ α)v− vα = (b21(1)+ α)v− vα (2.33)

and setting v = 1, we get

a12(u) = u(b21(1)+ α)−αu (2.34)

for all u,v ∈ D . Using (2.34) and letting v = 1 in (2.29), we have

1 ·u((b21(1)+ α)w− c11(w))−w ·ub21(1)−αu ·w+ c11(w)u ·1 = 0 (2.35)

for all u ∈ D and w ∈ D\Z(D) . Clearly, 1,w are Z(D)-independent for every w ∈ D\
Z(D) . Applying Lemma 2.6 to (2.35), we obtain α ∈ Z(D)1+Z(D)w . Thus [α,w] = 0
for every w ∈ D \Z(D) and hence [α,w] = 0 for all w ∈ D , implying α ∈ Z(D) . By
(2.33) and (2.34), a12(u) = ub21(1) and b21(v) = b21(1)v for all u,v ∈ D . Similarly,
using (2.32), we obtain a12(u) = b21(1)u . Thus a12(u) = ub21(1) = b21(1)u for all
u∈ D . This implies b21(1) ∈ Z(D) . Hence a12(u) = λu and b21(v) = λv for u,v ∈ D ,
where λ = b21(1) ∈ Z(D) . With these, (2.29) and (2.32) can be reduced to [c11(w)−
λw,uv] = 0 and [c22(w),vu] = 0 for all u,v ∈ D and w ∈ D \ Z(D) . Thus c11(w) =
λw+ c′11(w) and c22(w) ∈ Z(D) for all w ∈ D \Z(D) , where c′11 : D \Z(D) → Z(D)
is a map.

Replacing w with w+ 1 in (2.31) for w ∈ D \Z(D) and using (2.31), we obtain
a22(u)v−va11(u)+(c21(w+1)−c21(w))uv+vu(c21(w+1)−c21(w)) = 0 for all u,v∈
D and w ∈ D\Z(D) . Let w0 ∈ D\Z(D) and let β = c21(w0 +1)− c21(w0) . Then we
have (a22(u)+ βu)v− v(a11(u)− uβ ) = 0 for all u,v ∈ D . By Lemma 2.1, a22(u)+
βu = a11(u)− uβ ∈ Z(D) for all u ∈ D . Thus there exists a map γ : D → Z(D) such
that a22(u)+ βu = a11(u)−uβ = γ(u) for all u ∈ D . Then a22(u) = −βu+ γ(u) and
a11(u) = uβ + γ(u) for all u ∈ D . With these, (2.31) can be reduced to

−βuv ·w+ c21(w)uv ·1+1 · v(uc21(w)−wuβ ) = 0 (2.36)

for all u,v ∈ D and w ∈ D\Z(D) . Clearly, 1,w are Z(D)-independent for every w ∈
D\Z(D) . Applying Lemma 2.6 to (2.36), we obtain βu∈ Z(D)1 and c21(w)u∈ Z(D)1
for all u ∈ D and w ∈ D \ Z(D) . Note that β = 0; otherwise u ∈ Z(D)β−1 for all
u ∈ D , implying D is commutative, a contradiction. Similarly, c21(w) = 0 for all w ∈
D\Z(D) . Hence a22(u) = a11(u) = γ(u) ∈ Z(D) for all u ∈ D and c21 = 0. Similarly,
using (2.30), we obtain b11(v) = b22(v) ∈ Z(D) for all v ∈ D and c12 = 0. Now we

have f (ue12 +λ12,uI2) =
(

0 λu
a21(u) 0

)
+a11(u)I2 , f (ve21 +λ21,vI2) =

(
0 b12(v)

λv 0

)
+

b11(v)I2 , and f (we11 + λ11,wI2) =
(

λw+ ξ (w) 0
0 0

)
+ c22(w)I2 for u,v ∈ D and w ∈

D\Z(D) , where a11(u),b11(v),c22(w),ξ (w) = c′11(w)−c22(w) ∈ Z(D) for all u,v∈D

and w ∈ D \Z(D) . By symmetry, setting x = we22 + λ22,wI2 , y = ue12 + λ12,uI2 , z =
ve21+λ21,vI2 in (2.1), where u,v∈D and w∈D\Z(D) , we obtain f (we22 +λ22,wI2) =
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(
0 0
0 λw+ ζ (w)

)
+ d11(w)I2 for w ∈ D \ Z(D) , where ζ ,d22 : D \ Z(D) → Z(D) are

maps. Next, setting x = se11 + λ11,sI2 , y = te22 + λ22,t I2 , z = ue12 + λ12,uI2 in (2.1),
where s, t ∈ D\Z(D) and u ∈ D , since [y,z] = −ute12 , [z,x] = −sue12 and [x,y] = 0,
we obtain

0 = [ f (se11 + λ11,sI2),−ute12]+ [ f (te22 + λ22,t I2),−sue12]
= [(λ s+ ξ (s))e11 + c22(s)I2,−ute12]+ [(λ t + ζ (t))e22 +d11(w)I2,−sue12]

=
(− (λ s+ ξ (s))ut + su(λ t + ζ (t))

)
e12.

Thus
0 = −(λ s+ ξ (s))ut + su(λ t + ζ (t)) = −ξ (s)ut + ζ (t)su (2.37)

for all s, t ∈ D\Z(D) and u ∈ D . Let t0 ∈ D\Z(D) . Thus 1,t0 are Z(D)-independent.
By (2.37), −ξ (s)u · t0 + ζ (t0)su ·1 = 0 for all u ∈ D and s ∈ D\Z(D) . So by Lemma
2.6, we have ξ (s) = 0 for all s ∈ D \Z(D) . Then (2.37) implies that ζ (t)su = 0 for
all s,t ∈ D\Z(D) and u ∈ D . Thus ζ (t) = 0 for all t ∈ D\Z(D) . From ξ = ζ = 0 it
follows that f (we11 + λ11,wI2) = λwe11 + c22(w)I2 and f (we22 + λ22,wI2) = λwe22 +
d11(w)I2 for w ∈ D\Z(D) .

Setting x = ue12 + λ12,uI2 , y = we11 + λ11,wI2 , z = e12 + λ12,1I2 in (2.1), where
u ∈ D and w ∈ D\Z(D) , since [y,z] = we12 , [z,x] = 0 and [x,y] = −wue12 , we obtain

0 = [ f (ue12 + λ12,uI2),we12]+ [ f (e12 + λ12,1I2),−wue12]

=
[(

0 λu
a21(u) 0

)
+a11(u)I2,

(
0 w
0 0

)]
+

[(
0 λ

a21(1) 0

)
+a11(1)I2,

(
0 −wu
0 0

)]

=
(∗ ∗
∗ a21(u)w−a21(1)wu

)
.

Thus a21(u)w− a21(1)wu = 0 for all u ∈ D and w ∈ D \ Z(D) . Replacing w with
w+ 1, we get a21(u) = a21(1)u and then 0 = a21(u)w− a21(1)wu = a21(1)[u,w] for
all u ∈ D and w ∈ D \Z(D) . Clearly, [u,w] �= 0 for some u ∈ D and w ∈ D \Z(D) .
Thus a21(1) = 0 and hence a21(u) = 0 for all u ∈ D , that is, a21 = 0. By symmetry,
setting x = ve21 + λ21,vI2 , y = we22 + λ22,wI2 , z = e21 + λ21,1I2 in (2.1), where v ∈ D

and w ∈D\Z(D) , we obtain b12 = 0. Hence f (ue12 +λ12,uI2) = λue12 +a11(u)I2 and
f (ve21 + λ21,vI2) = λve21 +b11(v)I2 for u,v ∈ D .

Let x ∈ S , let i, j be distinct integers with 1 � i, j � 2, let w ∈ D \ Z(D) and
let u ∈ D . Setting y = weii + λii,1I2 and z = w−1uei j + λi j,w−1uI2 in (2.1) and recalling
that there exist γy,γz ∈ Z(D) such that f (y) = λy + γyI2 and f (z) = λ z + γzI2 , by
the same proof of Proposition 2.5, we obtain [ f (x)− λx,uei j] = 0. By Lemma 2.2,
f (x)−λx ∈ Z(D)In for all x ∈ S . This proves the proposition. �

COROLLARY 2.8. Let M2(D) be the ring of all 2×2 matrices over a noncommu-
tative division ring D and let S be a subset of M2(D) containing all rank-k matrices
in M2(D) , where k is an integer such that 1 � k � 2 . If f : S → M2(D) is a map sat-
isfying [ f (x), [y,z]]+ [ f (y), [z,x]]+ [ f (z), [x,y]] = 0 for all x,y,z ∈ S , then there exist
λ ∈ Z(D) and a map μ : S → Z(D)I2 such that f (x) = λx+ μ(x) for all x ∈ S .
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Proof. Let S ′ = S ∪{0} . Suppose first k = 1. Then dei j +0I2 ∈ S ′ for every
d ∈ D and every integers i, j with 1 � i, j � 2. Suppose next k = 2. Then dei j + I2 ∈
S ′ for every d ∈ D and every distinct integers i, j with 1 � i, j � 2 and deii + I2 ∈S ′
for every d ∈ D\Z(D) and every integer i with 1 � i � 2. Using Proposition 2.7 and
by a similar proof of Lemma 2.4, we are done. �

The conclusion of Corollary 2.8 is false if D is commutative.

EXAMPLE. Let K be a field and let f : M2(K) → M2(K) be the K -linear map
defined by f (e11) = e11 + e12 , f (e22) = −e11− e12 , f (e12) = e12 and f (e21) = e11 −
e22 + e21 . Then [ f (x), [y,z]]+ [ f (y), [z,x]]+ [ f (z), [x,y]] = 0 for all x,y,z ∈ M2(K) and
hence for all rank-k matrices x,y,z ∈ M2(K) , where k is an integer such that 1 �
k � 2. However, f is not of the form described in Corollary 2.8 as f (e11)−λe11 =
(1−λ )e11 +e12 /∈KI2 and f (e11 +e12 +e21)−λ (e11 +e12 +e21) = (2−λ )e11−e22 +
(2−λ )e12 +(1−λ )e21 /∈ KI2 for all λ ∈ K .

3. Proofs of main results

LEMMA 3.1. Let M2(D) be the ring of all 2×2 matrices over a division ring D

and let S be a subset of M2(D) containing all rank-k matrices in M2(D) , where k is
an integer such that 1 � k � 2 . If f : S → M2(D) is a map satisfying [ f (x), f (y)] =
[x,y] for all x,y ∈ S , then there exists a map μ : S → Z(D)I2 such that f (x) =
x+ μ(x) for all x ∈ S or f (x) = −x+ μ(x) for all x ∈ S .

Proof. If k = 2, then S contains all invertible matrices in M2(D) and hence we
are done by Theorem L. Suppose now k = 1. Let S ′ = S ∪{0} and let g : S ′ →
M2(D) be the map defined by the rules as follows: (a) g(s) = f (s) if s ∈ S \ {0} ;
(b) g(0) = f (0) if 0 ∈ S and g(0) = 0 if 0 /∈ S . Then by assumption, we have
[g(x),g(y)] = [x,y] for all x,y ∈ S ′ . Clearly, S ′ contains all singular matrices in
M2(D) . By Theorem L, there exists a map μ : S ′ → Z(D)I2 such that g(x) = x+ μ(x)
for all x ∈ S ′ or g(x) = −x+ μ(x) for all x ∈ S ′ . So f (x) = x+ μ(x) for all x ∈ S
or f (x) = −x+ μ(x) for all x ∈ S . This proves the lemma. �

LEMMA 3.2. Let Mn(D) be the ring of all n×n matrices over a division ring D ,
where n � 2 is an integer and let k be an integer such that 1 � k � n. Then for every
integers i, j with 1 � i, j � n and every d ∈D , there exist rank-k matrices y,z∈Mn(D)
such that dei j = y− z.

Proof. Let i, j be distinct integers such that 1 � i, j � n and let d ∈ D . If d = 0,
then deii = y− y and dei j = y− y for every rank-k matrix y ∈ Mn(D) . So we may
assume d �= 0. Suppose first that k = 1. Clearly, deii , d(eii +ei j) and dei j are all rank-
1 matrices in Mn(D) . In view of deii = d(eii +ei j)−dei j and dei j = d(eii +ei j)−deii ,
we are done. Suppose next that k � 2. Let U be a set such that U ⊆ {1,2, . . . ,n} ,
|U | = k− 2 and U ∩{i, j} = /0 . Clearly, d(eii + ei j + e ji)+ ∑�∈U e�� , d(ei j + e ji) +
∑�∈U e�� , d(eii +ei j +e j j)+∑�∈U e�� and d(eii +e j j)+∑�∈U e�� are all rank-k matrices
in Mn(D) . In view of deii = (d(eii + ei j + e ji)+ ∑�∈U e��)− (d(ei j + e ji)+ ∑�∈U e��)
and dei j = (d(eii + ei j + e j j)+ ∑�∈U e��)− (d(eii + e j j)+ ∑�∈U e��) , we are done. �
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Deng and Ashraf [15] proved that if A is a prime ring of characteristic not 2 and
there exists a non-identity endomorphismT of A such that [T (x),T (y)]− [x,y]∈ Z(A )
for all x,y in some essential right ideal of A , then A is commutative. Lee and Wong
[24] proved that if f : R → A is a map, where R is a noncentral Lie ideal of a prime
ring A , satisfying [ f (x), f (y)]− [x,y] ∈ Z(A ) for all x,y ∈ R , then f is of the form
f (x) = λx+ μ(x) for all x ∈ R , where λ 2 = 1 and μ : R → Z(A ) is a map, unless
charA = 2 and A ⊆ M2(K) for a field K . Now we prove a more general version of
Theorem 1.1 as follows.

THEOREM 3.3. Let D be a division ring, let Mn(D) be the ring of all n× n
matrices over D with center Z , where n � 2 is an integer and let S be a subset
of Mn(D) containing all rank-k matrices in Mn(D) , where k is an integer such that
1 � k � n. If f : S → Mn(D) is a map satisfying [ f (x), f (y)]− [x,y] ∈ Z for all
x,y ∈ S , then there exists a map μ : S → Z(D)In such that f (x) = x + μ(x) for
all x ∈ S or f (x) = −x + μ(x) for all x ∈ S unless n = 2 , charD = 2 and D is
commutative.

Proof. Suppose first that n � 3 or n = 2 and D is noncommutative. From the
Jacobi identity, it follows that

[ f (x), [ f (y), f (z)]]+ [ f (y), [ f (z), f (x)]]+ [ f (z), [ f (x), f (y)]] = 0

for all x,y,z ∈ S . Since [ f (x), f (y)]− [x,y] ∈ Z for all x,y ∈ S , we have

[ f (x), [y,z]]+ [ f (y), [z,x]]+ [ f (z), [x,y]] = 0

for all x,y,z ∈ S . By Proposition 2.5 and Corollary 2.8, there exist λ ∈ Z(D) and a
map μ : S → Z(D)In such that f (x) = λx+ μ(x) for all x ∈ S . Then for x,y ∈ S ,

Z � [ f (x), f (y)]− [x,y] = [λx+ μ(x),λy+ μ(y)]− [x,y] = (λ 2 −1)[x,y].

That is, (λ 2 − 1)[x,y] ∈ Z(D)In for all x,y ∈ S . Let R be the additive subgroup of
Mn(D) generated by S . Then (λ 2 − 1)[x,y] ∈ Z(D)In for all x,y ∈ R . By Lemma
3.2, e11,e12 ∈ R and from (λ 2 − 1)[e11,e12] = (λ 2 − 1)e12 ∈ Z(D)In , it follows that
λ 2 = 1. So λ = 1 or −1, proving the theorem.

Suppose now that n = 2, D is commutative and charD �= 2. By assumption, for
every x,y ∈S , there exists αx,y ∈D such that [ f (x), f (y)]− [x,y] = αx,yI2 ∈ DI2 = Z .
From 0 = tr([ f (x), f (y)]− [x,y]) = tr(αx,yI2) = 2αx,y it follows that αx,y = 0. Thus
[ f (x), f (y)]− [x,y] = 0 for all x,y ∈ S . By Lemma 3.1, we are done. �

The conclusion of Theorem 3.2 is false if n = 2, charD = 2 and D is commutative.

EXAMPLE. Let K be a field with charK = 2 and let f : M2(K) → M2(K) be
the K -linear map defined by f (e11) = e11 + e12 , f (e22) = e11 + e12 , f (e12) = e12

and f (e21) = e21 . Then [ f (x), f (y)]− [x,y] ∈ KI2 for all x,y ∈ M2(K) . In particular,
[ f (x), f (y)]− [x,y] ∈ KI2 for all rank-k matrices x,y ∈ M2(K) , where k is an integer
such that 1 � k � 2. However, f is not of the form described in Theorem 3.2 as
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f (e11)−λe11 = (1−λ )e11 + e12 /∈ KI2 and f (e11 + e12 + e21)−λ (e11 + e12 + e21) =
(1−λ )e11−λe12 +(1−λ )e21 /∈ KI2 for all λ ∈ K .

Clearly, Theorem 1.1 follows directly from Lemma 3.1 and Theorem 3.3.

Proof of Corollary 1.2. By assumption, there exists a map δ : Mn(D) → Mn(D)
such that g(xy) = g(x)y+ σ(x)δ (y) for all x,y ∈ Mn(D) . Then

g(y) = g(Iny) = g(In)y+ σ(In)δ (y) = g(In)y+ δ (y) (3.1)

for all y ∈ Mn(D) . We claim that δ is a σ -derivation. Let x,y,z ∈ Mn(D) . Then

g(x(yz)) = g(x)yz+ σ(x)δ (yz) (3.2)

and

g((xy)z) = g(xy)z+ σ(xy)δ (z) = (g(x)y+ σ(x)δ (y))z+ σ(xy)δ (z). (3.3)

The difference of (3.2) and (3.3) yields σ(x)(δ (yz)− σ(y)δ (z)− δ (y)z) = 0 for all
x,y,z ∈Mn(D) . Thus δ (yz) = σ(y)δ (z)+δ (y)z for all y,z ∈ Mn(D) . By [22, Theorem
1], δ is additive and hence δ is a σ -derivation, as claimed.

Let S be the set of all rank-k matrices in Mn(D) and let R be the additive
subgroup of Mn(D) generated by S . By Theorem 1.1, g(x)− λx ∈ Z(D)In for all
x ∈ S , where λ ∈ {1,−1} . In view of (3.1), g(x) = g(In)x+ δ (x) for all x ∈ Mn(D) .
Thus g(In)x+ δ (x)−λx ∈ Z(D)In for all x ∈ S . By the additivity of δ , we see that
g(In)x+δ (x)−λx ∈ Z(D)In for all x ∈ R . In view of Lemma 3.2, R = Mn(D) . Thus

δ (x)+ (g(In)−λ In)x ∈ Z(D)In (3.4)

for all x ∈ Mn(D) . Setting x = In in (3.4), we obtain δ (In)+ (g(In)−λ In) ∈ Z(D)In .
Note that δ (In) = δ (InIn) = σ(In)δ (In)+ δ (In)In = 2δ (In) , implying δ (In) = 0. So
g(In)−λ In ∈ Z(D)In and then by (3.4) we have [δ (x),x] = 0 for all x ∈ Mn(D) . By
[36, Theorem 1.2], δ = 0. Then (3.4) is reduced to (g(In)−λ In)x ∈ Z(D)In for all
x ∈ Mn(D) . Since g(In)−λ In ∈ Z(D)In , we see that g(In)−λ In = 0. Now from (3.1)
it follows that g(x) = λx for all x ∈ Mn(D) . This proves the corollary. �
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