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CHARACTERISTIC FUNCTIONS OF LIFTINGS–II

SANTANU DEY, ROLF GOHM AND KALPESH J. HARIA

(Communicated by J. Ball)

Abstract. We prove that the symbol of the characteristic function of a minimal contractive lifting
is an injective map and that the converse also holds, using explicit computation and functional
models. We discuss when the characteristic function of a lifting is a polynomial and present a
series representation for the characteristic functions of liftings.

1. Introduction

Given a Hilbert space L , a d -tuple T = (T1, . . . ,Td) , such that Tj ∈ B(L ) for
j = 1, . . . ,d , is said to be a row contraction if ∑d

j=1 TjT ∗
j � IL . A row contraction

E = (E1, . . . ,Ed) on Hilbert space HE is said to be a contractive lifting of a row con-
traction C = (C1, . . . ,Cd) on a Hilbert space HC if HC ⊂ HE and E∗

i hC = C∗
i hC for

hC ∈ HC, i = 1, . . . ,d . The contractive lifting E is said to be minimal if HE is the
smallest E -invariant subspace containing HC . The theory of characteristic functions
of row contractions was first studied by G. Popescu in [11]. Motivated by the theory
of characteristic functions of row contractions and by applications to dynamics of open
quantum systems (see [7], [8]), the notion of characteristic functions for liftings of row
contractions was introduced in [3] which completely classify up to unitary equivalence
certain class of liftings called reduced liftings. The notion of reduced lifting has been
shown to be same as the notion of minimal contractive lifting in [4]. The current article
is a sequel to our article [3].

The full Fock space over Cd , denoted by Γ , is the Hilbert space

Γ := C⊕C
d ⊕ (Cd)⊗

2 ⊕ . . .⊕ (Cd)⊗
m ⊕ . . . .

Fock spaces are very useful for constructing functional models for row contractions.
The element e /0 := 1⊕0⊕ . . . of Γ is called the vacuum vector. Let {e1, . . . ,ed} be the
standard orthonormal basis of Cd . Let Lj : Γ → Γ denotes the left creation operator

Ljx = e j ⊗ x for all x ∈ Γ, j = 1, . . . ,d.

Our notation also include the case d = ∞ here and in this case Cd stands for a complex
separable Hilbert space of infinite dimension.

Mathematics subject classification (2010): 47A20, 47A13, 47A15, 47A48, 81R15.
Keywords and phrases: Row contraction, minimal contractive lifting, characteristic function, multi-

analytic operator, completely non-coisometric, linear system, transfer function.

c© � � , Zagreb
Paper OaM-12-36

579

http://dx.doi.org/10.7153/oam-2018-12-36


580 S. DEY, R. GOHM AND K. J. HARIA

Suppose Λ̃ is the unital free semi-group with generators 1, . . . ,d and the identity
/0 . If Tj ∈ B(L ) for j = 1, . . . ,d , then for α ∈ Λ̃ define

Tα :=

{
Tα1 . . .Tαm if α = α1 . . .αm, αi ∈ {1, . . . ,d}
IL if α = /0.

For α = α1 . . .αm ∈ Λ̃ we denote the vector eα1 ⊗ . . .⊗ eαm by eα in the full Fock
space Γ . Then {eα : α ∈ Λ̃} forms an orthonormal basis for the full Fock space Γ .
The length of α ∈ Λ̃ is defined to be m if α = α1 . . .αm , and 0 if α = /0 . It is denoted
by |α|.

DEFINITION 1. Let E and E∗ be Hilbert spaces. A bounded operator M : Γ⊗
E → Γ⊗E∗ is said to be a multi-analytic operator if

M(Lj ⊗ IE ) = (Lj ⊗ IE∗)M for j = 1, . . . ,d. (1)

Characteristic functions of row contractions as well as characteristic functions of
liftings of row contractions are contractive multi-analytic operators. Contractive multi-
analytic operators are noncommutative analogues of operator valued Schur class func-
tions. Let M : Γ ⊗ E → Γ ⊗ E∗ be a multi-analytic operator. The map defined by
Θ := M|e /0⊗E : e /0 ⊗E → Γ⊗E∗ is called the symbol of M and it uniquely determines
M , i.e., if we define the multi-analytic operator MΘ : Γ⊗E → Γ⊗E∗ by

MΘ(Lα ⊗ IE )(e /0 ⊗ �) := (Lα ⊗ IE∗)Θ(e /0⊗ �)

for all � ∈ E ,α ∈ Λ̃ , then MΘ = M .
In Section 2 we show that the symbol of any characteristic function of a minimal

contractive lifting is injective. We develop a functional model for contractive multi-
analytic operators (cf. [4]). A complete answer is given for the following question
in Section 3: If C = (C1, . . . ,Cd) is a row contraction on a Hilbert space HC and
M̃ : Γ⊗D → Γ⊗DC is a contractive multi-analytic operator where D is any Hilbert
space, then which intrinsic properties of a characteristic function of a lifting when as-
sumed for M̃ , guarantee that M̃ is the characteristic function for a minimal contrac-
tive lifting of C? For every row contraction C and contractive multi-analytic operator
whose codomain is Γ⊗DC, an associated lifting of C was defined in [3]. It is shown
here that if this contractive multi-analytic operator has injective symbol, then the multi-
analytic operator can be realized as the characteristic function of the associated lifting.
These results were proved previously in [4] using different methods and our approach
here makes use of explicit computation and functional models. An example is worked
out in Section 4 where we illustrate the constructions from the Section 3, viz., for a
given row contraction and a certain contractive multi-analytic operator, the associated
lifting of the given contraction is obtained and the characteristic function of the lifting
is compared with the given multi-analytic operator.

The last section contains a criterion for the characteristic function of lifting to be a
polynomial. Such studies were done for characteristic functions of contractions in [6].
G. Popescu carried out similar investigation in [12] for characteristic functions of row
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contractions and developed notions to detect when the characteristic function of any
row contraction is a polynomial. Later in the last section, we derive a transfer function
type series representation for the characteristic function of any contractive lifting. In
[5] and [9], outgoing Cuntz Scattering systems were associated to coisometric liftings
of row contractions and the characteristic functions of these liftings were shown to
coincide with transfer functions of the scattering systems.

If a row contraction consists of isometries with orthogonal ranges, then it is called
a row isometry. For a row contraction T , a minimal contractive lifting is called a
minimal isometric dilation, if the lifting is a row isometry. Let T be a row contraction
on a Hilbert space L . Define defect operators DT = (I−T ∗T )

1
2 : ⊕d

i=1L →⊕d
i=1L

and D∗,T := (I−TT ∗)
1
2 : L →L . Denote DT := Range DT and D∗,T := Range D∗,T .

A construction of the minimal isometric dilation V (cf. [10]) of T on L̂ = L ⊕ (Γ⊗
DT ) is

Vj(�⊕ ∑
α∈Λ̃

eα ⊗dα) = Tj�⊕ [e /0⊗ (DT ) j�+ e j⊗ ∑
α∈Λ̃

eα ⊗dα ] (2)

where � ∈ L , dα ∈ DT , and (DT ) j : L → ⊕d
1 L is defined for j = 1, . . . ,d by the

(DT ) j� = DT (0, . . . , �, . . . ,0) with � is embedded at the jth component. This construc-
tion is vital for the analysis done in this article.

2. Properties of the characteristic functions of liftings

In this section we discuss some important properties of the characteristic function
of a minimal contractive lifting. Let C = (C1, . . . ,Cd) be a row contraction on a Hilbert
space HC and E = (E1, . . . ,Ed) be a lifting of C on a Hilbert space HE ⊃ HC . Let

(
Cj 0
Bj A j

)

be the block matrix representation of Ej for j = 1, . . . ,d with respect to HC ⊕H ⊥
C .

Now onward we denote H ⊥
C by HA . Let VE = (VE

1 , . . . ,VE
d ) be a minimal isometric

dilation of E on the Hilbert space HE ⊕ (Γ⊗DE) . Since VE is a row isometry and
(VE

j )∗hC = Ej
∗hC = Cj

∗hC for all hC ∈ HC, j = 1, . . . ,d, VE is an isometric lifting

of C . The subspace H̃C := span{VE
α hC : hC ∈ HC,α ∈ Λ̃} of HE ⊕ (Γ ⊗DE) is

a reducing subspace for VE because (VE
i )∗VE

j = δi jI for i, j = 1, . . . ,d. Since any
minimal isometric dilation of a row contraction is unique upto unitary equivalence and
the row isometry VE |H̃C

is a minimal isometric dilation of C, we can embed the space

HC ⊕ (Γ⊗DC) of the minimal isometric dilation VC = (VC
1 , . . . ,VC

d ) of C in HE ⊕
(Γ⊗DE) as a reducing subspace of VE

i ’s. In other words, there exist a row isometry
Y = (Y1, . . . ,Yd) on a space K and a unitary W : HE ⊕ (Γ⊗DE) →HC ⊕ (Γ⊗DC)⊕
K such that with Ṽ E

j := VC
j ⊕Yj we have

Ṽ E
j W = WVE

j and W |HC = I|HC
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for j = 1, . . . ,d . The characteristic function for the lifting E of C is introduced in [3]
as the multi-analytic operator

MC,E := PΓ⊗DCW |Γ⊗DE : Γ⊗DE → Γ⊗DC

A row contraction T = (T1, . . . ,Td) on a Hilbert space L is said to be

(1) a completely non-coisometric (c.n.c.) tuple if

{� ∈ L : ∑
|α |=n

‖(Tα)∗�‖2 = ‖�‖2 for all n ∈ N} = {0}.

(2) a pure or ∗ -stable tuple if lim
n→∞ ∑

|α |=n

‖(Tα)∗�‖2 = 0 for all � ∈ L .

It is easy to verify that if a row contraction T = (T1, . . . ,Td) is pure, then it is c.n.c.
We recall from Proposition 3.1 of [3] that if E is a contractive lifting of C by A ,

then there exists a contraction γ : D∗,A → DC such that B∗
j = (DC)∗jγD∗,A holds for

j = 1, . . . ,d . The characteristic function MC,E of the lifting E has the following series
expansion for its symbol ΘC,E : For hC ∈ HC

ΘC,E(DE) jhC = e /0 ⊗ [(DC) jhC − γD∗,AB jhC]− ∑
|α |�1

eα ⊗ γD∗,A(Aα)∗BjhC, (3)

and for hA ∈ HA

ΘC,E(DE) jhA = −e /0⊗ γD∗,AA jhA +
d

∑
i=1

ei ⊗ ∑
α∈Λ̃

eα ⊗ γD∗,A(Aα)∗(δi jI−A∗
i A j)hA (4)

where j = 1, . . . ,d .
For a contractive lifting E of C , we have constructed the minimal isometric dila-

tion VE on the Hilbert space HE ⊕ (Γ⊗DE) in the introduction. Because VE is an
isometric lifting of C on HC , we obtain the minimal isometric dilation VC by restrict-

ing VE to HC⊕⊕
α VE

α LC , where LC = span{HC,VE(
d⊕
1

HC)}�HC is a subspace

with dimension equal to the dimension of the defect space DC of C and hence can
be identified canonically with DC . We restate below Proposition 3.8 of [4] in a form
appropriate to the study done in the article:

THEOREM 1. A contractive lifting E of C by A is a minimal contractive lifting if
and only if A is c.n.c. and the contraction γ : D∗,A →DC is resolving, i.e., for hA ∈HA

we have

(γD∗,AA∗
αhA = 0 for all α ∈ Λ̃) ⇒ (D∗,AA∗

αhA = 0 for all α ∈ Λ̃).
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Proof. Let hE ∈ HE . We have

hE ∈ HE � [
span{EαhC : hC ∈ HC, all words α}]

⇔ hE ⊥ PHEV
E
α hC for all hC ∈ HC, all words α

⇔ hE ⊥ PHE

[
HC ⊕ (

⊕
α

VE
α LC)

]
= HC +PHE

⊕
α

VE
α LC

⇔ hE ∈ HA ∩ (
⊕

α
VE

α LC)⊥

Therefore HE � [
span{EαhC : hC ∈ HC, all words α}] = {0} if and only if HA ∩

(
⊕

α VE
α LC)⊥ = {0} . It is immediate that the space K , introduced in the first para-

graph of this section, is embedded in the space HE ⊕Γ⊗DE by the unitary W ∗ as
(
⊕

α VE
α LC)⊥�HC. Thus, the assertion of the proposition follows from part (i) =⇒

(iii) of Lemma 3.5 of [3]. �
We have remarked in the introduction that the notion of ‘minimal contractive lift-

ing’ is same as the notion of ‘reduced lifting’ from [3]. Let us assume that E is a
minimal contractive lifting of C . Therefore it follows from Lemma 3.3 (iv) of [3] that

(Γ⊗DC)∨W (Γ⊗DE) = (Γ⊗DC)⊕K . (5)

Define ΔC,E := (I−M∗
C,EMC,E)1/2 : Γ⊗DE → Γ⊗DE . Then x ∈ Γ⊗DE we have

‖PK Wx‖2 = ‖(I−PΓ⊗DC)Wx‖2 = ‖x‖2−‖PΓ⊗DCWx‖2

= ‖x‖2−‖MC,Ex‖2 = ‖ΔC,Ex‖2. (6)

Therefore there is a unitary operator ΦK from K onto ΔC,E(Γ⊗DE) defined by

ΦK (PK Wx) = ΔC,Ex for x ∈ Γ⊗DE .

Since
WHA = [(Γ⊗DC)⊕K ]�W(Γ⊗DE), (7)

with the unitary Φ := I⊕ΦK : (Γ⊗DC)⊕K → (Γ⊗DC)⊕ΔC,E(Γ⊗DE) we finally
obtain for x ∈ Γ⊗DE

ΦWx = PΓ⊗DCWx⊕ΦK PK Wx = MC,Ex⊕ΔC,Ex

and

ΦWHA = [(Γ⊗DC)⊕ΔC,E(Γ⊗DE)]�{MC,Ex⊕ΔC,Ex : x ∈ Γ⊗DE}.
From these observations, a functional model is derived in Section 3 of [3] for the lifting
E of C .

DEFINITION 2. A multi-analytic operator MΘ : Γ⊗E → Γ⊗E∗ is called purely
contractive if its symbol Θ satisfies

‖Pe /0⊗E∗Θ(�)‖ < ‖�‖
for all 0 �= � ∈ E .
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The characteristic function of a row contraction is purely contractive. But we
observe for the following minimal contractive lifting that the characteristic function of
the lifting is not purely contractive:

EXAMPLE. Let C :=

⎛
⎜⎝
√

3
2

0

0

√
3

2

⎞
⎟⎠ on HC = C2 and let E =

(
C 0
B A

)
on HE =

HC ⊕HA be a lifting of C. Let A := Mz on HA = H2, the Hardy space, and B :
HC → HA be defined by B(x,y)T = fy where the superscript ‘T’ stands for transpose

and fy(z) :=
1
2
y.

It follows that DC = (I−C∗C)
1
2 =

⎛
⎜⎝

1
2

0

0
1
2

⎞
⎟⎠ and D∗,A = (I−AA∗)

1
2 is the orthog-

onal projection onto the space of constant functions inside H2. Here B∗ : HA →HC is

given by B∗ f = (0,
1
2

f0)T where f0 is the constant term of f ∈H2 . Define an isometry

γ : D∗,A → DC by
γα := (0,α)T for α ∈ HC.

Observe that B∗ = DCγD∗,A . Thus by Proposition 3.1 of [3] we infer that E is a con-
traction. Because A is the unilateral shift, it is is pure, i.e., for all hA ∈ HA we have
limn→∞ ‖(A∗)nhA‖ = 0 and hence it is c.n.c. Since γ is an isometry, γ is resolving.
From Theorem 2.1 we deduce that E is a minimal contractive lifting of C .

Next we show that the characteristic function MC,E for the lifting E of C is not
purely contractive. Observe that kerB = {(x,0)T : x∈C} . Suppose hC = (x0,0)T ∈HC

for some x0 �= 0. Then

‖DEhC‖2 = ‖hC‖2−‖EhC‖2 = ‖hC‖2− [‖ChC‖2 +‖BhC‖2]

= ‖hC‖2−‖ChC‖2 = ‖DChC‖2 =
1
4
|x0|2 �= 0.

By equation (3) we have ΘC,EDEhC = DChC and so ‖Pe /0⊗DCΘC,EDEhC‖2 = ‖DChC‖2 =
‖DEhC‖2. Hence MC,E is not purely contractive.

In the following proposition, we observe that the defect space DE of any minimal
contractive lifting E of a row contraction C is the span closure of certain subspaces.
This will be vital in proving that the characteristic functions of such liftings are always
injective.

PROPOSITION 1. If MC,E : Γ⊗DE → Γ⊗DC is the characteristic function for the
minimal contractive lifting E of C, then

e /0⊗DE = M∗
C,E(e /0 ⊗DC)∨{M∗

C,E(Lj ⊗ I)u+ lim
n→∞

Δ2
C,E(Lj ⊗ I)vn : u ∈ Γ⊗DC,

vn ∈ Γ⊗DE ,u⊕ lim
n→∞

ΔC,Evn ⊥ MC,Ex⊕ΔC,Ex for all x ∈ Γ⊗DE , j = 1, . . . ,d}.
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Proof. We denote by N the space

M∗
C,E(e /0 ⊗DC)∨{M∗

C,E(Lj ⊗ I)u+ lim
n→∞

Δ2
C,E(Lj ⊗ I)vn :

u⊕ lim
n→∞

ΔC,Evn ⊥ MC,Ex⊕ΔC,Ex for all x ∈ Γ⊗DE , j = 1, . . . ,d}.

First note that for all j = 1, . . . ,d with |α| � 1, and dC ∈ DC we have

(L∗
j ⊗ I)M∗

C,E(e /0⊗dC) = M∗
C,E(L∗

j ⊗ I)(e /0⊗dC) = 0.

This implies that M∗
C,E(e /0⊗dC)∈ e /0⊗DE . Let hE = hC⊕hA ∈HC⊕HA(= HE) and

h ∈ HC . For 1 � i, j � d we observe that

〈M∗
C,E(e /0 ⊗ (DC) jh),e /0 ⊗ (DE)ihE〉

= 〈e /0 ⊗ (DC) jh,MC,E
(
e /0⊗ (DE)i(hC ⊕hA)

)〉
= 〈e /0 ⊗ (DC) jh,e /0⊗ [(DC)ihC − γD∗,ABihC − γD∗,AAihA]〉
= 〈e /0 ⊗h,e /0⊗ (DC)∗j [(DC)ihC − γD∗,ABihC − γD∗,AAihA]〉
= 〈e /0 ⊗h,e /0⊗ [(δi jI−C∗

jCi)hC −B∗
jBihC −B∗

jAihA]〉
= 〈e /0 ⊗h,e /0⊗ (DE)∗j(DE)ihE〉
= 〈e /0 ⊗ (DE) jh,e /0⊗ (DE)ihE〉.

Thus M∗
C,E(e /0 ⊗ (DC) jh) = e /0⊗ (DE) jh for all h ∈ HC , j = 1, . . . ,d .

Since Ṽ E
j reduces K , the projection PK commutes with Ṽ E

j for j = 1, . . . ,d .
For x ∈ Γ⊗DE we have

ΦK YjPK Wx = ΦK Ṽ E
j PK Wx = ΦK PK Ṽ E

j Wx

= ΦK PK WVE
j x = ΦK PK W (Lj ⊗ I)x = ΔC,E(Lj ⊗ I)x for j = 1, . . . ,d.

Let h ∈ HA . Because Ṽ E
j W = WVE

j it follows for all y ∈ Γ⊗DE that

〈((Lj ⊗ I)⊕Yj)Wh,Wy〉 = 〈W (Ajh)⊕W(e /0⊗ (DE) jh),Wy〉
= 〈W (e /0⊗ (DE) jh),Wy〉
= 〈e /0 ⊗ (DE) jh, y〉. (8)

Using equations (5) and (7) we write Wh = u⊕ lim
n→∞

PK Wvn for some u∈ Γ⊗DC,vn ∈
Γ⊗DE . Observe that

u⊕ lim
n→∞

ΔC,Evn ⊥ MC,Ex⊕ΔC,Ex for all x ∈ Γ⊗DE .
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Therefore for j = 1, . . . ,d

〈((Lj ⊗ I)⊕Yj)Wh,Wy〉 = 〈W ∗((Lj ⊗ I)⊕Yj)(u⊕ lim
n→∞

PK Wvn), y〉
= 〈W ∗(Lj ⊗ I)u, y〉+ 〈W∗(Yj lim

n→∞
PK Wvn), y〉

= 〈(Lj ⊗ I)u,PΓ⊗DCWy〉+ 〈W∗( lim
n→∞

Φ∗
K ΔC,E(Lj ⊗ I)vn), y〉

= 〈M∗
C,E(Lj ⊗ I)u, y〉+ 〈( lim

n→∞
ΔC,E(Lj ⊗ I)vn), ΦK PK Wy〉

= 〈M∗
C,E(Lj ⊗ I)u, y〉+ 〈( lim

n→∞
ΔC,E(Lj ⊗ I)vn),ΔC,Ey〉

= 〈M∗
C,E(Lj ⊗ I)u+ lim

n→∞
Δ2

C,E(Lj ⊗ I)vn, y〉. (9)

From equations (8) and (9) we have

e /0⊗ (DE) jh = M∗
C,E(Lj ⊗ I)u+ lim

n→∞
Δ2

C,E(Lj ⊗ I)vn for j = 1, . . . ,d.

By above arguments we conclude that e /0 ⊗DE ⊂ N . For the reverse inclusion we
recall from the remark made at the beginning of the proof that

M∗
C,E(e /0⊗DC) ⊂ e /0⊗DE .

Let u⊕ limn→∞ ΔC,Evn ⊥ MC,Ex⊕ΔC,Ex for all x ∈ Γ⊗DE where u ∈ Γ⊗DC,vn ∈
Γ⊗DE . For i, j ∈ {1, . . . ,d}

(L∗
i ⊗ I)[M∗

C,E(Lj ⊗ I)u+ lim
n→∞

Δ2
C,E(Lj ⊗ I)vn]

= M∗
C,E(L∗

i ⊗ I)(Lj ⊗ I)u+ lim
n→∞

(L∗
i ⊗ I)(I−M∗

C,EMC,E)(Lj ⊗ I)vn

= δi j[M∗
C,Eu+ lim

n→∞
Δ2

C,Evn] = 0.

where the last equality follows from the fact u⊕ limn→∞ ΔC,Evn ⊥ MC,Ex⊕ΔC,Ex for
all x ∈ Γ⊗DE . Hence N ⊂ e /0⊗DE . �

PROPOSITION 2. The symbol ΘC,E = MC,E |e /0⊗DE of the characteristic function
MC,E is an injective map.

Proof. Let dE ∈ DE such that ΘC,E(e /0⊗dE) = 0. For dC ∈ DC we obtain

〈e /0 ⊗dE ,M∗
C,E(e /0 ⊗dC)〉 = 〈MC,E(e /0 ⊗dE),e /0 ⊗dC〉 = 0, i.e.,

e /0⊗dE ⊥ M∗
C,E(e /0⊗DC). (10)
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Let u ∈ Γ⊗DC and vn ∈ Γ⊗DE be such that (u⊕ limn→∞ ΔC,Evn) ⊥ MC,Ex⊕ΔC,Ex
for all x ∈ Γ⊗DE . Then for j = 1, . . . ,d

〈e /0 ⊗dE ,M∗
C,E(Lj ⊗ I)u+ lim

n→∞
Δ2

C,E(Lj ⊗ I)vn〉
= 〈e /0⊗dE ,M∗

C,E(Lj ⊗ I)u〉+ 〈e /0⊗dE , lim
n→∞

Δ2
C,E(Lj ⊗ I)vn〉

= 〈MC,E(e /0⊗dE),(Lj ⊗ I)u〉+ lim
n→∞

〈Δ2
C,E(e /0⊗dE),(Lj ⊗ I)vn〉

= 0+ lim
n→∞

〈(I−M∗
C,EMC,E)(e /0⊗dE),(Lj ⊗ I)vn〉

= lim
n→∞

〈e /0⊗dE ,(Lj ⊗ I)vn〉
= lim

n→∞
〈(L∗

j ⊗ I)(e /0⊗dE),vn〉 = 0.

Hence using equation (10) and Proposition 1 we deduce that dE = 0. �

3. Characteristic functions of associated liftings

DEFINITION 3. If M and M′ are multi-analytic operators with symbols Θ : D →
Γ⊗L and Θ′ : D ′ → Γ⊗L (with the same L ) and there exists a unitary v : D →D ′
such that Θ′ ◦ v = Θ, then we say that M and M′ are equivalent.

The injectivity property of symbols of characteristic functions of liftings is not
only a necessary condition for minimal contractive liftings as seen in Proposition 2 in
the previous section but also a sufficient condition in the following sense:

THEOREM 2. Let C = (C1, . . . ,Cd) be a row contraction on a Hilbert space HC

and M̃ : Γ⊗D → Γ⊗DC be a contractive multi-analytic operator such that its symbol
Θ̃ := M̃|e /0⊗D is an injective map. Then there exists a minimal contractive lifting E of
C such that MC,E and M̃ are equivalent.

Proof. We define operators Δ̃ : Γ⊗D → Γ⊗D and W : Γ⊗D → (Γ⊗DC)⊕
Δ̃(Γ⊗D) by

Δ̃ := (I− M̃∗M̃)1/2 and W (x) = M̃x⊕ Δ̃x.

Let H̃ denote the Hilbert space HC⊕(Γ⊗DC)⊕Δ̃(Γ⊗D). Clearly W is an isometry.
By adding to the domain of W, a copy HA of the orthogonal complement of W (Γ⊗D)
in (Γ⊗DC)⊕ Δ̃(Γ⊗D), we extend W to a unitary

W : HA ⊕ (Γ⊗D)→ (Γ⊗DC)⊕ Δ̃(Γ⊗D).

Let VC = (VC
1 , . . . ,VC

d ) be the minimal isometric dilation of C on HC ⊕ (Γ ⊗DC) .
Define Ṽ = (Ṽ1, . . . ,Ṽd) on H̃ by Ṽj :=VC

j ⊕Yj for j = 1, . . . ,d where Yj is given by

YjΔ̃x = Δ̃(Lj ⊗ I)x for x ∈ Γ⊗D .
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It is easy to see that Y = (Y1, . . . ,Yd) is a row isometry. Because for x ∈ Γ⊗D

Ṽj(M̃x⊕ Δ̃x) = (Lj ⊗ I)M̃x⊕YjΔ̃x = M̃(Lj ⊗ I)x⊕ Δ̃(Lj ⊗ I)x,

the space W (Γ⊗D) = {M̃x⊕ Δ̃x : x ∈ Γ⊗D} is invariant under Ṽj for j = 1, . . . ,d.
Thus HC ⊕HA is invariant under Ṽ ∗

j for j = 1, . . . ,d and the contraction

E∗
j := Ṽ ∗

j |HC⊕HA for j = 1, . . . ,d.

is called the lifting associated to the multi-analytic operator M̃ . It was proved in Propo-
sition 3.8 of [3] that this lifting is a reduced lifting and hence a minimal contractive
lifting.

We write Ej in the block matrix form as

Ej =
(

Cj 0
Bj A j

)

for j = 1, . . . ,d with respect to the decomposition HE = HC ⊕HA . Let hC,h′C ∈
HC and u⊕ lim

n→∞
Δ̃vn,u

′ ⊕ lim
n→∞

Δ̃v′n ∈ HA where u = ∑α∈Λ̃ eα ⊗ uα ,u′ = ∑α∈Λ̃ eα ⊗
u′α ;uα ,u′α ∈ DC, and vn,v′n ∈ Γ⊗D . Then

〈E∗
j (hC ⊕u⊕ lim

n→∞
Δ̃vn), h′C ⊕u′ ⊕ lim

n→∞
Δ̃v′n〉

= 〈Ṽ ∗
j (hC ⊕u⊕ lim

n→∞
Δ̃vn), h′C ⊕u′ ⊕ lim

n→∞
Δ̃v′n〉

= 〈hC ⊕u⊕ lim
n→∞

Δ̃vn, Ṽj(h′C ⊕u′ ⊕ lim
n→∞

Δ̃v′n)〉
= 〈hC ⊕u⊕ lim

n→∞
Δ̃vn, VC

j (h′C ⊕u′)⊕ lim
n→∞

YjΔ̃v′n〉
= 〈hC ⊕u⊕ lim

n→∞
Δ̃vn, (Cjh

′
C ⊕ e /0⊗ (DC) jh

′
C ⊕ (Lj ⊗ I)u′)⊕ lim

n→∞
YjΔ̃v′n〉

= 〈(C∗
j hC +(DC)∗j u /0)⊕ (L∗

j ⊗ I)u⊕ lim
n→∞

Y ∗
j Δ̃vn, h′C ⊕u′ ⊕ lim

n→∞
Δ̃v′n〉.

We conclude that

B∗
j(u⊕ lim

n→∞
Δ̃vn) = (DC)∗j u /0,

A∗
j(u⊕ lim

n→∞
Δ̃vn) = (L∗

j ⊗ I)u⊕ lim
n→∞

Y ∗
j Δ̃vn

for j = 1, . . . ,d . Because u′ ⊕ lim
n→∞

Δ̃v′n ∈ HA and HA ⊥W (Γ⊗D), we have M̃∗u′ +

lim
n→∞

Δ̃2v′n = 0. Further

〈(I− M̃M̃∗)(e /0 ⊗ (DC) jhC)⊕ (−Δ̃M̃∗(e /0 ⊗ (DC) jhC)), u′ ⊕ lim
n→∞

Δ̃v′n〉
= 〈e /0⊗ (DC) jhC − M̃M̃∗(e /0⊗ (DC) jhC),u′〉− 〈M̃∗(e /0 ⊗ (DC) jhC), lim

n→∞
Δ̃2v′n〉

= 〈e /0⊗ (DC) jhC, u′〉− 〈M̃∗(e /0 ⊗ (DC) jhC), M̃∗u′〉+ 〈M̃∗(e /0⊗ (DC) jhC), M̃∗u′〉
= 〈(DC) jhC, u′/0〉 = 〈hC, B∗

j(u
′ ⊕ lim

n→∞
Δ̃v′n)〉

= 〈BjhC, u′ ⊕ lim
n→∞

Δ̃v′n〉
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Thus, we have

BjhC = (I− M̃M̃∗)(e /0 ⊗ (DC) jhC)⊕ (−Δ̃M̃∗(e /0⊗ (DC) jhC)).

Observe that

Aj(u⊕ lim
n→∞

Δ̃vn) = PHA

(
(Lj ⊗ I)u⊕ lim

n→∞
YjΔ̃vn

)
= ((Lj ⊗ I)u⊕ lim

n→∞
Δ̃(Lj ⊗ I)vn)− (M̃x j ⊕ Δ̃x j)

where each x j ∈ Γ⊗D is defined by

〈((Lj ⊗ I)u− M̃x j)⊕ ( lim
n→∞

Δ̃(Lj ⊗ I)vn− Δ̃x j), (M̃x⊕ Δ̃x)〉 = 0

for x ∈ Γ⊗D . The above equation implies

x j = M̃∗(Lj ⊗ I)u+ lim
n→∞

Δ̃2(Lj ⊗ I)vn

for j = 1, . . . ,d .
Define γ : D∗,A → DC by

γD∗,A(u⊕ lim
n→∞

Δ̃vn) = u /0

for u⊕ lim
n→∞

Δ̃vn ∈HA . It is not difficult to check that B∗
j = (DC)∗jγD∗,A for j = 1, . . . ,d .

Next we prove the following three identities for i, j ∈ {1, . . . ,d} :

(I1) 〈(DE) jhC,(DE)ih′C〉 = 〈M̃∗(e /0⊗ (DC) jhC),M̃∗(e /0⊗ (DC)ih′C)〉 for hC,h′C ∈ HC.

(I2) 〈(DE) jhC,(DE)i(u⊕ lim
n→∞

Δvn)〉 = 〈M̃∗(e /0⊗ (DC) jhC),xi〉 for hC ∈ HC,u⊕
lim
n→∞

Δvn ∈ HA and xi = M̃∗(Li ⊗ I)u+ lim
n→∞

Δ̃2(Li ⊗ I)vn .

(I3) 〈(DE) j(u⊕ lim
n→∞

Δvn),(DE)i(u′ ⊕ lim
n→∞

Δv′n)〉 = 〈x j,x
′
i〉 for u⊕ lim

n→∞
Δvn,u

′ ⊕
lim
n→∞

Δv′n ∈ HA and x′i = M̃∗(Li ⊗ I)u′ + lim
n→∞

Δ̃2(Li ⊗ I)v′n .

Proof of I1:

〈(DE) jhC,(DE)ih
′
C〉 = 〈(DE)∗i (DE) jhC,h′C〉 = 〈(δi jI−E∗

i E j)hC,h′C〉
= 〈δi jIhC,h′C〉− 〈EjhC,Ejh

′
C〉 = 〈δi j IhC,h′C〉− 〈CjhC ⊕BjhC,Cjh

′
C ⊕Bjh

′
C〉

= 〈δi jIhC,h′C〉− 〈C∗
i CjhC,h′C〉− 〈B∗

i B jhC,h′C〉
= 〈(δi jI−C∗

i Cj)hC,h′C〉− 〈(DC)∗i γD∗,AB jhC,h′C〉
= 〈(DC)∗i (DC) jhC,h′C〉
− 〈γD∗,A

(
(I− M̃M̃∗)(e /0 ⊗ (DC) jhC)⊕ (−Δ̃M̃∗(e /0 ⊗ (DC) jhC))

)
,(DC)ih

′
C〉

= 〈(DC)∗i (DC) jhC,h′C〉− 〈(DC)∗i (DC) jhC,h′C〉
+ 〈Pe /0⊗DCM̃M̃∗(e /0 ⊗ (DC) jhC),e /0 ⊗ (DC)ih

′
C〉

= 〈M̃∗(e /0 ⊗ (DC) jhC),M̃∗(e /0 ⊗ (DC)ih
′
C)〉.
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Proof of I2:

〈(DE) jhC,(DE)i(u⊕ lim
n→∞

Δvn)〉 = 〈(DE)∗i (DE) jhC,u⊕ lim
n→∞

Δvn〉
= 〈(δi j I−E∗

i E j)hC,(u⊕ lim
n→∞

Δvn)〉 = −〈EjhC,Ei(u⊕ lim
n→∞

Δvn)〉
= −〈CjhC ⊕BjhC,Ai(u⊕ lim

n→∞
Δvn)〉 = −〈hC,B∗

jAi(u⊕ lim
n→∞

Δvn)〉
= −〈hC,(DC)∗jγD∗,A

(
((Li ⊗ I)u− M̃xi)⊕ ( lim

n→∞
Δ̃(Li ⊗ I)vn− Δ̃xi)

)〉
= 〈e /0 ⊗ (DC) jhC,Pe /0⊗DCM̃xi〉 = 〈M̃∗(e /0 ⊗ (DC) jhC),xi〉.

Proof of I3:

〈(DE) j(u⊕ lim
n→∞

Δvn),(DE)i(u′ ⊕ lim
n→∞

Δv′n)〉
= 〈(δi j I−E∗

i E j)(u⊕ lim
n→∞

Δvn),u′ ⊕ lim
n→∞

Δv′n〉
= 〈(δi j I−A∗

i A j)(u⊕ lim
n→∞

Δvn),u′ ⊕ lim
n→∞

Δv′n〉
= 〈δi jI(u⊕ lim

n→∞
Δ̃vn)−A∗

i A j(u⊕ lim
n→∞

Δ̃vn),u′ ⊕ lim
n→∞

Δv′n〉
= 〈δi jI(u⊕ lim

n→∞
Δ̃vn)−A∗

i

(
((Lj ⊗ I)u− M̃x j)⊕ ( lim

n→∞
Δ̃(Lj ⊗ I)vn− Δ̃x j)

)
,u′ ⊕ lim

n→∞
Δv′n〉

= 〈δi jI(u⊕ lim
n→∞

Δ̃vn)− [((L∗
i L j ⊗ I)u− (L∗

i ⊗ I)M̃x j)⊕ (Y ∗
i ( lim

n→∞
Δ̃(Lj ⊗ I)vn− Δ̃x j))],

u′ ⊕ lim
n→∞

Δv′n〉
= 〈(L∗

i ⊗ I)M̃x j ⊕Y ∗
i Δ̃x j,u

′ ⊕ lim
n→∞

Δv′n〉
= 〈x j,M̃

∗(Li ⊗ I)u′+ lim
n→∞

Δ̃2(Li ⊗ I)v′n〉 = 〈x j,x
′
i〉.

Using I1, I2 and I3 we conclude that for i, j ∈ {1, . . . ,d}
〈(DE) j(hC ⊕ (u⊕ lim

n→∞
Δvn)),(DE)i(h′C ⊕ (u′ ⊕ lim

n→∞
Δv′n))〉

= 〈M̃∗(e /0 ⊗ (DC) jhC)+ x j,M
∗(e /0⊗ (DC)ihC)+ x′i〉. (11)

It follows that there exist an isometry ν : DE → D defined by

ν(DE(h1, . . . ,hd)) = M̃∗(e /0 ⊗DC(hC
1 , . . . ,hC

d ))+
d

∑
j=1

x j

where h j = hC
j ⊕ (u j ⊕ lim

n→∞
Δvn, j) ∈ HE ,hC

j ∈ HC,u j ⊕ lim
n→∞

Δvn, j ∈ HA and x j =

M̃∗(Lj ⊗ I)u j + lim
n→∞

Δ̃2(Lj ⊗ I)vn, j for j = 1, . . . ,d .

We claim that ν : DE → D is surjective. To prove this claim it is enough to show

e /0⊗D = M̃∗(e /0⊗DC)∨{M̃∗(Lj ⊗ I)u+ lim
n→∞

Δ̃2(Lj ⊗ I)vn :

u⊕ lim
n→∞

Δ̃vn ⊥ M̃x⊕ Δ̃x for all x ∈ Γ⊗D , j = 1, . . . ,d}, (12)
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because the space on the R.H.S. is already contained in the Range ν . Let f ∈ D be
such that

e /0⊗ f ⊥ M̃∗(e /0⊗DC)∨{M̃∗(Lj ⊗ I)u+ lim
n→∞

Δ̃2(Lj ⊗ I)vn : u ∈ Γ⊗DC,vn ∈ Γ⊗D ,

u⊕ lim
n→∞

Δ̃vn ⊥ M̃x⊕ Δ̃x for all x ∈ Γ⊗D , j = 1, . . . ,d}.

Clearly e /0 ⊗ f ⊥ M̃∗(e /0⊗DC) implies

Pe /0⊗DCM̃(e /0⊗ f ) = 0. (13)

For u⊕ limn→∞ Δ̃vn ⊥ {M̃x⊕ Δ̃x for all x ∈ Γ⊗D} and j = 1, . . . ,d we also obtain

〈(L∗
j ⊗ I)M̃(e /0 ⊗ f )⊕Y∗

j Δ̃(e /0 ⊗ f ), u⊕ lim
n→∞

Δ̃vn〉
= 〈(L∗

j ⊗ I)M̃(e /0 ⊗ f ), u〉+ 〈Y∗
j Δ̃(e /0 ⊗ f ), lim

n→∞
Δ̃vn〉

= 〈e /0 ⊗ f , M̃∗(Lj ⊗ I)u+ lim
n→∞

Δ̃YjΔ̃vn〉
= 〈e /0 ⊗ f , M̃∗(Lj ⊗ I)u+ lim

n→∞
Δ̃2(Lj ⊗ I)vn〉 = 0. (14)

But for j = 1, . . . ,d and x ∈ Γ⊗D we observe that

〈(L∗
j ⊗ I)M̃(e /0⊗ f )⊕Y∗

j Δ̃(e /0 ⊗ f ),M̃x⊕ Δ̃x〉
= 〈M̃∗(L∗

j ⊗ I)M̃(e /0 ⊗ f )+ (Δ̃Y ∗
j )Δ̃(e /0⊗ f ),x〉

= 〈(L∗
j ⊗ I)(M̃∗M̃ + Δ̃2)(e /0⊗ f ),x〉

= 〈(L∗
j ⊗ I)(e /0⊗ f ),x〉 = 〈0,x〉 = 0. (15)

So from equations (14) and (15) we infer that

(L∗
j ⊗ I)M̃(e /0⊗ f )⊕Y∗

j Δ̃(e /0 ⊗ f ) = 0

for j = 1, . . . ,d. Thus (L∗
j ⊗ I)M̃(e /0 ⊗ f ) = 0 for j = 1, . . . ,d and this together with

equation (13) imply that M̃(e /0 ⊗ f ) = 0, i.e., Θ̃(e /0 ⊗ f ) = 0. Since Θ̃ is an injective
map, it follows that f = 0. So equation (12) holds and ν is surjective. Hence, ν is
unitary.

Finally we claim that ΘC,E = Θ̃ν. For hC ∈ HC and j = 1, . . . ,d

e /0⊗ [(DC) jhC − γD∗,AB jhC]
= e /0⊗ [(DC) jhC − γD∗,A

(
(I− M̃M̃∗)(e /0 ⊗ (DC) jhC)⊕ (−Δ̃M̃∗(e /0⊗ (DC) jhC))

)
]

= Pe /0⊗DCM̃M̃∗(e /0 ⊗ (DC) jhC) = Pe /0⊗DCΘ̃ν((DE) jhC) (16)

where last equality of the above equation array follows from the definition of ν . For
α ∈ Λ̃ with |α| � 1

eα ⊗ γD∗,A(Aα)∗BjhC

= eα ⊗ γD∗,A(Aα)∗
(
(I− M̃M̃∗)(e /0⊗ (DC) jhC)⊕ (−Δ̃M̃∗(e /0⊗ (DC) jhC))

)
= eα ⊗ γD∗,A

(
(L∗

α ⊗ I)(I− M̃M̃∗)(e /0⊗ (DC) jhC)⊕ (−Y∗
α Δ̃M̃∗(e /0 ⊗ (DC) jhC))

)
= −Peα⊗DCM̃M̃∗(e /0 ⊗ (DC) jhC) = −Peα⊗DCΘ̃ν((DE) jhC). (17)
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Combining equations (3), (16) and (17) we obtain

ΘC,E((DE) jhC) = Θ̃ν((DE) jhC) (18)

for hC ∈ HC and j = 1, . . . ,d .
It follows from the definition of γ that for j = 1, . . . ,d

e /0⊗ γD∗,AA j(u⊕ lim
n→∞

Δ̃vn) = e /0⊗ γD∗,A
(
((Lj ⊗ I)u− M̃x j)⊕ ( lim

n→∞
Δ̃(Lj ⊗ I)vn− Δ̃x j)

)
= −Pe /0⊗DCM̃x j = −Pe /0⊗DCΘ̃x j

= −Pe /0⊗DCΘ̃ν((DE) j(u⊕ lim
n→∞

Δ̃vn)). (19)

Moreover, for u⊕ lim
n→∞

Δ̃vn ∈ HA and i, j = 1, . . . ,d

(δi jI−A∗
i A j)(u⊕ lim

n→∞
Δ̃vn)

= δi jI(u⊕ lim
n→∞

Δ̃vn)−A∗
i A j(u⊕ lim

n→∞
Δ̃vn)

= δi jI(u⊕ lim
n→∞

Δ̃vn)−A∗
i

(
((Lj ⊗ I)u− M̃x j)⊕ ( lim

n→∞
Δ̃(Lj ⊗ I)vn− Δ̃x j)

)
= δi jI(u⊕ lim

n→∞
Δ̃vn)− [((L∗

i L j ⊗ I)u− (L∗
i ⊗ I)M̃x j)⊕ (Y ∗

i ( lim
n→∞

Δ̃(Lj ⊗ I)vn− Δ̃x j))]

= (L∗
i ⊗ I)M̃x j ⊕Y∗

i Δ̃x j

and so using the definition of γ we deduce that for α ∈ Λ̃ and i, j = 1, . . . ,d

ei ⊗ eα ⊗ γD∗,A(Aα)∗(δi jI−A∗
i A j)(u⊕ lim

n→∞
Δ̃vn)

= ei ⊗ eα ⊗ γD∗,A(Aα)∗((L∗
i ⊗ I)M̃x j ⊕Y∗

i Δ̃x j)
= ei ⊗ eα ⊗ γD∗,A((L∗

αL∗
i ⊗ I)M̃x j ⊕Y ∗

αY ∗
i Δ̃x j)

= Pei⊗eα⊗DCM̃x j = Pei⊗eα⊗DCΘ̃x j

= Pei⊗eα⊗DCΘ̃ν((DE) j(u⊕ lim
n→∞

Δ̃vn)). (20)

Comparing equations (4), (19) and (20) we obtain

ΘC,E((DE) j(u⊕ lim
n→∞

Δ̃vn)) = Θ̃ν((DE) j(u⊕ lim
n→∞

Δ̃vn)) (21)

for u⊕ lim
n→∞

Δ̃vn ∈ HA and j = 1, . . . ,d . This proves the claim that ΘC,E = Θ̃ν. �

Combining Proposition 2 and Theorem 2 we obtain the following:

COROLLARY 1. Suppose C = (C1, . . . ,Cd) is a row contraction on a Hilbert space
HC and M̃ : Γ⊗D → Γ⊗DC is a contractive multi-analytic operator. Then M̃ is
equivalent to the characteristic function for a minimal contractive lifting of C if and
only if the symbol of M̃ is an injective map.
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4. Example

We discuss an example where we do constructions from the previous section for an
injective Schur class function Θ and verify Theorem 2. In this example, the function Θ
which is not an inner function and so the associated lifting obtained here for the given
contraction is not subisometric (cf. Definition 1.1 of [3]).

Let C =
1
2

be a contraction on a Hilbert space HC = C . Assume that D = C .

Set Θ(z) =
z
2

and thus MΘ : H 2 → H 2 is given by MΘ f =
z f
2

=
Mz f
2

where Mz :

H 2 → H 2 is the shift operator. Note that this is the same setting as Example 5.3 of
[4] and we illustrate the new constructions of Section 3 for this example. As noted

there, HA =
{

g⊕
(
− M∗

z g√
3

)
: g ∈ H 2

}
and we obtain the lifting E of C where the

operators B : HC → HA and A : HA → HA are given by

Bα =
√

3
2

α ⊕
⎛
⎝−

M∗
z

(√
3

2 α
)

√
3

⎞
⎠ =

√
3

2
α ⊕0;

A
(
g⊕

(
− M∗

z g√
3

))
= gA ⊕

(
− M∗

z gA√
3

)

where α ∈HC,g⊕
(
− M∗

z g√
3

)
∈HA with g(z)= ∑∞

n=0 gnzn and gA =
3
4
g0z+

∞

∑
n=2

gn−1z
n .

Since

lim
n→∞

∥∥∥(A∗)n
(
g⊕

(
− M∗

z g√
3

))∥∥∥2
= 0,

A is a pure operator and hence it is c.n.c.

For g⊕
(
− M∗

z g√
3

)
∈ HA with g(z) = ∑∞

n=0 gnzn

D2
∗,A

(
g⊕

(
− M∗

z g√
3

))
= (I−AA∗)

(
g⊕

(
− M∗

z g√
3

))

=
(
g0 +

g1

4
z
)
⊕

⎛
⎝−

M∗
z

(
g0 + g1

4 z
)

√
3

⎞
⎠ .

The defect operator D∗,A : HA → HA is given by

D∗,A
(
g⊕

(
− M∗

z g√
3

))
= (g0 +

g1

2
z)⊕

⎛
⎝−

M∗
z

(
g0 + g1

2 z
)

√
3

⎞
⎠ .
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Because

D2
A

(
g⊕

(
− M∗

z g√
3

))
= (I−A∗A)

(
g⊕

(
− M∗

z g√
3

))

=
g0

4
⊕

(
− M∗

z g0√
3

)
=

g0

4
⊕0,

the defect operator DA : HA → HA is given by DA

(
g⊕

(
− M∗

z g√
3

))
=

g0

2
⊕0. Define

a contraction γ : D∗,A → DC by

γD∗,A
(
g⊕

(
− M∗

z g√
3

))
= g0. (22)

Observe that B∗ = DCγD∗,A . We show that γ is resolving. Let g⊕
(
− M∗

z g√
3

)
∈ HA

such that γD∗,A(A∗)n
(
g⊕

(
− M∗

z g√
3

))
= 0 for n � 0. Using the formula of A∗ and

equation (22), we conclude that g = 0. Thus we have

γD∗,A(A∗)n
(
g⊕

(
− M∗

z g√
3

))
= 0 for n � 0 ⇒ D∗,A(A∗)n

(
g⊕

(
− M∗

z g√
3

))
= 0 for n � 0,

i.e., γ is resolving. So by Theorem 1 it follows that E is a minimal contractive lifting
of C . For α ∈ HC we have

‖DEα‖2 = |α|2 −‖Eα‖2 = |α|2 −‖Cα ⊕Bα‖2

= |α|2 − [‖Cα‖2 +‖Bα‖2] = |α|2 −
[ |α|2

4
+

3|α|2
4

]
= 0.

Therefore DE = Span{DE

(
g⊕

(
− M∗

z g√
3

))
: g⊕

(
− M∗

z g√
3

)
∈HA} . It is easy to check

that DE

(
g⊕

(
− M∗

z g√
3

))
= DA

(
g⊕

(
− M∗

z g√
3

))
=

g0

2
which implies Span

{
DE

(
g⊕(

− M∗
z g√
3

))
: g⊕

(
− M∗

z g√
3

)
∈ HA

}
is a one dimensional closed vector subspace. So

DE = Span
{

DE

(
g⊕

(
− M∗

z g√
3

))
: g⊕

(
− M∗

z g√
3

)
∈ HA

}
. Define the unitary operator

ν : DE → D by the relation

ν
(
DE

(
g⊕

(
− M∗

z g√
3

)))
=

g0

2

for g⊕
(
− M∗

z g√
3

)
∈ HA with g(z) = ∑∞

n=0 gnzn .
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For g⊕
(
− M∗

z g√
3

)
∈ HA with g(z) = ∑∞

n=0 gnzn and gA =
3
4
g0z+

∞

∑
n=2

gn−1z
n we

have

ΘC,E(z)
(
DE

(
g⊕

(
− M∗

z g√
3

)))

= −γD∗,AA
(
g⊕

(
− M∗

z g√
3

))
+

∞

∑
n=1

γD∗,A(A∗)n−1(I−A∗A)
(
g⊕

(
− M∗

z g√
3

))
zn

= −γD∗,A
(
gA ⊕

(
− M∗

z gA√
3

))
+ γD∗,A(I−A∗A)

(
g⊕

(
− M∗

z g√
3

))
z

+
∞

∑
n=2

γD∗,A(A∗)n−1(I−A∗A)
(
g⊕

(
− M∗

z g√
3

))
zn

= 0+
g0

4
z+0 = Θ(z)ν

(
DE

(
g⊕

(
− M∗

z g√
3

)))
.

Thus ΘC,E(z) = Θ(z)ν . Hence the symbol ΘC,E is equivalent to Θ .

5. Series representation for characteristic function

We first address the natural question as to when the characteristic function of lifting
is a polynomial.

DEFINITION 4. A row contraction N = (N1, . . . ,Nd) on a Hilbert space H is
called nilpotent if there is an element n ∈ {0,1,2, . . .} such that Nα = 0 for all α ∈ Λ̃
with |α| = n . The order of a nilpotent d -tuple N is the smallest n ∈ {0,1,2, . . .} with
the above mentioned property.

Recall that a pure row isometry is called a row shift.

THEOREM 3. Let C = (C1, . . . ,Cd) be a row contraction on a Hilbert space HC

and E = (E1, . . . ,Ed) be a minimal contractive lifting of C on a Hilbert space HE ⊃
HC . If the symbol ΘC,E for the characteristic function of the lifting E of C is a
polynomial of degree � n where n ∈ {0,1,2, . . .} , then there exist subspaces Hv and
Hnil of HA := HE �HC such that HA = Hv ⊕Hnil and each Aj = PHAE j|HA has
the block matrix representation

A j =
(

S j ∗
0 Nj

)
, i = 1, · · · ,d

where S = (S1, . . . ,Sd) is a row shift on Hv and N = (N1, . . . ,Nd) is a nilpotent row
contraction on Hnil of order � n. In particular, if n = 0 , then Hnil = {0} and Aj =
S j, i = 1, · · · ,d .

Proof. Assume that the symbol ΘC,E for the characteristic function of the mini-
mal contractive lifting E of C is a polynomial of degree � n where n ∈ {0,1,2, . . .} .
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Therefore, the series representation given by equation (4) for ΘC,E(DE) jhA is also a
polynomial of degree � n where hA ∈ HA, j = 1, . . . ,d . Then

γD∗,A(Aα)∗PiDA = 0, for |α| � n � 0, i = 1, . . . ,d

where Pi denotes the orthogonal protection of ⊕d
1HA onto the i-the component of

⊕d
1HA . Since E is the minimal contractive lifting of C , the contraction γ : D∗,A →DC

is a resolving map and A is a c.n.c. tuple. So D∗,A(Aα)∗PiDA = 0, for |α|� n � 0, i =
1, . . . ,d which implies that the characteristic function ΘA for the tuple A (cf. [11]) is
a polynomial of degree � n . Thus, the theorem follows from Theorem 1.1 of [12] on
using the fact that A is c.n.c. �

Though the next theorem is not the converse of the previous theorem, it is a result
in that direction.

THEOREM 4. Let C = (C1, . . . ,Cd) be a contraction on a Hilbert space HC and
E = (E1, . . . ,Ed) be a contractive lifting of C on a Hilbert space HE ⊃ HC . Suppose
HA := HE �HC has the decomposition HA = H1 ⊕H0 ⊕H−1 where H1,H0 and
H−1 are subspaces of HA such that A j := PHAE j|HA has the block matrix represen-
tation

A j =

⎛
⎝S j ∗ ∗

0 Nj ∗
0 0 Wj

⎞
⎠ , j = 1, . . . ,d (23)

where S = (S1, . . . ,Sd) is a row shift on H1,N = (N1, . . . ,Nd) is a nilpotent row con-
traction on H0 of order n for some n∈{0,1,2, . . .} and W = (W1, . . . ,Wd) is a coisom-
etry on H−1 . Then the symbol ΘC,E of the characteristic function of the lifting E of C
is a polynomial of degree � n.

Proof. We assume that A as defined using the lifting E has the form (23). By the
proof of the Theorem 1.2 of [12] it follows that

D∗,A(Aβ )∗PiDA = 0, for |β | � n � 0, i = 1, . . . ,d. (24)

The symbol ΘC,E is a polynomial of degree � n if and only if series representations
given by equations (3) and (4) of ΘC,E(DE) jhC and ΘC,E(DE) jhA, resp. are polynomi-
als of degree � n where hC ∈ HC,hA ∈ HA, j = 1, . . . ,d . Using equation (24) it easy
to see that the series representation of ΘC,E(DE) jhA is a polynomial of degree � n
for hA ∈ HA, j = 1, . . . ,d. To prove that the series representation of ΘC,E(DE) jhC is a
polynomial of degree � n for hC ∈ HC, j = 1, . . . ,d, it is enough to show that

γD∗,A(Aα)∗Bi = 0 for |α| � n+1, i = 1, . . . ,d.

Here B∗
i = (DC)iγD∗,A where (DC)i : HC →⊕d

1HC is defined by

(DC)ihC = DC(0, . . . ,hC, . . . ,0)
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with hC ∈ HC embedded at ith place. Note that

A∗
i D

2
∗,A = PiD

2
AA∗, i = 1, . . . ,d.

For any α ∈ Λ̃ with |α|� n+1, there exist β ∈ Λ̃ with |β | � n and α = jβ for some
j ∈ {1, . . . ,d}. Therefore, from equation (24) we have

0 =D∗,A(Aβ )∗PjD
2
AA∗ = D∗,A(Aβ )∗A∗

jD
2
∗,A = D∗,A(AjAβ )∗D2

∗,A =

=D∗,A(Aα)∗D2
∗,A = D∗,A(Aα)∗D∗,A.

The last equality in the above equation array follows using the fact that orthogonal
complement of kerD∗,A is D∗,A . Hence

γD∗,A(Aα)∗Bj = γD∗,A(Aα)∗D∗,Aγ∗(DC)∗j = 0.

Thus, we have shown that

γD∗,A(Aα)∗Bi = 0 for |α| � n+1, i = 1, . . . ,d. �

Let C be a row contraction on a Hilbert space HC. Let ΘC,E be the symbol of
the characteristic function of a contractive lifting E of C by A on a Hilbert space
HE = HC ⊕HA. For i ∈ {1, . . . ,d}, the element ΘC,E(DE)ih has two different series
expansion, namely those given by equations (3) and (4) for h∈HC and h ∈HA, resp..
It is always preferable to have a single series expansion for ΘC,E(DE)ih for all h ∈HE

for carrying out further investigation about the properties of ΘC,E . In the next theorem
we establish a single series expansion for the characteristic function of the lifting E.

THEOREM 5. Let E be a contractive lifting of a row contraction C by A and
ΘC,E denote the symbol of the characteristic function of the lifing E. Set

C̃ :=
d

∑
j=1

(DC) jPHCE∗
j : HE → DC, D̃ :=

d

∑
j=1

(DC) jPHC(DE)∗j : DE → DC

where PHC be the orthogonal projection of HE on to HC . Then for h ∈ HE and
i = 1, . . . ,d

(I⊗D2
C)ΘC,E(DE)ih = e /0⊗ D̃(DE)ih+ ∑

β∈Λ̃, j=1,...,d

e j ⊗ eβ

⊗C̃PHA(Eβ )∗(DE)∗j(DE)ih (25)

where PHA is the orthogonal projection of HE on to HA .

Proof. For hA ∈ HA we obtain

C̃hA =
d

∑
j=1

(DC) jPHCE∗
j hA =

d

∑
j=1

(DC) jPHC(B∗
jhA ⊕A∗

jhA)

=
d

∑
j=1

(DC) jB
∗
j hA = DCB∗hA = D2

CγD∗,AhA. (26)
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We consider two cases:

Case 1. For hC ∈ HC and i = 1, . . . ,d

D̃(DE)ihC =
d

∑
j=1

(DC) jPHC(DE)∗j(DE)ihC =
d

∑
j=1

(DC) jPHC(δi jI−E∗
j Ei)hC

= (DC)ihC − ( d

∑
j=1

(DC) jPHCE∗
j

)
EihC = (DC)ihC − C̃EihC

= (DC)ihC − C̃(CihC ⊕BihC) = (DC)ihC − C̃CihC − C̃BihC

= (DC)ihC − (
d

∑
j=1

(DC) jPHCE∗
j )CihC − C̃BihC

= (DC)ihC −
d

∑
j=1

(DC) jC
∗
jCihC − C̃BihC

=
d

∑
j=1

(DC) j(δi jhC −C∗
jCihC)− C̃BihC (27)

Observe that

D2
C(DC)ihC = D2

CDC(0, . . . ,hC, . . . ,0) = DCD2
C(0, . . . ,hC, . . . ,0)

= DC(−C∗
1CihC, . . . ,(I−C∗

i Ci)hC, . . . ,−C∗
dCihC)

=
d

∑
j=1

(DC) j(δi jhC −C∗
jCihC) (28)

for i = 1, . . . ,d . From equations (26), (27) and (28) it follows that

D̃(DE)ihC = D2
C[(DC)ihC − γD∗,ABihC] (29)

for hC ∈ HC and i = 1, . . . ,d .

Further, for i, j = 1, . . . ,d and β ∈ Λ̃ we have:

C̃PHA(Eβ )∗(DE)∗j(DE)ihC

= C̃PHA(Eβ )∗(δi jI−E∗
j Ei)hC = −C̃PHA(Eβ )∗E∗

j EihC

= −C̃PHA(Eβ )∗((C∗
jCi +B∗

jBi)hC ⊕A∗
jBihC)

= −C̃[PHA(Eβ )∗(C∗
jCi +B∗

jBi)hC +PHA(Eβ )∗A∗
jBihC]

= −C̃[0+(Aβ )∗A∗
jBihC]

= −D2
CγD∗,A(Ajβ )∗BihC (30)
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where last equality follows from equation (26). Combining the equations (4), (29) and
(30) we conclude that for i = 1, . . . ,d

(I⊗D2
C)ΘC,E(DE)ihC

= e /0⊗D2
C[(DC)ihC − γD∗,ABihC]− ∑

|α |�1

eα ⊗D2
CγD∗,A(Aα)∗BihC

= e /0⊗D2
C[(DC)ihC − γD∗,ABihC]− ∑

β∈Λ̃, j=1,...,d

e j ⊗ eβ ⊗D2
CγD∗,A(Ajβ )∗BihC

= e /0⊗ D̃(DE)ihC + ∑
β∈Λ̃, j=1,...,d

e j ⊗ eβ ⊗ C̃PHA(Eβ )∗(DE)∗j(DE)ihC.

Case 2: For hA ∈ HA and i = 1, . . . ,d we have

D̃(DE)ihA =
d

∑
j=1

(DC) jPHC(DE)∗j (DE)ihA

=
d

∑
j=1

(DC) jPHC(δi jI−E∗
j Ei)hA = −( d

∑
j=1

(DC) jPHCE∗
j

)
EihA

= −C̃AihA = −D2
CγD∗,AAihA (31)

where last equality follows from equation (26). Also for i, j = 1, . . . ,d and β ∈ Λ̃, we
have

C̃PHA(Eβ )∗(DE)∗j(DE)ihA = C̃PHA(Eβ )∗(δi j I−E∗
j Ei)hA

= C̃(δi jPHA(Eβ )∗hA−PHA(Eβ )∗E∗
j EihA)

= C̃(δi j(Aβ )∗hA − (Aβ )∗A∗
jAihA)

= C̃(Aβ )∗(δi jI−A∗
jAi)hA

= D2
CγD∗,A(Aβ )∗(δi j I−A∗

jAi)hA (32)

where last equality follows from equation (26). Finally, equations (4), (31) and (32)
yield for i = 1, . . . ,d

(I⊗D2
C)ΘC,E(DE)ihA

= −e /0⊗D2
CγD∗,AAihA + ∑

β∈Λ̃, j=1,...,d

e j ⊗ eβ ⊗D2
CγD∗,A(Aβ )∗(δi j I−A∗

jAi)hA

= e /0⊗ D̃(DE)ihA + ∑
β∈Λ̃, j=1,...,d

e j ⊗ eβ ⊗ C̃PHA(Eβ )∗(DE)∗j(DE)ihA,

and this proves the theorem. �
As an application of the series representation obtained in Theorem 5 we show

that certain expression involving the characteristic function of any contractive lifting
can be realised as a transfer function of a linear system. Let C be a row contraction
on a Hilbert space HC. Let ΘC,E be the symbol of the characteristic function of a
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contractive lifting E of C by A on a Hilbert space HE = HC ⊕HA. Let C̃ and D̃ be
defined as in Theorem 5. Define a colligation of operators (cf. [2]) by

CC,E :=

⎛
⎜⎜⎜⎝

E∗
1 (DE)∗1
...

...
E∗

d (DE)∗d
C̃PHA D̃

⎞
⎟⎟⎟⎠ : HE ⊕DE →

d⊕
j=1

HE ⊕DC.

From the colligation CC,E we get the following Λ̃-linear system ∑C,E :

x( jα) = E∗
j x(α)+ (DE)∗j u(α), (33)

y(α) = C̃PHAx(α)+ D̃u(α) (34)

where j = 1, . . . ,d and α, jα are words in Λ̃ , and

x : Λ̃ → HE , u : Λ̃ → DE , y : Λ̃ → DC.

This Λ̃-linear system is a noncommutative Fornasini-Marchesini system (cf. [1]). In
this Λ̃ -linear system, u takes values in the input space DE and y takes values in the
output space DC . Let z = (z1, . . . ,zd) be a d -tuple of formal noncommuting indeter-
minates. Define the Fourier transforms of x,u and y as

x̂(z) = ∑
α∈Λ̃

x(α)zα , û(z) = ∑
α∈Λ̃

u(α)zα and ŷ(z) = ∑
α∈Λ̃

y(α)zα

respectively where zα = zαn . . . zα1 for α = αn . . .α1 ∈ Λ̃ . Suppose that z-variables
commute with the coefficients of equations (33) and (34). Then, the input-output rela-
tion

ŷ(z) = ϒC,E(z)û(z)

is obtained on assuming x( /0) := 0 with

ϒC,E(z) := ∑
α∈Λ̃

ϒ(α)
C,Ezα := D̃+ C̃PHE ∑

β∈Λ̃, j=1,...,d

(Eβ )∗(DE)∗j z
β j. (35)

Here β = β1 . . .βn is the reverse of β = βn . . .β1 ∈ Λ̃. The formal noncommutative
power series ϒC,E is called the transfer function associated to the colligation matrix
CC,E .

For y(α)∈Y with ∑α∈Λ̃ ‖y(α)‖2 < ∞ , the series ∑α∈Λ̃ y(α)zα stands for a series
converging to an element of �2(Λ̃,Y ) . Define unitaries M̃ : �2(Λ̃,DC) → F ⊗DC and
Φ : (DE)z /0 → e /0⊗DE by

M̃
(

∑
α∈Λ̃

yαzα)
:= ∑

α∈Λ̃
eα ⊗ yα and Φ(uz /0) := e /0 ⊗u.

It follows that
M̃ϒC,E(z) = (I⊗D2

C)ΘC,EΦ̃.
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Hence, (I⊗D2
C)ΘC,E is identifiable with the transfer function ϒC,E which is associated

with the colligation matrix CC,E .
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[2] J. BALL AND V. VINNIKOV,Lax-Phillips scattering and conservative linear systems: a Cuntz-algebra
multidimensional setting, Mem. Amer. Math. Soc., 178 (2005).

[3] S. DEY AND R. GOHM, Characteristic functions of liftings, J. Operator Theory, 65 (2011), 17–45.
[4] S. DEY, R. GOHM AND K. J. HARIA, Functional models and minimal contractive liftings, Complex

Analysis and Operator Theory, 9 (2015), 933–955.
[5] S. DEY, K. J. HARIA, Generalized repeated interaction model and transfer functions. Opera-

tor theory in harmonic and non-commutative analysis, 111–135, Oper. Theory Adv. Appl., 240,
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