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SEMIGROUPS OF TRUNCATED TOEPLITZ OPERATORS

AMEUR YAGOUB AND MOHAMED ZARRABI

(Communicated by S. McCullough)

Abstract. We characterise the one parameter families of truncated Toeplitz operators that are
semigroups, uniformly continuous semigroups and C0 -semigroups of contractions. We also
study their generators.

1. Introduction

Let L2 denote the Lebesgue space of square integrable functions on the unit circle
T and let H2 be the classical Hardy space on the unit disk D . The model spaces are
the closed invariant subspaces for the backward shift operator S∗ on H2 . These spaces
are of the form Ku := H2 � uH2 , where u is an inner function. Truncated Toeplitz
operators are compressions of multiplication operators to the spaces Ku . Let Pu be the
orthogonal projection from L2 onto the subspace Ku . The truncated Toeplitz operator
with symbol ϕ ∈ L2 is defined by Au

ϕ( f ) = Pu(ϕ f ) , on the dense subspace Ku ∩L∞

of Ku . The symbol ϕ is never unique. In [10] Sarason explored truncated Toeplitz
operators, thus generating a huge interest in this class of operators (see [1, 7, 13, 14]).

The purpose of this paper is to investigate the semigroups of truncated Toeplitz
operators and their generators. Our interest in this subject comes from the works of
Suárez ([18]), Seubert ([15, 16, 17]) and Sarason ([11]).

Let Su denote the compressed shift on Ku defined by Su( f ) = Pu(z f ) . In [18],
Suárez characterised the closed densely defined operators on Ku that commute with
S∗u . Sarason completed the Suárez result in [11], by showing that the closed densely
defined operators on Ku commuting with Su are the truncated Toeplitz operators with
symbols in a certain local Smirnov class related to u (see section 6).

Seubert characterised in [17] the dissipative closed and densely defined operators
on Ku that commute with S∗u . Such operators are the generators of semigroups of
contractions commuting with S∗u which are also described by Seubert in [17]. It is
shown that all these operators are TTOs.

In the present paper we establish a necessary and sufficient condition for a family
of truncated Toeplitz operators to be a semigroup, then a uniformly continuous semi-
group, and finally a C0 -semigroup of contractions. The proofs involve the Sedlock
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classes introduced in [13, 14], the Seubert result cited above and the Crofoot transform
(a unitary operator between different model spaces).

The paper is organised as follows. The next section contains preliminary material
concerning model spaces and truncated Toeplitz operators. In section 3 we introduce
the Sedlock classes. Section 4 and section 5 are respectively devoted to semigroups and
to uniformly continuous semigroups of truncated Toeplitz operators. The last section is
dedicated to C0 -semigroups of contractions.

2. Preliminaries

Let D be the open unit disk, T = ∂D the unit circle in C , m = dθ/2π the nor-
malized Lebesgue measure on T , L2 := L2(T,m) the standard Lebesgue space on T

and Ĉ the extended complex plane C∪{∞} . Let H2 denote the Hardy space on D

and H∞ the space of bounded analytic functions on D . The unilateral shift opera-
tor on H2 is defined by S f (z) = z f (z) . Its adjoint, the backward shift S∗, is given
by S∗ f (z) = ( f (z)− f (0))/z. To each non-constant inner function u we associate the
model space

Ku := H2�uH2.

The model space Ku is a reproducing kernel Hilbert space of holomorphic functions
and the reproducing kernel at λ ∈ D is given by

Ku
λ (z) =

1−u(λ )u(z)
1−λz

, z ∈ D. (2.1)

If u has an angular derivative at ζ ∈ T in the sense of Caratheodory then each function
f in Ku admits a nontangential limit f (ζ ) at ζ . In this case the function

Ku
ζ (z) =

1−u(ζ )u(z)

1− ζz
, z ∈ D (2.2)

belongs to Ku and is a reproducing kernel at ζ .
The space Ku carries the natural conjugation

C f = f̃ := uz f (2.3)

which is a bijection from Ku to itself. And a computation shows that

K̃u
λ (z) =

u(z)−u(λ )
z−λ

, z ∈ D, λ ∈ D. (2.4)

The compression of S to Ku will be denoted by Su . Its adjoint, S∗u , is the restric-
tion of S∗ to Ku . Let Pu be the orthogonal projection Pu : L2 →Ku . For each function
ϕ in L2 the corresponding truncated Toeplitz operator (TTO) Au

ϕ is the densely defined
operator on Ku given by the formula

Au
ϕ f = Pu(ϕ f ), f ∈ K ∞

u := Ku∩H∞.
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Let Tu denote the set of all bounded TTOs on Ku . Much is known about these opera-
tors (see the Sarason paper [10] for a detailed discussion) but we list a few interesting
and useful facts below:

1. The operators Su and S∗u are the TTOs with symbols z and z , respectively.

2. The operator C : f → f̃ defines an isometric, anti-linear, involution on Ku for
which CAu

ϕC = (Au
ϕ)∗ = Au

ϕ , whenever ϕ ∈ L2 and Au
ϕ ∈ Tu . This makes Tu a

collection of complex symmetric operators [6, 10].

3. If λ ∈ D , then

SuK̃u
λ = λ K̃u

λ −u(λ )Ku
0 and S∗uK

u
λ = λKu

λ −u(λ )K̃u
0

and if λ ∈ D\ {0} , then

SuK
u
λ =

1

λ
(Ku

λ −Ku
0 ) and S∗uK̃u

λ =
1

λ
(K̃u

λ − K̃u
0 ).

4. We have I−SuS∗u = Ku
0 ⊗Ku

0 and I−S∗uSu = K̃u
0 ⊗ K̃u

0 .

Note that for f ,g ∈ Ku , we let f ⊗g be the rank one operator defined by ( f ⊗g)(h) =
〈h,g〉 f , for h ∈ Ku .

By [10], Theorem 5.1, Tu is not an algebra of operators but it contains some
algebras of interest. For example {Au

Φ : Φ ∈ H∞}, the set of holomorphic TTOs on
Ku , and {Au

Φ : Φ ∈ H∞}, the corresponding set of antiholomorphic TTOs. By Sarason
[10], the algebra of holomorphic TTOs is the commutant of the compressed shift Su

on Ku , and the algebra of antiholomorphic TTOs is the commutant of S∗u . In the next
section we consider other interesting algebras contained in Tu .

3. Sedlock algebras

Studying the product of TTOs, Sedlock introduced the following classes depend-
ing on the parameter α ∈ Ĉ by

Bα
u = {Au

ϕ+αSuϕ̃+c
∈ Tu,ϕ ∈ Ku,c ∈ C}, if α ∈ C,

and
B∞

u = {Au
Φ : Φ ∈ H∞}.

These classes are closely linked to the modified compressed shift defined for α ∈ D by:

Sα
u = Su +

α
1−αu(0)

Ku
0 ⊗ K̃u

0 . (3.1)

For α ∈ T , Sα
u is the so-called Clark unitary operator [2, 10] and its spectral measure

is the Clark measure μα defined by the following formula

ℜ
(

α +u(z)
α −u(z)

)
=

∫
T

1−|z|2
|ζ − z|2 dμα(ζ ), z ∈ D.
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For A ∈ Tu , we denote by {A}′ the commutant of A . In the following theorem,
we summarize the main properties of the classes Bα

u and their links to Sα
u .

THEOREM 3.2. ([14]) Let u be an inner function.

1. If α ∈ T , Sα
u is a unitary operator and

Bα
u = {Sα

u }′ = {Φ(Sα
u ),Φ ∈ L∞(μα)} ,

where μα is the Clark measure. Each operator in Bα
u is unitarily equivalent to

a multiplication operator MΦ on L2(μα) induced by a function Φ ∈ L∞(μα) .

2. If α ∈ D , Sα
u is a completely non-unitary operator and

Bα
u = {Sα

u }′ =
{

Ψ(Sα
u ) = Au

Ψ
1−αu

,Ψ ∈ H∞
}

.

Moreover the characteristic function of Sα
u is uα = α−u

1−αu .

3. If α ∈ Ĉ\D , then Bα
u = {(S1/α

u )∗}′ and the elements of Bα
u may be described

as
Ψ∗(S1/α

u )∗ = Au
αΨ
α−u

, Ψ ∈ H∞,

where Ψ∗(z) = Ψ(z) .

4. If A,B ∈ Tu , then AB ∈ Tu if and only if one of two cases holds:

(a) A or B is equal to cI for some c ∈ C .

(b) A,B ∈ Bα
u for some α ∈ Ĉ .

In the last case we also have AB ∈ Bα
u .

The following proposition gives us a symbol of operators in classes Bα
u .

PROPOSITION 3.3. Let A ∈ Bα
u . Then

1. If |α| � 1 , then ϕ + αSuϕ̃ is a symbol of A, where ϕ = (1−αu(0))−1AKu
0 .

2. If |α| > 1 , then ϕ + αSuϕ̃ + c is a symbol of A, where ϕ = 1
(α−u(0))SuAK̃u

0 and

c = α
(α−u(0))〈AK̃u

0 , K̃u
0 〉 .

3. If α = ∞ , then Suϕ̃ +c is a symbol of A, where ϕ = SuAK̃u
0 and c = 〈AK̃u

0 , K̃u
0 〉 .

Proof. (1) This is Proposition 3.2 in [13].

(2) By Theorem 3.2 (1), A∗ ∈ B
1/α
u and therefore has symbol ψ +(1/α)Suψ̃ ,

where ψ = (1− (1/α)u(0))−1A∗Ku
0 = (1− (1/α)u(0))−1ÃK̃u

0 . Thus (1/α)Suψ̃ + ψ
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is a symbol of A . Define ϕ = (1/α)Suψ̃ = (α − u(0))−1AK̃u
0 . Since CSuC = S∗u and

SuS∗u = I−Ku
0 ⊗Ku

0 , we get

Suϕ̃ = (1/α)SuS̃uψ̃ = (1/α)SuS
∗
uψ = (1/α)(ψ −〈ψ ,Ku

0 〉Ku
0 ).

Thus ψ = αSuϕ̃ + 〈Ku
0 ,ψ〉Ku

0 and then ϕ + αSuϕ̃ + 〈Ku
0 ,ψ〉 is a symbol for A .

(3) We have A∗ ∈ B0
u , so A = (Au

A∗Ku
0
)∗ = Au

A∗Ku
0
. Again, since CSuC = S∗u and

I = SuS∗u +Ku
0 ⊗Ku

0 we obtain A∗ = SuCSuCA∗ +(Ku
0 ⊗Ku

0 )A∗ . Therefore

A∗Ku
0 = SuCSuCA∗Ku

0 + 〈A∗Ku
0 ,Ku

0 〉Ku
0 .

Using that CA∗ = AC , we get

A∗Ku
0 = SuCSuAK̃u

0 + 〈AK̃u
0 , K̃u

0 〉Ku
0

and
A∗Ku

0 = Suϕ̃ + cKu
0 ,

which finishes the proof. �

The next corollary follows immediately from Proposition 3.3. It gives a necessary
and sufficient condition for two TTOs in Sedlock classes to be equal.

COROLLARY 3.4. Let A,B ∈ Bα
u ,α ∈ Ĉ. Then

1. If α ∈ D , then A = B if and only if AKu
0 = BKu

0 .

2. If α ∈ Ĉ\D , then A = B if and only if AK̃u
0 = BK̃u

0 .

4. Semigroups of truncated Toeplitz operators.

For the definitions and properties about semigroups we refer to [9]. Using func-
tional calculus we give a first characterization of semigroups.

PROPOSITION 4.1. Let (Tt)t�0 ⊂ Tu . Then (Tt)t�0 is a semigroup if and only
if there exists α ∈ Ĉ such that for every t � 0 , Tt ∈ Bα

u and one of the following
conditions is satisfied:

1. |α| = 1 and for every t � 0 , there exists Φt ∈ L∞(μα) such that Tt = Φt(Sα
u ) ,

t � 0 , Φ0 = 1 μα -a.e and for all t,s � 0 , ΦtΦs = Φt+s μα -a.e.

2. |α| < 1 and for every t � 0 , there exists Φt ∈ H∞ such that Tt = Φt (Sα
u ) , t � 0

and for all t,s � 0 , the inner function uα divides ΦtΦs −Φt+s and Φ0 −1 .

3. |α|> 1 and for every t � 0 , there exists Φt ∈H∞ such that Tt = Φt(S
1/α
u )∗ , t �

0 , with Φt ∈ H∞ and the inner function u1/α divides ΦtΦs −Φt+s and Φ0−1 .
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Proof. Since for all t,s � 0, TtTs = Tt+s ∈ Tu , by Theorem 3.2 (4) there exists an
α ∈ Ĉ such that for each t � 0, Tt ∈ Bα

u . Then we have the following cases:
(1) If |α| = 1, then Tt = Φt(Sα

u ),t � 0, with Φt ∈ L∞(μα) and ΦtΦs(Sα
u ) =

Φt(Sα
u )Φs(Sα

u ) = Φt+s(Sα
u ) which implies that ΦtΦs = Φt+s μα -a.e. Also T0 =

Φ0(Sα
u ) = I implies that Φ0 = 1 μα -a.e.
(2) If |α|< 1, one should note that if (ΦtΦs−Φt+s)∈H∞ then (ΦtΦs−Φt+s)(Sα

u )
= 0 if and only if uα divides ΦtΦs −Φt+s . This follows from the fact, noted above,
that the characteristic function of Sα

u is uα .
(3) If |α| > 1, then the result follows as in (2) by considering (T ∗

t )t�0 . �
We have also the following characterization of semigroups.

THEOREM 4.2. Let (Tt)t�0 ⊂Tu . Then (Tt)t�0 is a semigroup if and only if there
is α ∈ Ĉ such that for all t � 0 , Tt ∈Bα

u and one of the following condition is satisfied

1. |α| � 1 and for all t,s � 0 ,

Tt+sK
u
0 = TtTsK

u
0 and T0K

u
0 = Ku

0 . (4.3)

2. |α| > 1 and for all t,s � 0 ,

Tt+sK̃u
0 = TtTsK̃u

0 and T0K̃u
0 = K̃u

0 . (4.4)

Proof. Let (Tt)t�0 ⊂ Tu . Suppose that (Tt)t�0 is a semigroup. Then there exists
α ∈ Ĉ such that for every t � 0, Tt ∈ Bα

u . The conditions (4.3) and (4.4) are clearly
satisfied.

For the converse suppose that for every t � 0, Tt ∈ Bα
u with |α| � 1 and that

condition (4.3) is satisfied. Then by Theorem 3.2 (4), TtTs is also in Bα
u , and by

Corollary 3.4 (1), Tt+s = TtTs . Similarly if |α| > 1 and condition (4.4) holds, we
obtain that (Tt)t�0 is a semigroup. �

EXAMPLE 4.5. It is well known that the model space Ku is finite dimensional if
and only if u is a finite Blaschke product. If n is a positive integer and u(z) = zn , then

Kzn = span{1,z,z2, . . . ,zn−1},

Kzn
0 = 1 and K̃zn

0 = zn−1 .

Note that for ϕ(z) = ∑n−1
k�0 ϕ̂(k)zk ∈ Kzn we have Szn ϕ̃ = ∑n−1

k=1 ϕ̂(n− k)zk. Then
it follows from Theorem 4.2 that a family of operators (Tt)t�0 ⊂ Tu is a semigroup if
and only if there exists α ∈ Ĉ such that for every t � 0, Tt ∈ Bα

u and one of the two
cases holds :

(1) α ∈ C and Tt has a symbol of the form

n−1

∑
k�0

ϕ̂t(k)zk + α
n−1

∑
k�1

ϕ̂t(n− k)z−k
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such that
ϕ̂0(0) = 1, ϕ̂0(1) = . . . = ϕ̂0(n−1) = 0

and for all t,s � 0, 0 � k � n−1,

ϕ̂t+s(k) =
k

∑
m=0

ϕ̂t(m)ϕ̂s(k−m)+ α
n−1

∑
m=k+1

ϕ̂t(m)ϕ̂s(n−m+ k).

(2) α = ∞ and Tt has a symbol of the form

n−1

∑
k=0

ϕ̂t(k)z−k

such that
ϕ̂0(0) = 1, ϕ̂0(1) = . . . = ϕ̂0(n−1) = 0,

and for all t,s � 0, 0 � k � n−1,

ϕ̂t+s(k) =
k

∑
m=0

ϕ̂t(m)ϕ̂s(k−m).

5. Uniformly continuous semigroups

We start this section with an elementary result which characterizes the generator
of a semigroup of TTOs.

PROPOSITION 5.1. A bounded operator A on Ku is a generator of a uniformly
continuous semigroup of TTOs if and only if A ∈ Bα

u for some α ∈ Ĉ .

Proof. Let (Tt)t�0 be a uniformly continuous semigroup of TTOs and A its gen-
erator. Then there exists α ∈ Ĉ such that for each t � 0, Tt ∈ Bα

u . Since Bα
u is a

closed algebra and A = limt→0+
Tt−1

t in the operator norm, we get that A ∈ Bα
u .

For the converse suppose that A ∈ Bα
u for some α ∈ Ĉ . Again, since Bα

u is
a closed algebra, for every t � 0, etA ∈ Bα

u . So A is the generator of the TTOs
(etA)t�0 . �

The following theorem characterizes the uniformly continuous semigroups of TTOs.
It gives also the relationship between the symbols of the elements of the semigroup and
the symbol of its generator.

THEOREM 5.2. Let (Tt)t�0 ⊂ Tu be a semigroup of bounded TTOs. Then (Tt)t�0

is uniformly continuous if and only if there exists α ∈ Ĉ such that for every t � 0 ,
Tt ∈ Bα

u and one of the following conditions is satisfied:

1. |α|� 1 , Ψ := 1
1−αu(0)

limt→0+
TtKu

0−Ku
0

t exists in the norm of Ku and the operator

A = Au

Ψ+αSuΨ̃
is bounded.
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2. |α| > 1 , Ψ0 := 1
α−u(0) limt→0+

Tt K̃u
0−K̃u

0
t exists in the norm of Ku and the opera-

tor A = Au

Ψ+αSuΨ̃+c
is bounded, where

Ψ = SuΨ0 and c =
α

(α −u(0))
lim

t→0+

〈Tt K̃u
0 − K̃u

0

t
, K̃u

0

〉
.

3. α = ∞ , Ψ0 := limt→0+
Tt K̃u

0−K̃u
0

t exists in the norm of Ku and the operator A =
Au

SuΨ̃+c
is bounded, where

Ψ = SuΨ0 and c = lim
t→0+

〈Tt K̃u
0 − K̃u

0

t
, K̃u

0

〉
.

In all cases A is the generator of (Tt)t�0 .

Proof. Let (Tt)t�0 be a semigroup of bounded TTOs. Then there exists α ∈ Ĉ

such that for every t � 0, Tt ∈ Bα
u . Suppose that (Tt)t�0 is uniformly continuous with

generator B = limt→0+
Tt−I

t , which is a bounded operator. As Tt−I
t ∈ Bα

u , t � 0, and
Bα

u is closed for the operator norm, B ∈ Bα
u . Then one of the three cases holds:

(1) |α| � 1. In this case we have

BKu
0 = lim

t→0+

TtKu
0 −Ku

0

t
= (1−αu(0))Ψ.

Since B ∈ Bα
u , it follows from Proposition 3.3 (1) that B = Au

Ψ+αSuΨ̃
. This implies in

particular that the operator Au

Ψ+αSuΨ̃
is bounded.

(2) |α|> 1. As in the above case, B∈Bα
u and by Proposition 3.3 (2) ϕ +αSuϕ̃ +

c′ is a symbol of B , where ϕ = 1
(α−u(0))SuBK̃u

0 and c′ = α
(α−u(0))〈BK̃u

0 , K̃u
0 〉 . Since

BK̃u
0 = limt→0+

Tt K̃u
0−K̃u

0
t we see that ϕ = Ψ , c′ = c and B = A .

(3) |α| = ∞ . The proof of this case is similar to the above one.
For the converse suppose that (Tt)t�0 ⊂ Bα

u and that (1) holds. We set ϕt =
1

1−αu(0)
TtKu

0−Ku
0

t . By Proposition 3.3 (1), the function ϕt + αSuϕ̃t is a symbol of Tt−I
t .

Thus for every function f ∈ K ∞
u ,

lim
t→0+

Tt − I
t

f = lim
t→0+

Pu((ϕt + αSuϕ̃t) f )

= Pu((Ψ+ αSuΨ̃) f ) = Au

Ψ+αSuΨ̃
f .

As K ∞
u is dense in Ku , Au

Ψ+αSuΨ̃
is the generator of the semigroup (Tt)t�0 . Since the

generator is bounded (Tt)t�0 is uniformly continuous.
The proofs of cases (2) and (3) are similar to case (1). �
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EXAMPLES 5.3.
(1) Let λ ∈ D and consider the rank one operator A = K̃u

λ ⊗Ku
λ . By [14], Exam-

ple 4.2.12, A is a TTO of type u(λ ) , A = Au
K̃u

λ +u(λ )SuKu
λ
. Then by Proposition 5.1, A

generates a uniformly continuous semigroup of TTOs (etA)t�0 . We have

etA = I + t(K̃u
λ ⊗Ku

λ )+
t2

2!
(K̃u

λ ⊗Ku
λ )2 +

t3

3!
(K̃u

λ ⊗Ku
λ )3 + . . .

= I + t(K̃u
λ ⊗Ku

λ )+
t2

2!
u′(λ )(K̃u

λ ⊗Ku
λ )+

t3

3!
u′(λ )2(K̃u

λ ⊗Ku
λ )+ . . .

If u′(λ ) = 0, then

etA = I + t(K̃u
λ ⊗Ku

λ ),

and if u′(λ ) 
= 0, then

etA = I +
etu′(λ )−1

u′(λ )
(K̃u

λ ⊗Ku
λ ).

Notice that Ku
λ ⊗ K̃u

λ is the adjoint operator of K̃u
λ ⊗Ku

λ . So Ku
λ ⊗ K̃u

λ is the gen-
erator of the uniformly continuous semigroup of TTOs

Tt = I + t(Ku
λ ⊗ K̃u

λ ) if u′(λ ) = 0,

Tt = I +
etu′(λ )−1

u′(λ )
(Ku

λ ⊗ K̃u
λ ) if u′(λ ) 
= 0.

(2) Suppose u has an angular derivative in the sense of Caratheodory at ζ ∈ T ,
that is, the nontangential limit of u and u′ exist in ζ with the limit of u in ζ of module
1. Consider A = Ku

ζ ⊗Ku
ζ . By [14], Example 4.2.12, A is a TTO of type u(ζ ) , with

symbol Ku
ζ +u(ζ )SuK̃u

ζ . We have A2 = Ku
ζ (ζ )A . Since |u′(ζ )| = Ku

ζ (ζ ) = ‖Ku
ζ‖2 
= 0,

we see as in (1) that

etA = I +
et|u′(ζ )| −1
|u′(ζ )| (Ku

ζ ⊗Ku
ζ ).

(3) Let α ∈D and let λ1,λ2, . . . ,λn be n distinct solutions of the equation u(λ ) =
α . Let ϕ = ∑n

j=1 a jK̃u
λ j

, where the a j are complex numbers. Notice that if u is a finite

Blaschke product of order n then {K̃u
λ j

, 1 � j � n} is a basis of Ku and every function

ϕ in Ku has the above form.
We have

A = Au
ϕ+αSuϕ̃

=
n

∑
j=1

a jA
u
K̃u

λ j
+u(λ j)SuKu

λ j

=
n

∑
j=1

a jK̃u
λ j
⊗Ku

λ j
.
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The operators K̃u
λ j
⊗Ku

λ j
are of type u(λ j) = α and for every j,k ,

(K̃u
λ j
⊗Ku

λ j
)(K̃u

λk
⊗Ku

λk
) = δ jku

′(λ j)K̃u
λ j
⊗Ku

λ j
.

Then A generates the semigroup of TTOs

Tt = etA =
n

∏
j=1

e
ta jK̃u

λ j
⊗Ku

λ j

= ∏
j∈M

[
I + ta j(K̃u

λ j
⊗Ku

λ j
)
]
∏
j∈N

[
I +

eta ju′(λ j)−1
u′(λ j)

(K̃λ u
j
⊗Ku

λ j
)

]

= I + t ∑
j∈M

ajK̃u
λ j
⊗Ku

λ j
+ ∑

j∈N

[
eta ju

′(λ j)−1
u′(λ j)

(K̃λ u
j
⊗Ku

λ j
)

]
.

where M = { j, u′(λ j) = 0} and N = { j, u′(λ j) 
= 0} .
(4) Let u be a finite Blaschke product of order n and |α| = 1. Using the fact that

u′ never vanishes on T , the equation u(ζ ) = α has n distinct solutions ζ1,ζ2, . . . ,ζn

which are in the unit circle. The family
{

Ku
ζ j

, 1 � j � n
}

is an orthogonal basis for

Ku . For every ϕ ∈ Ku , ϕ = ∑n
j=1 a jKu

ζ j
, where a j = ϕ(ζ j)

|u′(ζ j)| , and we have

A = Au
ϕ+αSuϕ̃ =

n

∑
j=1

a jA
u

Ku
ζ j

+u(ζ j)SuK̃u
ζ j

=
n

∑
j=1

a jK
u
ζ j
⊗Ku

ζ j
.

Since the operators Ku
ζ j
⊗Ku

ζ j
are of type α and for every j,k ,

(Ku
ζ j
⊗Ku

ζ j
)(Ku

ζk
⊗Ku

ζk
) = δ jk|u′(ζ j)|Ku

ζ j
⊗Ku

ζ j
,

we obtain, as in the above example, that A generates the following semigroup of TTOs:

Tt = I +
n

∑
j=1

[
eta j |u′(ζ j)| −1

|u′(ζ j)| (Ku
ζ j
⊗Ku

ζ j
)

]
.

Using these examples we can now describe all the uniformly continuous semi-
groups of finite Toeplitz matrices.

THEOREM 5.4. Let u(z) = zn and ω = e
2πi
n . The uniformly continuous semi-

groups of TTOs on Ku are:

Tt = I +
1

nrn−1ei(n−1)θ

n−1

∑
j=0

ω j(etc j −1)K̃u
reiθ ω j ⊗Ku

reiθ ω j ,

Tt = I +
1

nrn−1ei(1−n)θ

n−1

∑
j=0

ω j(etc j −1)Ku
reiθ ω j ⊗ K̃u

reiθ ω j ,
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Tt = I +
1
n

n−1

∑
j=0

(etc j −1)(Ku
eiθ ω j ⊗Ku

eiθ ω j ),

Tt = Au
etϕ and Tt = Au

etϕ ,

where 0 < r < 1 , θ ∈ R , (c j)n−1
j=0 ∈ Cn and ϕ ∈ Ku .

Proof. Let (Tt)t�0 be a uniformly continuous semigroup of TTOs on Ku and let
A be its generator. There exists α ∈ Ĉ such that all the operators Tt and A are in Bα

u .
We have one of the following cases:

(1) 0< |α|< 1: We write α = (reiθ )n , with 0< r < 1 and θ ∈R . The solutions of
the equation u(z) = α are λ j = reiθ ω j−1 , j = 1, . . . ,n . The family {K̃u

λ j
, j = 1, . . . ,n}

is a basis of Ku . Therefore A = Au
ϕ+αSuϕ̃

, where ϕ has the form ϕ = ∑n
j=1 a jK̃u

λ j
with

(a j)n
j=1 ∈ Cn . As in Examples 5.3 (3),

Tt = I +
n

∑
j=1

[
eta ju

′(λ j)−1
u′(λ j)

(K̃u
λ j
⊗Ku

λ j
)

]
,

which gives

Tt = I +
1

nrn−1ei(n−1)θ

n−1

∑
j=0

ω j(etc j −1)K̃u
reiθ ω j ⊗Ku

reiθ ω j ,

for some complex numbers c0, . . . ,cn−1 .
(2) 1 < |α| < ∞ : Applying the above case to (T ∗)t�0 , we get that Tt has the form

Tt = I +
1

nrn−1ei(1−n)θ

n−1

∑
j=0

ω j(etc j −1)Ku
reiθ ω j ⊗ K̃u

reiθ ω j .

(3) |α| = 1: Let α = einθ . The solutions of the equation u(z) = α are ζ j =
eiθ ω j−1 , j = 1, . . . ,n . As in Examples 5.3, (4),

Tt = I +
n

∑
j=1

[
eta j |u′(ζ j)| −1

|u′(ζ j)| (Ku
ζ j
⊗Ku

ζ j
)

]
,

which shows that

Tt = I +
1
n

n−1

∑
j=0

(etc j −1)(Ku
eiθ ω j ⊗Ku

eiθ ω j ),

for some complex numbers c0, . . . ,cn−1 .
(4) α = 0: There exists ϕ ∈ Ku such that A = Au

ϕ . Note that ϕ is a bounded

holomorphic function. Therefore Tt = etAu
ϕ = Au

etϕ .
(5) |α| = ∞ : We apply case (4) to (T ∗)t�0 , we get then that Tt = Au

etϕ .
On the other hand it is a straightforward calculation that all the families (Tt)t�0

cited in the theorem are uniformly continuous semigroups �
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6. C0−semigroups

Recall that the Nevanlinna class N is the set of holomorphic functions ϕ = ψ
χ ,

where ψ , χ ∈ H∞ and χ not identically zero.
The Smirnov class N + consists of all members of N having a denominator

that is an outer function. It is well known that each nonzero function ϕ in N + has a
canonical representation, that is a unique expression of the form ϕ = b

a , where a and
b are in H∞ , a is an outer function, a(0) > 0, and |a|2 + |b|2 = 1 almost everywhere
on T .

As defined in [11], the local Smirnov class N +
u consists of all ϕ ∈ N for which

u,χ are relatively prime. Any ϕ ∈ N +
u has a unique canonical representation ϕ = b

va ,
where a,b ∈ H∞ , a is an outer function such that a(0) > 0, |a|2 + |b|2 = 1 almost
everywhere on T , v is inner and GCD(v,b) = GCD(v,u) = 1.

In [11], Sarason extends the definition of Au
ϕ to functions ϕ in N +

u . As observed
in [11], the functional calculus can be used to define these operators: For ϕ ∈N +

u with
the unique canonical representation ϕ = b

va , Au
ϕ = ((va)∗(S∗u))−1b∗(S∗u), where, for a

function ψ holomorphic in D , ψ∗(z) = ψ(z) . Then Au
ϕ is a closed densely defined

operator on Ku . The operator Au
ϕ is defined as the adjoint of Au

ϕ ([12], Lemma 5.4)
and is also the C -transform of Au

ϕ , that is Au
ϕ = CAu

ϕC .
In ([18]) Suárez characterises the closed densely operators on Ku that commute

with Su . This result was completed by Sarason in [12], giving the following theorem.

THEOREM 6.1. ([12]) A closed operator A densely defined in Ku commutes with
Su if and only if A = Au

ϕ for some ϕ ∈ N +
u .

Let α ∈D . The Crofoot operator Uα is the multiplication operator by the function
(1−|α|2)−1/2(1−αu) . It is known that Uα is a unitary operator from Kuα onto Ku ,
where uα = u−α

1−αu (see [4, 10]).

If ϕ is in H∞ we have Au
ϕ

1−αu
= UαAuα

ϕ U−1
α and Au

ϕ
1−αu

= UαAuα
ϕ U−1

α (see [13]).

These formulas yield the following definition.

DEFINITION 6.2. For α ∈ D and ϕ ∈ N +
uα , we set Au

ϕ
1−αu

= UαAuα
ϕ U−1

α and

Au
ϕ

1−αu

= UαAuα
ϕ U−1

α .

The operator Au
ϕ

1−αu
is closed and densely defined with domain D(Au

ϕ
1−αu

) = { f ∈
Ku :U−1

α f ∈D(Auα
ϕ )} . Moreoverwe have (Au

ϕ
1−αu

)∗ = Au
ϕ

1−αu

and (Au
ϕ

1−αu
)∗ =CAu

ϕ
1−αu

C ,

since CUαCuα = Uα , where C = Cu and Cuα are respectively the conjugate operators
on Ku and Kuα . It follows from the equality U−1

α Sα
u Uα = Suα and Theorem 6.1,

that the closed densely defined operators on Ku commuting with Sα
u are the operators

Au
ϕ

1−αu
with ϕ ∈ N +

uα .
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Let now α ∈ T . Then Sα
u is unitarily equivalent to the multiplication operator

Mz( f ) = z f on L2(μα) . Indeed, for f ∈ L2(μα) , let

(Vα f )(z) = (1−αu(z))
∫

f (ζ )

1− ζz
dμα(ζ ).

Then Vα is a unitary operator from L2(μα) onto Ku and we have Sα
u = VαMzV−1

α .
For a measurable function Φ : T → C , the multiplication operator MΦ is defined

by
MΦ f = Φ f , f ∈ D(MΦ) = { f ∈ L2(μα) : Φ f ∈ L2(μα)}.

MΦ is a closed densely defined operator on L2(μα) (see [5], Proposition 4.10, pp. 31).
We set Φ(Sα

u ) = VαMΦV−1
α with domain { f ∈ Ku, V−1

α f ∈ D(MΦ)} . The following
result is probably known, but we have not found a suitable reference.

PROPOSITION 6.3. Let α ∈ T . A closed densely defined operator A on Ku com-
mutes with Sα

u and (Sα
u )∗ if and only if A = Φ(Sα

u ) for some measurable function
Φ : T → C .

Proof. Let B be a densely closed operator on L2(μα) that commutes with Mz

and Mz . Clearly B commutes with MP for every trigonometric polynomial P . Let
Ψ ∈ L∞(μα) . There exists a uniformly bounded sequence of continuous functions on
the support of μα that converges to Ψ , μα -almost everywhere. To see this one can
use a Lusin theorem. By the Tietze-Urysohn extension theorem, these functions can
be considered as continuous functions on T . It follows that there exists a uniformly
bounded sequence of trigonometric polynomials (Pn)n that converges to Ψ , μα -almost
everywhere. For f in D(B) , we obtain by using the dominated convergence theorem

(MPn f ,BMPn f ) = (MPn f ,MPnB f ) → (MΨ f ,MΨB f ), as n → ∞.

Since B is closed we get that MΨ f ∈ D(B) and that BMΨ f = MΨB f , which means
that B commutes with MΨ . On the other side (by [3], Corollary 6.9, p. 279), the
multiplication algebra A = {MΨ, Ψ∈ L∞(μα)} and its commutant coincide. It follows
from ([8], Theorem 5.6.4, pp. 343–344) that B = MΦ for some measurable function
Φ : T → C . Now we finish the proof by applying this result to V−1

α AVα for a closed
densely defined operator A on Ku commuting with Sα

u and (Sα
u )∗ . �

The following result gives a necessary condition on the generators of TTOs semi-
groups.

PROPOSITION 6.4. If A is the generator of a C0 -semigroup of TTOs on Ku then
A has one of the following forms:

1. A = Φ(Sα
u ) for some α ∈ T and a measurable function Φ .

2. A = Au
ϕ

1−αu
for some α ∈ D and some ϕ ∈ N +

uα .
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3. A = Au
αϕ

α−u

for some α ∈ C\D and some ϕ ∈ N +
u1/α

.

4. A = Au
ϕ , for some ϕ ∈ N +

u .

Proof. Let A be the infinitesimal generator of a C0 -semigroup (Tt)t�0 of TTOs
on Ku . There exists α ∈ Ĉ such that all the operators Tt are in Bα

u . For |α| � 1, the
operators Tt commute with Sα

u . This implies that A commutes with Sα
u . If |α|= 1, Sα

u
is unitary, whence normal, and by the Putnam-Fuglede theorem Tt commutes also with
(Sα

u )∗ . Therefore A commute with (Sα
u )∗ . Now cases (1) and (2) are consequences

of Proposition 6.3 and the discussion that follows Definition 6.2. We deduce (3) and
(4) by considering the adjoint operator A∗ which is the generator of the C0 -semigroup
(T ∗

t )t�0 . �

A closed linear map A having domain D(A) dense in a Hilbert space is said to be
dissipative on D(A) if for every x∈D(A) , ℜ(〈Ax,x〉) � 0 for each element f in D(A) .
In [17], Seubert examined closed, densely defined and dissipative operators on Ku that
commute with S∗u . He proved that these operators are of the form AC for functions
C holomorphic in D and satisfying ℜ(C) � 0. Such an operator is the generator of
the contractive semigroup of TTOs (Au

etC )t�0. In the following theorem we describe all
contractive semigroups of TTOs.

THEOREM 6.5. Let (Tt)t�0 be a family of TTOs on Ku . Then (Tt)t�0 is a C0 -
semigroup of contractions if and only if there exists α ∈ Ĉ , an analytic function C on
D with a non-positive real part and a measurable function q on T such that one of
following assertions hold:

1. |α| < 1 and Tt = Au
etC

1−αu

.

2. 1 < |α| < +∞ and Tt = Au
αetC
α−u

.

3. α = ∞ and Tt = Au
etC

.

4. |α| = 1 , esssup
ζ∈T

ℜ(q(ζ )) � 0 and Tt = etq(Sα
u ).

Proof. Let (Tt)t�0 be a C0 -semigroup of contractions TTOs on Ku . Then there
exist α ∈ Ĉ , such that for every t � 0, Tt ∈ Bα

u . We have three cases:
(1) |α| < 1. Then (U−1

α TtUα)t�0 is a C0 -semigroup on Kuα commuting with
Suα . By Theorem 2 of [16], there exits an analytic function C on D with a non-positive
real part such that

U−1
α TtUα = Auα

etC , t � 0.

Therefore
Tt = UαAuα

etCU−1
α = Au

etC
1−αu

.
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Note that in this case the generator of (U−1
α TtUα)t�0 is the operator AC and that of

(Tt)t�0 is Au
C

1−αu
.

(2) 1 < |α| � +∞ . Then T ∗
t commutes with S1/α

u and using the above case we
get

Tt = (T ∗
t )∗ = (Au

etC

1−( u
α )

)∗ = Au
αetC
α−u

with generator Au
αC

α−u

.

(3) α ∈T . Then for every t � 0, V−1
α TtVα is a multiplication operator on L2(μα) ,

since it commutes with the multiplication operator by z (see [3], Corollary 6.9, p.
279). By Proposition 4.11 in [5] there exists a measurable function q on T such that
esssup

ζ∈T

ℜ(q(ζ )) � 0, and

V−1
α TtVα = Metq .

It follows that
Tt = VαMetqV−1

α = etq(Sα
u ).

Since (Tt)t�0 is a semigroup of contractions, esssup
ζ∈T

ℜ(q(ζ )) � 0. Moreover q(Sα
u ) is

the generator of (Tt)t�0 . �
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