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STABILITY OF DETERMINACY AND INVERSE

SPECTRAL PROBLEMS FOR JACOBI OPERATORS

RAFAEL DEL RIO AND LUIS O. SILVA

Abstract. This work studies the interplay between Green functions, the index of determinacy of
spectral measures and interior finite rank perturbations of Jacobi operators. The index of determi-
nacy quantifies the stability of uniqueness of solutions of the moment problem. We give results
on the constancy of this index in terms of perturbations of the corresponding Jacobi operators.
The permanence of the N -extremality of a measure is also studied. A measure μ is N -extremal
when the polynomials are dense in L2(R,μ) . As a by-product, we give a characterization of
the index in terms of cyclic vectors. We consider a new inverse problem for Jacobi operators in
which information on the place where the interior perturbation occurs is obtained from the index
of determinacy.
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Sci. Szeged 1 (1923), 209–225.

[30] M. ROSENBLUM AND J. ROVNYAK, Topics in Hardy classes and univalent functions, Birkhäuser Ad-
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