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ON THE DENSENESS OF MINIMUM ATTAINING OPERATORS

S. H. KULKARNI AND G. RAMESH

Abstract. Let H1,H2 be complex Hilbert spaces and T be a densely defined closed linear oper-
ator (not necessarily bounded). It is proved that for each ε > 0 , there exists a bounded operator
S with ‖S‖ � ε such that T + S is minimum attaining. Further, if T is bounded below, that is
if there exists m > 0 such that ‖Tx‖ � m‖x‖ for every x in the domain of T , then S can be
chosen to be rank one.
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