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LINEAR DIFFERENTIAL OPERATOR WITH AN INVOLUTION

AS A GENERATOR OF AN OPERATOR GROUP

ANATOLY G. BASKAKOV, ILYA A. KRISHTAL AND NATALIA B. USKOVA

Abstract. We use the method of similar operators to study a mixed problem for a differential
equation with an involution and an operator-valued potential function. The differential operator
defined by the equation is transformed into a similar operator that is an orthogonal direct sum
of simpler operators. The result is used to construct an operator group that describes the mild
solutions of the original problem. It may also serve as a justification for the use of the Fourier
method to solve it.
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