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THE MODIFIED PARSEVAL EQUALITY OF STURM–LIOUVILLE

PROBLEMS WITH COUPLED BOUNDARY CONDITION

MU DAN, JIONG SUN, JI-JUN AO AND JUNHUI XIE

(Communicated by F. Gesztesy)

Abstract. We consider the Sturm-Liouville(S-L) problems with coupled boundary condition and
transmission condition. Defining a Hilbert space related to the transmission conditions, we dis-
cuss the S-L problems in this modified Hilbert space. We prove the Parseval equality of the S-L
problems with the transmission conditions in a modified Hilbert space and derive the Green’s
function for these problems.

1. Introduction

Sturm-Liouville (S-L) problems with transmission conditions appear in mathe-
matics, mechanics, physics and in other applications. The S-L problems with trans-
mission conditions are concerned in many publications [2, 4, 10, 13], however they are
only for the S-L problems with the separated boundary conditions. Here we construct
the Green’s function of the S-L problems with coupled boundary condition and trans-
mission condition, and establish the modified Parseval equality of the considered S-L
problems.

The differential equation we considered is

ly := −y′′ +q(x)y = λy, x ∈ J = [−1,0)∪ (0,1], (1.1)

with the coupled boundary condition (CBC)

AY (−1)+Y(1) = 0, Y (±1) =
(

y(±1)
y′(±1)

)
, (1.2)

and the transmission condition (TC)

KY (0−)+Y(0+) = 0, Y (0±) =
(

y(0±)
y′(0±)

)
, (1.3)

where λ is the complex eigenparameter; A,K are 2×2 matrices

A = eiγ
(

α1 α2

α3 α4

)
, K =

(
k11 k12

k21 k22

)
, (1.4)
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with −π � γ � π , α1α4 −α2α3 > 0, k11k22 − k12k21 > 0; and the matrices (A,−I) ,
(K,−I) have full rank, I is the 2 × 2 identity matrix; q ∈ L(J,R). Note that the
conditions are minimal in the sense that it is necessary and sufficient for all initial
value problems of the equation (1.1) to have unique solutions on [−1,1] ([6, 14]); α j

( j = 1,2,3,4) and kmj (m, j = 1,2) are real numbers.
The organization of this paper is as follows: After the Introduction in Section 1,

we give the condition for λ being the eigenvalue of the S-L problem with the CBC
and TC, and the eigenvalues of the S-L problem (1.1)–(1.4) are countably infinite in
Section 2. In Section 3, we construct the Green’s function of the S-L problem with the
CBC and TC. Finally, we derive the eigenfunction expansion for the Green’s function
and establish the modified Parseval equality by using the eigenfunction expansion in
Section 4.

2. The eigenvalues of the S-L operators

In this section, we construct the basic solutions of the equation (1.1), which satisfy
the TC, and characterize the eigenvalues of the S-L problem (1.1)–(1.4).

Let h = detK, where K is the coefficient matrix in the TC (1.3), (1.4). Define a
new inner product in L2(J) as follows:

〈 f ,g〉 = h
∫ 0

−1
f1g1dx+

∫ 1

0
f2g2dx, for f ,g ∈ L2(J), (2.1)

where f1 = f (x) |[−1,0) , f2 = f (x) |(0,1]; h = detK > 0, K is the coefficient matrix
in the TC (1.3), (1.4). It is easy to verify that (L2(J),〈·, ·〉) is a Hilbert space. For
simplicity, we denote it by H, and the norm induced by the inner product is denoted by
‖ · ‖H . Now we consider the S-L problems (1.1)–(1.4) in the associated Hilbert space
H .

The operator LM related to the S-L problems (1.1)–(1.4) is defined by

D(LM) = {y ∈ H|y1,y
′
1 ∈ ACloc[−1,0),y2,y

′
2 ∈ ACloc(0,1], ly ∈ H

and KY (0−)+Y(0+) = 0},

LMy = ly, y ∈ D(LM),

where ACloc[−1,0) and ACloc(0,1] denote the sets of complex-valued absolutely con-
tinuous functions on whole compact subintervals of [−1,0) and (0,1]. The S-L opera-
tor L is defined by

D(L) = { y ∈ D(LM)|AY (−1)+Y(1) = 0},

Ly = ly, y ∈ D(L).

THEOREM 2.1. If the matrices A,K satisfy AEA∗ = hE, KEK∗ = hE, with E =(
0 −1
1 0

)
, then the operator L is self-adjoint.
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Proof. See [5]. �

Below, we consider the S-L problems (1.1)–(1.4) with the conditions

AEA∗ = hE,KEK∗ = hE.

That is, the concerned S-L operator L generated by the S-L problems (1.1)–(1.4) is
self-adjoint. We shall define two fundamental solutions

φ(x,λ ) =
{

φ1(x,λ ), x ∈ [−1,0),
φ2(x,λ ), x ∈ (0,1], and χ(x,λ ) =

{
χ1(x,λ ), x ∈ [−1,0),
χ2(x,λ ), x ∈ (0,1],

of the differential equation (1.1), which satisfy the TC (1.3) through the following pro-
cedure.

At first we consider the initial-value problem

{−y′′ +q1(x)y = λy, x ∈ [−1,0),
y(−1) = 1,y′(−1) = 0.

(2.2)

By virtue of Theorem 1.5 in [11], the problem has a unique solution φ1(x,λ ) for each
λ ∈ C, which is an entire function of λ for each fixed x ∈ [−1,0). Similarly, for the
initial-value problem

{−y′′ +q1(x)y = λy, x ∈ [−1,0),
y(−1) = 0,y′(−1) = 1,

(2.3)

the problem also has a unique solution χ1(x,λ ) which is an entire function of λ for
each fixed x ∈ [−1,0).

The initial-value problem

⎧⎨
⎩

−y′′ +q2(x)y = λy, x ∈ (0,1],
y(0+) = k11φ1(0−,λ )+ k12φ ′

1(0−,λ ),
y′(0+) = k21φ1(0−,λ )+ k22φ ′

1(0−,λ ),
(2.4)

has a unique solution φ2(x,λ ) for each λ ∈ C. Moreover φ2(x,λ ) is an entire function
of λ for each fixed x ∈ (0,1]. Similarly, the initial-value problem

⎧⎨
⎩

−y′′ +q2(x)y = λy, x ∈ (0,1],
y(0+) = k11χ1(0−,λ )+ k12χ ′

1(0−,λ ),
y′(0+) = k21χ1(0−,λ )+ k22χ ′

1(0−,λ ),
(2.5)

also has a unique solution χ2(x,λ ) , which is an entire function of λ for each fixed
x ∈ (0,1]. Obviously, φ(x,λ ) , χ(x,λ ) satisfy the equation (1.1) and the TC (1.3).

It is well known, from the ordinary linear differential equation theory, the Wron-
skian W (φ j(x,λ ), χ j(x,λ )) is independent of the variable x. Let ω j(λ ) :=W (φ j(x,λ ),
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χ j(x,λ )), then we have

ω1(λ ) = ω1(λ )|x=−1 =
∣∣∣∣ φ1(−1,λ ) χ1(−1,λ )
φ ′

1(−1,λ ) χ ′
1(−1,λ )

∣∣∣∣= 1,

ω2(λ ) = ω2(λ )|x=0+ =
∣∣∣∣ φ2(0+,λ ) χ2(0+,λ )
φ ′

2(0+,λ ) χ ′
2(0+,λ )

∣∣∣∣
=
∣∣∣∣ k11φ1(0−,λ )+ k12φ ′

1(0−,λ ) k11χ1(0−,λ )+ k12χ ′
1(0−,λ )

k21φ1(0−,λ )+ k22φ ′
1(0−,λ ) k21χ1(0−,λ )+ k22χ ′

1(0−,λ )

∣∣∣∣= hω1(λ ) = h.

LEMMA 2.2. Let

y(x,λ ) =
{

y1(x,λ ), x ∈ [−1,0),
y2(x,λ ), x ∈ (0,1],

be a solution of the equation (1.1), then the solution can be expressed in the following
form

y(x,λ ) =
{

c1φ1(x,λ )+ c2χ1(x,λ ), x ∈ [−1,0),
d1φ2(x,λ )+d2χ2(x,λ ), x ∈ (0,1]. (2.6)

If y(x,λ ) satisfies the TC (1.3), then c1 = d1 , c2 = d2.

Proof. Since y(x,λ ) satisfies the TC (1.3), namely

k11(c1φ1(0−,λ )+ c2χ1(0−,λ ))+ k12(c1φ ′
1(0−,λ )+ c2χ ′

1(0−,λ ))
− (d1φ2(0+,λ )+d2χ2(0+,λ )) = 0,

k21(c1φ1(0−,λ )+ c2χ1(0−,λ ))+ k22(c1φ ′
1(0−,λ )+ c2χ ′

1(0−,λ ))
− (d1φ ′

2(0+,λ )+d2χ ′
2(0+,λ )) = 0.

From (2.4), (2.5), the last equation system becomes{
(c1 −d1)φ2(0+,λ )+ (c2−d2)χ2(0+,λ ) = 0,
(c1 −d1)φ ′

2(0+,λ )+ (c2−d2)χ ′
2(0+,λ ) = 0.

Since the determinant of the coefficient matrix of the equation system is∣∣∣∣φ2(0+,λ ) χ2(0+,λ )
φ ′

2(0+,λ ) χ ′
2(0+,λ )

∣∣∣∣= ω2(λ ) 	= 0,

we get c1 = d1,c2 = d2. �
Let

Φ j(x,λ ) =
(

φ j(x,λ ) χ j(x,λ )
φ ′

j(x,λ ) χ ′
j(x,λ )

)
, j = 1,2,

and let

Φ(x,λ ) =
{

Φ1(x,λ ), x ∈ [−1,0),
Φ2(x,λ ), x ∈ (0,1]. (2.7)
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THEOREM 2.3. Let λ0 ∈ C. λ0 is an eigenvalue of the S-L problems (1.1)–(1.4)

if and only if Δ(λ0) := det(A−Φ(1,λ0)) = 0, where A = eiγ
(

α1 α2

α3 α4

)
.

Proof. Let λ0 be an eigenvalue of the S-L problems (1.1)–(1.4) and y(x,λ0) be
any corresponding eigenfunction. From Lemma 2.2, there exist c1,c2 such that

y(x,λ0) =
{

c1φ1(x,λ0)+ c2χ1(x,λ0), x ∈ [−1,0),
c1φ2(x,λ0)+ c2χ2(x,λ0), x ∈ (0,1], (2.8)

where at least one of the constants c1,c2 is not zero. Substituting (2.8) into the bound-
ary condition (1.2) we obtain

eiγ
(

α1 α2

α3 α4

)(
c1φ1(−1,λ0)+ c2χ1(−1,λ0)
c1φ ′

1(−1,λ0)+ c2χ ′
1(−1,λ0)

)
−
(

c1φ2(1,λ0)+ c2χ2(1,λ0)
c1φ ′

2(1,λ0)+ c2χ ′
2(1,λ0)

)
= 0

that is, [
eiγ
(

α1 α2

α3 α4

)
−
(

φ2(1,λ0) χ2(1,λ0)
φ ′

2(1,λ0) χ ′
2(1,λ0)

)](
c1

c2

)
= 0.

Since at least one of the constants c1, c2 is not zero, we obtain

Δ(λ0) = det(A−Φ(1,λ0)) = 0, (2.9)

where A = eiγ
(

α1 α2

α3 α4

)
with −π < γ � π and α1α4 −α2α3 > 0.

Conversely, if det(A−Φ(1,λ0)) = 0, then the equation

(A−Φ(1,λ0))
(

d1

d2

)
= 0,

has a nonzero solution (c′1,c
′
2). Let

y(x,λ0) =
{

c′1φ1(x,λ0)+ c′2χ1(x,λ0), x ∈ [−1,0),
c′1φ2(x,λ0)+ c′2χ2(x,λ0), x ∈ (0,1]. (2.10)

Then y(x,λ0) is a nonzero solution of the equation (1.1) and satisfies the boundary and
transmission conditions (1.2), (1.3). Hence λ0 is an eigenvalue of the S-L problems
(1.1)–(1.4), and y(x,λ0) is the corresponding eigenfunction. �

LEMMA 2.4. Let L be the operator defined by the S-L problems (1.1)–(1.4). Then
the eigenvalues of the operator L are countably infinite.

Proof. From Theorem 2.3, the eigenvalues of the S-L problems (1.1)–(1.4) are ze-
ros of the entire function Δ(λ ). Since the S-L operator L generated by the S-L problems
(1.1)–(1.4) is self-adjoint, the eigenvalues of the operator L are real. Then Δ(λ ) 	= 0
for λ ∈ C(ℑλ 	= 0), so Δ(λ ) is not identical to zero for λ ∈ C\R. By the proper-
ties of zeros of the entire function, the eigenvalues of the operator L are countably
infinite. �
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3. Green’s function of the S-L problems

We go on to construct the Green’s function of the S-L operator L generated by
the S-L problems (1.1)–(1.4). Let λ ∈ Ω = {λ ∈ C | Δ(λ ) 	= 0.} and let f ∈ H. We
consider the non-homogeneous differential equation

ly−λy = f (x), x ∈ [−1,0)∪ (0,1], (3.1)

together with the CBC and TC (1.2)–(1.4). We can represent the general solution of the
differential equation ly−λy = f1(x) , x ∈ [−1,0) in the form

y1(x,λ ) = φ1(x,λ )
∫ x

−1
χ1(ξ ,λ ) f1(ξ )dξ − χ1(x,λ )

∫ x

−1
φ1(ξ ,λ ) f1(ξ )dξ (3.2)

+d1φ1(x,λ )+d2χ1(x,λ ),

where f1 = f (x) |[−1,0) and d1,d2 ∈ C. And the general solution of the differential
equation ly−λy = f2(x),x ∈ (0,1] can be represented in the form

y2(x,λ ) =
1
h

φ2(x,λ )
∫ x

0
χ2(ξ ,λ ) f2(ξ )dξ − 1

h
χ2(x,λ )

∫ x

0
φ2(ξ ,λ ) f2(ξ )dξ (3.3)

+ e1φ2(x,λ )+ e2χ2(x,λ ).

where f2 = f (x) |(0,1] and e1,e2 ∈ C. Taking into account the TC (1.3), (1.4) and by
(2.4), (2.5), we obtain

k11y(0−)+ k12y
′(0−)− y(0+) (3.4)

= φ2(0,λ )
∫ 0

−1
χ1(ξ ,λ ) f1(ξ )dξ − χ2(0,λ )

∫ 0

−1
φ1(ξ ,λ ) f1(ξ )dξ +d1φ2(0,λ )

+d2χ2(0,λ )− e1φ2(0,λ )− e2χ2(0,λ ) = 0,

and

k21y(0−)+ k22y
′(0−)− y′(0+) (3.5)

= φ ′
2(0,λ )

∫ 0

−1
χ1(ξ ,λ ) f1(ξ )dξ − χ ′

2(0,λ )
∫ 0

−1
φ1(ξ ,λ ) f1(ξ )dξ +d1φ ′

2(0,λ )

+d2χ ′
2(0,λ )− e1φ ′

2(0,λ )− e2χ ′
2(0,λ ) = 0.

From (3.4), (3.5), we get

e1 = d1 +
∫ 0

−1
χ1(ξ ,λ ) f1(ξ )dξ , e2 = d2−

∫ 0

−1
φ1(ξ ,λ ) f1(ξ )dξ .

Substituting them into (3.3), we obtain

y2(x,λ ) =
1
h

φ2(x,λ )
∫ x

0
χ2(ξ ,λ ) f2(ξ )dξ − 1

h
χ2(x,λ )

∫ x

0
φ2(ξ ,λ ) f2(ξ )dξ (3.6)

+ φ2(x,λ )
∫ 0

−1
χ1(ξ ,λ ) f1(ξ )dξ + χ2(x,λ )

∫ 0

−1
φ1(ξ ,λ ) f1(ξ )dξ

+d1φ2(x,λ )+d2χ2(x,λ ).
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By applying the boundary condition (1.2), we have

α1e
iγy(−1)+ α2e

iγy′(−1)− y(1)
= α1e

iγ(d1φ1(−1,λ )+d2χ1(−1,λ )
)
+ α2e

iγ(d1φ ′
1(−1,λ )

+d2χ ′
1(−1,λ )

)− 1
h

φ2(1,λ )
∫ 1

0
χ2(ξ ,λ ) f2(ξ )dξ +

1
h

χ2(1,λ )
∫ 1

0
φ2(ξ ,λ ) f2(ξ )dξ

−φ2(1,λ )
∫ 0

−1
χ1(ξ ,λ ) f1(ξ )dξ − χ2(1,λ )

∫ 0

−1
φ1(ξ ,λ ) f1(ξ )dξ

−d1φ2(1,λ )−d2χ2(1,λ ) = 0,

and

α3e
iγy(−1)+ α4e

iγy′(−1)− y′(1)
= α3e

iγ(d1φ1(−1,λ )+d2χ1(−1,λ )
)
+ α4e

iγ(d1φ ′
1(−1,λ )

+d2χ ′
1(−1,λ )

)− 1
h

φ ′
2(1,λ )

∫ 1

0
χ2(ξ ,λ ) f2(ξ )dξ +

1
h

χ ′
2(1,λ )

∫ 1

0
φ2(ξ ,λ ) f2(ξ )dξ

−φ ′
2(1,λ )

∫ 0

−1
χ1(ξ ,λ ) f1(ξ )dξ − χ ′

2(1,λ )
∫ 0

−1
φ1(ξ ,λ ) f1(ξ )dξ

−d1φ ′
2(1,λ )−d2χ ′

2(1,λ ) = 0.

And from the values of φ1(−1,λ ),φ ′
1(−1,λ ),χ1(−1,λ ),χ ′

1(−1,λ ) in (2.2), (2.3), the
following equations related to d1, d2 are obtained

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(α1eiγ −φ2(1,λ ))+d2(α2eiγ − χ2(1,λ ))−φ2(1,λ )(
∫ 0
−1 χ1(ξ ,λ ) f1(ξ )dξ

+ 1
h

∫ 1
0 χ2(ξ ,λ ) f2(ξ )dξ )+ χ2(1,λ )(

∫ 0
−1 φ1(ξ ,λ ) f1(ξ )dξ

+ 1
h

∫ 1
0 φ2(ξ ,λ ) f2(ξ )dξ ) = 0,

d1(α1eiγ −φ ′
2(1,λ ))+d2(α2eiγ − χ ′

2(1,λ ))−φ ′
2(1,λ )(

∫ 0
−1 χ1(ξ ,λ ) f1(ξ )dξ

+ 1
h

∫ 1
0 χ2(ξ ,λ ) f2(ξ )dξ )+ χ ′

2(1,λ )(
∫ 0
−1 φ1(ξ ,λ ) f1(ξ )dξ

+ 1
h

∫ 1
0 φ2(ξ ,λ ) f2(ξ )dξ ) = 0.

(3.7)

Since the determinant of the coefficients of the above equations is equal to Δ(λ ), which
is nonzero for λ ∈ Ω, the equations have the solutions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d1 = 1
Δ(λ )φ24(1)(

∫ 0
−1 χ1(ξ ,λ ) f1(ξ )dξ + 1

h

∫ 1
0 χ2(ξ ,λ ) f2(ξ )dξ )

+ 1
Δ(λ )χ24(1)(

∫ 0
−1 φ1(ξ ,λ ) f1(ξ )dξ + 1

h

∫ 1
0 φ2(ξ ,λ ) f2(ξ )dξ ),

d2 = 1
Δ(λ )φ13(1)(

∫ 0
−1 χ1(ξ ,λ ) f1(ξ )dξ + 1

h

∫ 1
0 χ2(ξ ,λ ) f2(ξ )dξ )

+ 1
Δ(λ )χ13(1)(

∫ 0
−1 φ1(ξ ,λ ) f1(ξ )dξ + 1

h

∫ 1
0 φ2(ξ ,λ ) f2(ξ )dξ ),

(3.8)
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where

φ13(1) =α1e
iγφ ′

2(1,λ )−α3e
iγφ2(1,λ ),φ24(1) = α4e

iγ φ2(1,λ )−α2e
iγφ ′

2(1,λ )−ω2,
(3.9)

χ24(1) =α2e
iγ χ ′

2(1,λ )−α4e
iγ χ2(1,λ ),χ13(1) = α3e

iγ χ2(1,λ )−α1e
iγ χ ′

2(1,λ )+ ω2.

Substituting (3.9) into (3.2), (3.6), we obtain

y(x,λ ) = h
∫ 0

−1
G(x,ξ ,λ ) f1(ξ )dξ +

∫ 1

0
G(x,ξ ,λ ) f2(ξ )dξ , (3.10)

where G(x,ξ ,λ ) is as follows:

G(x,ξ ,λ ) = (3.11)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(λ )h [χ13(1)φ1(x,λ )−φ13(1)χ1(x,λ )]χ1(ξ ,λ )+ 1


(λ )h [φ24(1)χ1(x,λ )

−χ24(1)φ1(x,λ )]φ1(ξ ,λ ), −1 < ξ � x < 0,

1

(λ )h [φ24(1)φ1(x,λ )−φ13(1)χ1(x,λ )]χ1(ξ ,λ )+ 1


(λ )h [χ13(1)χ1(x,λ )

−χ24(1)φ1(x,λ )]φ1(ξ ,λ ), −1 < x � ξ < 0,

1

(λ )h2 [φ24(1)φ1(x,λ )−φ13(1)χ1(x,λ )]χ2(ξ ,λ )+ 1


(λ )h2 [χ13(1)χ1(x,λ )

−χ24(1)φ1(x,λ )]φ2(ξ ,λ ), −1 < x < 0,0 < ξ < 1,

1

(λ ) [χ13(1)φ2(x,λ )−φ13(1)χ2(x,λ )]χ1(ξ ,λ )+ 1


(λ ) [φ24(1)χ2(x,λ )

−χ24(1)φ2(x,λ )]φ1(ξ ,λ ), −1 < ξ < 0,0 < x < 1,

1

(λ )h [χ13(1)φ2(x,λ )−φ13(1)χ2(x,λ )]χ2(ξ ,λ )+ 1


(λ )h [φ24(1)χ2(x,λ )

−χ24(1)φ2(x,λ )]φ2(ξ ,λ ), 0 < ξ � x < 1,

1

(λ )h [φ24(1)φ2(x,λ )−φ13(1)χ2(x,λ )]χ2(ξ ,λ )+ 1


(λ )h [χ13(1)χ2(x,λ )

−χ24(1)φ2(x,λ )]φ2(ξ ,λ ), 0 < x � ξ < 1.

THEOREM 3.1. Let f ∈ H, then the function

y(x,λ ) = h
∫ 0

−1
G(x,ξ ,λ ) f (ξ )dξ +

∫ 1

0
G(x,ξ ,λ ) f (ξ )dξ (3.12)

satisfies (1.1) and the CBC and TC (1.2)–(1.4).

Proof. From the above calculations in the construction of the Green’s function,
the theorem is obvious. �

Thus the resolvent of the S-L problems (1.1)–(1.4) is obtained, and the function
G(x,ξ ,λ ) is the Green’s function of the S-L problems (1.1)–(1.4). From the above
calculations the domain of (L− λ I)−1 , which is the resolvent of L at λ ∈ Ω, is the
space H. And the S-L operator L is self-adjoint. So by the Closed Graph Theorem,
(L−λ I)−1 is bounded. Then we have
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THEOREM 3.2. The operator L has only point-spectrum, i.e., σ(L) = σp(L).

LEMMA 3.3. Let δ ∈ R\σp(L). And let μ be the eigenvalue of (L− δ I)−1 and
y be the corresponding eigenfunction. Then 1

μ is the eigenvalue of L−δ I, and y is the
corresponding eigenfunction, and vice versa.

4. The modified parseval equality

In this section, we show the eigenvalues of the S-L problems (1.2)–(1.4) are simple
under some conditions. And using the eigenfunction expansion of the Green’s function,
we prove the modified Parseval equality.

Let

D(λ ) = α4φ2(1,λ )−α2φ ′
2(1,λ )−α3χ2(1,λ )+ α1χ ′

2(1,λ ), (4.1)

then
Δ(λ ) = (1+ e2iγ)h−D(λ )eiγ , (4.2)

where Δ(λ ) is the same as in Theorem 2.3.

LEMMA 4.1. Let λ ∈ σp(Aγ) = {λ ∈ C | Δ(λ ) = 0 for γ ∈ [−π ,π ]}, and be de-
noted by λ (Aγ ). Then

1. λn(Aγ ) = λn(A−γ) for n ∈ N and 0 < γ < π .

2. λn(Aα) 	= λm(Aβ ) for n,m ∈ N and 0 � α,β � π with α 	= β .

Proof. At first we prove the case (1). Let n∈ N, γ ∈ (0,π) and λn(Aγ) ∈ σp(Aγ ).
From (4.2), Δ(λ )= 0 if and only if D(λ )= 2hcosγ. Hence λn(Aγ ) satisfies D(λn(Aγ ))
= 2hcosγ. Since cos(−γ) = cosγ and h > 0, D(λn(Aγ )) = D(λn(A−γ)) for n∈N. We
obtain λn(Aγ) = λn(A−γ ) for n ∈ N.

Next we prove the case (2). Let n,m ∈ N, α,β ∈ [0,π ] with α 	= β . From (4.2),
λn(Aα) ∈ σp(Aα), λm(Aβ ) ∈ σp(Aβ ) satisfy

D(λn(Aα)) = 2hcosα, D(λm(Aβ )) = 2hcosβ .

Since α,β ∈ [0,π ] with α 	= β , cosα 	= cosβ . Hence D(λn(Aα)) 	= D(λm(Aβ )). Con-
sequently, λn(Aα) 	= λm(Aβ ) for n,m ∈ N. �

LEMMA 4.2. (Corollary 1, P246, [12]) Let T be a closed symmetric operator on
a complex Hilbert space with finite defect indices (m,m), and T1 and T2 be self-adjoint
extensions of T. If σ(T1)∩ (a,b) = ∅, then σ(T2)∩ (a,b) consists of only isolated
eigenvalues of total multiplicity � m.

The eigenvalues of the S-L problems with the coupled boundary conditions are
concerned in [3, 7]. And the simplicity of the eigenvalues of the S-L problem with the
condition h = 1 is obtained in Theorem 3.4 of [3]. Here we use the similar method to
prove that the eigenvalues, of the S-L problems with the condition h > 0, are simple.
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LEMMA 4.3. If 0 < γ < π or −π < γ < 0, γ is as in (1.4), then the eigenvalues
of the S-L operators L are simple.

Proof. From Theorem 3.2, σ(Aγ) = σp(Aγ ). Let λn(A0)∈σ(A0) for some n∈N.
By Lemma 4.1, we can choose the eigenvalue λm(Aπ)∈σ(Aπ) to be the first eigenvalue
in σ(Aπ) to the right of λn(A0) and λn(A0) 	= λm(Aπ). We show the monotonicity of
D(λ ) in the interval [λn(A0),λm(Aπ)] by a contradiction. Assume D(λ ) given in (4.1),
is neither strictly increasing nor strictly decreasing in the interval [λn(A0),λm(Aπ)].
Then there exists an α ∈ (0,π) such that

D(λ ) = 2hcosα

has three solutions in (λn(A0),λm(Aπ)). That is, there are three points of σ(Aα) in
(λn(A0),λm(Aπ)). On the other hand, no points of σ(A0), σ(Aπ) are in (λn(A0),λm(Aπ)).
And the operator L for γ = 0 and γ = π are both self-adjoint operators. This is a con-
tradiction from Lemma 4.2. Hence D(λ ) is strictly increasing or strictly decreasing in
the interval [λn(A0),λm(Aπ)]. From Theorem 3.2, Lemma 4.2 and the equation (4.1), if
0 < γ < π or −π < γ < 0, then the eigenvalues of the S-L operators L are simple. �

By Lemmas 2.4, 3.3, 4.3 and the spectral theorem for compact operator, we have

LEMMA 4.4. Let λ1,λ2,λ3, · · · , be the collection of all eigenvalues of the S-L
operators L and let ϕ1(x),ϕ2(x), · · · be the corresponding normalized eigenfunctions.
Then

|λ1| < |λ2| < · · · |λn| · · · → ∞.

And {ϕn;n ∈ N} is complete in H and

〈ϕn,ϕm〉 =
{

1, n = m,
0, n 	= m.

LEMMA 4.5. The S-L problems (1.1)–(1.4) is equivalent to the following integral
equation

y(x,λ )−λ
(
h
∫ 0

−1
G(x,ξ )y(ξ )dξ +

∫ 1

0
G(x,ξ )y(ξ )dξ

)
= 0. (4.3)

Proof. From Theorem 3.1 we know that

y(x,λ ) = h
∫ 0

−1
G(x,ξ ) f (ξ )dξ +

∫ 1

0
G(x,ξ ) f (ξ )dξ (4.4)

satisfies −y′′(x)+q(x)y(x) = f (x) and the CBC and TC (1.2)–(1.4). The nonhomoge-
neous differential equation (3.1) can be written in the form −y′′(x)+ q(x)y(x) = f̃ (x)
where f̃ (x) = f (x)+ λy. Then the equation has a solution

y(x,λ ) = h
∫ 0

−1
G(x,ξ ) f̃ (ξ )dξ +

∫ 1

0
G(x,ξ ) f̃ (ξ )dξ , (4.5)
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which satisfies the CBC and TC (1.2), (1.3). If f (x) ≡ 0, then the corresponding homo-
geneous cases are the S-L problems (1.1)–(1.4). Consequently the problem is equivalent
to

y(x,λ )−λ
(
h
∫ 0

−1
G(x,ξ )y(ξ )dξ +

∫ 1

0
G(x,ξ )y(ξ )dξ

)
= 0. (4.6)

�

THEOREM 4.6. Let {λn : n = 1,2,3, · · ·} denote the eigenvalues of the S-L prob-
lems (1.1)–(1.4) and ϕn(x) be the corresponding normalized eigenfunction. Then

G(x,ξ ) = −
∞

∑
n=1

ϕn(x)ϕn(ξ )
λn

.

Proof. Suppose λn be the eigenvalue of the S-L problems (1.1)–(1.4) and ϕn(x)

be the corresponding normalized eigenfunction. Let P(x,ξ )= G(x,ξ )+
∞

∑
n=1

ϕn(x)ϕn(ξ )
λn

,

then P(x,ξ ) is continuous and symmetric. We assume P(x,ξ ) 	= 0. Then by the Fred-
holm integral equation, there is a number λ̃ and a function ỹ(x) 	= 0 in H such that

ỹ(x) = λ̃
(
h
∫ 0

−1
P(x,ξ )ỹ(ξ )dξ +

∫ 1

0
P(x,ξ )ỹ(ξ )dξ

)
. (4.7)

By Lemma 4.5

ϕn(x)−λn
(
h
∫ 0

−1
G(x,ξ )ϕn(ξ )dξ +

∫ 1

0
G(x,ξ )ϕn(x)(ξ )dξ

)
= 0. (4.8)

Putting G(x,ξ ) = P(x,ξ )−
∞

∑
n=1

ϕn(x)ϕn(ξ )
λn

in the equation (4.8) and through some

calculations, we obtain

h
∫ 0

−1
P(x,ξ )ϕn(ξ )dξ +

∫ 1

0
P(x,ξ )ϕn(ξ )dξ = 0. (4.9)

Next we prove 〈ỹ , ϕn〉 = 0 and ỹ is an eigenfunction. In accordance with (4.7) and
(4.9), it leads to

〈ỹ,ϕn〉 =h
∫ 0

−1
ỹ(x)ϕn(x)dx+

∫ 1

0
ỹ(x)ϕn(x)dx

=λ̃h
∫ 0

−1

(
h
∫ 0

−1
P(x,ξ )ỹ(ξ )dξ +

∫ 1

0
P(x,ξ )ỹ(ξ )dξ

)
ϕn(x)dx

+ λ̃
∫ 1

0

(
h
∫ 0

−1
P(x,ξ )ỹ(ξ )dξ +

∫ 1

0
P(x,ξ )ỹ(ξ )dξ

)
ϕn(x)dx

=λ̃h
∫ 0

−1

(
h
∫ 0

−1
P(x,ξ )ϕn(x)dx+

∫ 1

0
P(x,ξ )ϕn(x)dx

)
ỹ(ξ )dξ

+ λ̃
∫ 1

0

(
h
∫ 0

−1
P(x,ξ )ϕn(x)dx+

∫ 1

0
P(x,ξ )ϕn(x)dx

)
ỹ(ξ )dξ = 0.
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And by (4.7) we have

ỹ(x)−λ̃
(
h
∫ 0

−1
G(x,ξ )ỹ(ξ )dξ +

∫ 1

0
G(x,ξ )ỹ(ξ )dξ

)
= ỹ(x)− λ̃

(
h
∫ 0

−1

(
P(x,ξ )−

∞

∑
n=1

ϕn(x)ϕn(ξ )
λn

)
ỹ(ξ )dξ +

∫ 1

0

(
P(x,ξ )

−
∞

∑
n=1

ϕn(x)ϕn(ξ )
λn

)
ỹ(ξ )dξ

)

= ỹ(x)− λ̃
((

h
∫ 0

−1
P(x,ξ )ỹ(ξ )dξ +

∫ 1

0
P(x,ξ )ỹ(ξ )dξ

)− ∞

∑
n=1

ϕn(x)
λn

〈ỹ,ϕn〉
)

= ỹ(x)− λ̃
((

h
∫ 0

−1
P(x,ξ )ỹ(ξ )dξ +

∫ 1

0
P(x,ξ )ỹ(ξ )dξ

)
= 0.

This implies that ỹ is the eigenfunction of the S-L problems (1.1)–(1.4) by Lemma 4.5.
Thus from 〈ỹ,ϕn〉 = 0 and the completeness of the eigenfunctions, it leads to ỹ = 0.
Consequently P(x,ξ ) = 0. We complete the proof. �

At last, we will prove the modified Parseval equality, i.e. the Parseval equality in
the associated Hilbert space H, holds.

THEOREM 4.7. Let f ∈ H, then the modified Parseval equality holds, namely

‖ f‖2
H =

∞

∑
n=1

c2
n( f ), (4.10)

where ‖ f‖2
H = 〈 f , f 〉 and

cn( f ) = h
∫ 0

−1
f (x)ϕn(x)dx+

∫ 1

0
f (x)ϕn(x)dx. (4.11)

Proof. Let C̃∞
0 be the set of all functions defined by

f (x) =
{

f1(x), x ∈ [−1,0),
f2(x), x ∈ (0,1],

where f1 ∈C∞
0 [−1,0) and f2 ∈C∞

0 (0,1]. Obviously, C̃∞
0 ⊂ H. And it is easy to verify

C̃∞
0 is dense in H. At first we prove (4.10) holds for f ∈ C̃∞

0 . Denote g(x) = − f ′′(x)+
q(x) f . Then by Lemma 4.5 and Theorem 4.6

f (x) =h
∫ 0

−1
G(x,ξ )g(ξ )dξ +

∫ 1

0
G(x,ξ )g(ξ )dξ

=−
∞

∑
n=1

1
λn

ϕn(x)
(

h
∫ 0

−1
ϕn(ξ )g(ξ )dξ +

∫ 1

0
ϕn(ξ )g(ξ )dξ

)
.
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Multiplying by ϕm(x) and integrating it, we have

h
∫ 0

−1
ϕm(x) f (x)dx+

∫ 1

0
ϕm(x) f (x)dx

= − 1
λm

(
h
∫ 0

−1
ϕm(ξ )g(ξ )dξ +

∫ 1

0
ϕm(ξ )g(ξ )dξ

)
.

Then for f ∈ C̃∞
0

f (x) =
∞

∑
n=1

cn( f )ϕn(x), (4.12)

where cn( f ) = 〈 f ,ϕn〉 = h
∫ 0
−1 f (x)ϕn(x)dx+

∫ 1
0 f (x)ϕn(x)dx. Thus for f ∈ C̃∞

0

‖ f‖2
H =

∞

∑
n=1

c2
n( f ). (4.13)

Next we prove (4.10) holds for all f ∈ H. since C̃∞
0 is dense in H ([1]), there

exists a sequence { fk}k∈N ⊂ C̃∞
0 converging to f in H , we will prove

∞

∑
n=1

c2
n( f ) < ∞

and lim
k→∞

∞

∑
n=1

c2
n( fk) =

∞

∑
n=1

c2
n( f ). By the Cauchy-Schwartz inequality |cn( fk)− cn( f )| =

|〈 fk− f ,ϕn〉|� ‖ fk− f‖H . This implies lim
k→∞

cn( fk)= cn( f ). Since
∞

∑
n=1

(
cn( fk)−cn( fm)

)2
=

∞

∑
n=1

c2
n( fk − fm) = ‖ fk − fm‖2

H , so

N

∑
n=1

(
cn( fk)− cn( fm)

)2 � ‖ fk − fm‖2
H . (4.14)

Let k → ∞, then
N

∑
n=1

(
cn( f )− cn( fm)

)2 � ‖ f − fm‖2
H . Letting N → ∞ we have

∞

∑
n=1

(
cn( f )− cn( fm)

)2 � ‖ f − fm‖2
H . (4.15)

Then by the Minkowski inequality

∞

∑
n=1

c2
n( f ) =

∞

∑
n=1

(
cn( f )− cn( fm)+ cn( fm)

)2

�
(( ∞

∑
n=1

(
cn( f )− cn( fm)

)2)1/2
+
( ∞

∑
n=1

c2
n( fm)

)1/2
)2

< ∞
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and by the Hölder’s inequality

|
∞

∑
n=1

c2
n( f )−

∞

∑
n=1

c2
n( fk)| =|

∞

∑
n=1

(
cn( f )− cn( fk)

)(
cn( f )+ cn( fk)

)|
�
( ∞

∑
n=1

(
cn( f )− cn( fk)

)2)1/2( ∞

∑
n=1

(
cn( f )+ cn( fk)

)2)1/2 → 0

as k → ∞. This means that lim
k→∞

∞

∑
n=1

c2
n( fk) =

∞

∑
n=1

c2
n( f ).

Since fk → f in H as k → ∞, lim
k→∞

‖ fk‖H = ‖ f‖H . We obtain

‖ f‖2
H = lim

k→∞
‖ fk‖2

H = lim
k→∞

∞

∑
n=1

c2
n( fk) =

∞

∑
n=1

c2
n( f ). (4.16)

This completes the proof. �
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