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HYPONORMALITY OF FINITE RANK

PERTURBATIONS OF NORMAL OPERATORS
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Abstract. Let T be an arbitrary finite rank perturbation of a normal operator N acting on a
separable, infinite dimensional, complex Hilbert space H . It is proved that the hyponormality
and normality of T are equivalent. Thus every hyponormal finite rank perturbation of a normal
operator has a nontrivial hyperinvariant subspace.
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