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HYPONORMALITY OF FINITE RANK
PERTURBATIONS OF NORMAL OPERATORS

IL BONG JUNG, EUN YOUNG LEE AND MINJUNG SEO

(Communicated by R. Curto)

Abstract. Let T be an arbitrary finite rank perturbation of a normal operator N acting on a
separable, infinite dimensional, complex Hilbert space .. It is proved that the hyponormality
and normality of 7 are equivalent. Thus every hyponormal finite rank perturbation of a normal
operator has a nontrivial hyperinvariant subspace.

1. Introduction and notation

This paper is a continuation of first and second authors’ earlier paper [12] in which
we discussed the hyponormality of rank-one perturbations of normal operators acting
on a separable, infinite dimensional, complex Hilbert space .7#’. The notation and ter-
minology in what follows are taken from [12]. For the convenience of the reader we
recall a few pertinent definitions. The algebra of bounded linear operators on 7 is de-
noted by .2 (7). For nonzero vectors u and v in ¢ we write u®v for the rank-one
operatorin .Z () by (u®v) (x) = (x,v)u, x € . For X,Y € £ (), we denote by
[X,Y] =XY —YX. Anoperator T € L () is normal if [T*,T|=0,and T € L ()
is hyponormal if [T*,T] is positive, i.e., ([T*,T]x,x) > 0 for all x € 7. An operator
T in £ () is called a finite rank perturbation of a normal operator if there exist
nonzero vectors {u;}j_; and {v;}_; in 7 and a normal operator N € .2 (%) such
that T is unitarily equivalent to an operator N +3_; u; ®v;. In particular, for n =1,
such operator T is referred to a rank-one perturbation of a normal operator. The rank-
one perturbations of normal operators can be applied to some areas in mathematical
physics (cf. [3], [13], [16]). And also the finite rank perturbations of a normal operator
can be applied to solve the von Neumann invariant subspace problem of bounded oper-
ators (cf. [17]). E. Ionascu([ 1 1]) detected the structure of rank-one perturbations of di-
agonal operators. Also, in [14] one discussed some properties of rank-one perturbations
of unilateral shifts operators. Moreover, in [4] one considered rank-one perturbations of
weighted shifts to examine distinctions among various sorts of weak hyponormalities;
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see [10] for weak hyponormalities. In [12], Jung-Lee proved that if T in £ (5¢) is
a rank-one perturbation of a normal operator, then the hyponormality and normality of
T are equivalent. As a continued study, we detect the structure of [T*, 7] and prove
that if T is a finite rank perturbation of a normal operator, then hyponormality and nor-
mality of 7 are equivalent in Section 2. This implies obviously that if T in £ (J¢)
is a hyponormal finite rank perturbation of a normal operator, then 7 has a nontrivial
hyperinvariant subspace.

Throughout this note, we write C for the set of complex numbers. For A €
L (), ranA denotes the range of A as usual. Since (Au) @ v =A(u®v), we de-
note it by Au®v. For a subset X of .7, VX is the subspace of .# spanned by X.

2. Main theorem

Let {u;}?_, and {v;}{_, be nonzero vectors in .7’ and let

T::N+Zuk®vk 2.1
k=1

be a finite rank perturbation of a normal operator N in .Z(#). We first introduce the
main theorem of this note as following.

THEOREM 2.1. Let T be a finite rank perturbation of a normal operator N in
L(H). Then T is hyponormal if and only if T is normal.

The proof of Theorem 2.1 will be given after lemma and remark. Let 7 be a usual
finite rank perturbation of a normal operator N in £ () as in (2.1). Then a simple
computation shows that

M:

[T*,T} [N U @ Vi +vi @ N up — Nvi @ uy — uy @ Nvy, (2.2)

k=1

Z up, up)vie @ vy — (vi, vi) g @ uy)].

For brevity, we denote the subspaces by
M= \/{ulﬁvk}z:l
and
X = \/{uk,vk,N*uk,va}Zzl.

By (2.2), we obtain that ran([T*,T])C #.
We now discuss matrix structure of the commutator [T*,7] of T* and T with
dim.Z =d < 2n.

LEMMA 2.2. Let T = N+ Y}, ur @ v be a finite rank perturbation of a nor-
mal operator N in £ () and suppose that dim.# = d < 2n. Then there exists an
orthonormal system {e;}"" | in A with m = d +2n such that
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(i) A =V{e}l,,
(ii) & CVie}™ | (== M),
(iii) [T*,T] 2 A D000y, relativeto Ny & (I S Ny), where

air a2 - Adig Ald+1 A1d+2 v Aim
apy  axp v Ayg A+l A2d+2 ccc Aom
a a ... a a a ... a
A, = 1d 2d dd Add+1 Add+2 dm (2.3a)
Ag+1 Qg1 - Gga+1 0 o -~ 0
Q1442 @a+2 *** Aaa+2 0 0 -0
alm azm ... adm 0 O .. O
with
n
2 ,,Vk N Uk, € > <ej,N*uk><Vk,€i> (23b)
k=1

— (ej, ur) (Nvy,ei) — (e, Nvg) (u, i)

n
+ > (G, we) (e, vi) (ves en) — (vive) (e up) (ug, 3)].
=1

Proof. Suppose that the dimension of .# is d. Then, by Gram-Schmidt orthogo-
nal process ([20, Th. 3.5]), we can take an orthonormal system {e; } ", such that

M =Vi{e}L. (2.4)
Take an extended orthonormal system {e;}” | containing {e;}¢, with m = d +2n

such that 2 C V{e;}I" . We denote by .47, := V{e;}!" . It follows from (2.2) that for
he A,

(T*,T1h =" [(h,vi)N*ux + (h, N u) v — (hug) Nvi — (h, Nviuy (2.5)
k=1
n
+ > (i) Ry vy vie = (v, vie) (s Y )]
=1
Thus, by (2.5), [T*,T]Nm CZ C Ny, and so Ay, is a reducing subspace for [T*,T].
Considering some orthonormal basis {e;}7> | of # containing {e;}"" |, we get [T*,Tle;

=0, i >m+ 1. Hence we have a decomposmon
[T, 1] = An © 0.,

relative to Ay, ® (H S Ap,), where A, is unitarily equivalent to an m X m complex
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matrix (a;;) . Substituting ¢; for & in (2.5), we obtain that

1<i,j<m
=([T",Tlej,ei)
=Y [{ej,vi) (N ug, €;) + (e, N*ui) (v, ei) (2.6)
k=1

— (ej, ur) (Nvy,ei) — (e, Nvg) (u, i)

+ 2 ul,uk> <ej,vl><vk,e,-> - <v1,vk><ej,u1><uk,e,->)}.

I=1
Using (2.6), we can obtain (2.3a) and aj; = @;;. Hence the proof is complete. [

Let 7,4 be Hilbert spaces and let £ (J#],7%) be the Banach space of all
bounded linear operators from 7] to .74 . We recall a well-known result in operator
theory below.

REMARK 2.3. Suppose A € £ (J4), Be L (#3,71) and C € ¥ (%), and let

A B
s=(j¢)

relative to some decomposition. Then it follows from [18] that S > O if and only if
A>0,C>0and B=+AE\/C, for some contraction E € L (s,.547). Hence if every
diagonal entry of the positive matrix § is zero, then S =0.

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Since every normal operator is hyponormal, we prove only
the sufficiency. So we suppose that T is hyponormal and put d = dim.# . Then it
follows from Lemma 2.2 that there exists an orthonormal system {e;}", in JZ with
m=d+2n suchthat [T*,T] = A, &0,pc, 4, , Where A,, and .47, are as in Lemma 2.2.
It is obvious that A,, > 0. Hence a;; > 0 forall 1 <i<d and by Remark 2.3, g;; =0,
d+1 < j<m. Now it is sufficient to see that a;; = 0 for all 1 <i < d. Recall from
(2.4) and (2.3b) that

i
M=

(uj,ex)ey, for 1 <i<n, (2.7a)

k=1

d

Vi = 2 (visep)er, for L <i<n (2.7b)

k=1

and
a;; = 2Re (Z ({ei, i) (N ug,e;) — (e, ur)(Nvg,e;i)) (2.7¢)
k=1

+ Z (ur, ue) (e, vi) (Vi €i) — (vi, vie) (ei up) (g ;)
1<k<I<n

C 2 2
(Nl 1 e i) > = [[vell* [eis ) )

=1

+
k
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Thus, by (2.7a-c), we have

d
(er, Vi) (N ug, ei) — Y (ei,ug) (Nvi, ;)

M&

k=1 z=1 i=1
d d
+ Euz,uk ei,vi) (v, e 2 Vi, Vi) (ei,tr) Mk,€i>)>
I<k<l<n i=1 i=1
n d
+ 3 (> X e v | —chHzZ\(ei,uk)Iz)
k=1 i=1 i=1
n d
=2Re (2 ((N* uk, (virei)er) — (Nve, Y (g, ei)e;))
k=1 i=1 i=1

d d
+ ((wr, 1) vy Y (v, ea)ei) — (v, ve) (g, Z<Ml»€i>ei>)>

<k<lI<n i=1 i=1

—

n
Z (Ul vl = 1l s 1)

By using (2.7a,b) again, we obtain

d
Zai,- =2Re (

i=1

M=

(N ug,vi) — (Nvi, ug))

k=1

+ 2 (uyy ug) vk,vl> — <v17vk><uk7ul>)> =0.

1<k<iI<n

Thus a;; =0 forall 1 <i< d. Hence the proof is complete. [J

3. Remark on invariant subspaces

Recall that .7 is a nontrivial invariant [hyperinvariant] subspace for T € £ ()
it T CMXAMC M Afor X e{T} ={Xe€L(H#):XT=TX}]with (0) # .4 +
2. In 1930’s, J. von Neumann introduced the invariant subspace problem: does every
operator in .Z () have a nontrivial invariant subspace? Although many operator the-
orists tried to solve this problem until now, it remains still as an open problem (cf. [17]).
An operator T in £ () is subnormal if it is (unitarily equivalent to) the restriction
of a normal operator to an invariant subspace. In 1978, S. Brown ([1]) proved that ev-
ery subnormal operator has a nontrivial invariant subspace. The question of whether
subnormal operators in .Z () \ C1 » has a nontrivial hyperinvariant subspace is still
open (cf. [6], [19]). Note that every subnormal operator is hyponormal. And also the
question whether every hyponormal operator has a nontrivial invariant subspace is still
open (cf. [2]). We recall the following problem:

(P1) Does every operator T of the form T = N + K, where N is normal operator and
K is compact operator, have a nontrivial invariant subspace?
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The theorem of Berger-Shaw reduces the invariant subspace problem for hyponor-
mal operators to a very special case of the following result ([15, Corollary 8.5]):

(P2) If every operator T of the form T = N + K, where N is normal operator and
K is compact operator, has a nontrivial invariant subspace, every hyponormal
operator has a nontrivial invariant subspace.

As one of effective studies concerning (P2), the following problem was suggested
in [15, Problem K].

(P3) Suppose N is a diagonal normal operator whose eigenvalues constitute a dense
subset of the unit disc D. Does every operator of the form N + F have a nontriv-
ial invariant subspace, where F is an operator of rank one?

Despite the fact that Problem (P3) is about forty years old, it has remained stub-
bornly intractable, although some operator theoriests obtained some partial solutions
(cf. [5], [71, [8], [O]). From this point of view, the following corollary which comes
immediately from Theorem 2.1 is interesting.

COROLLARY 3.1. Let T be a finite rank perturbation of a normal operator N in
L(A). If T is hyponormal, then T has a nontrivial hyperinvariant subspace.
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