
Operators
and

Matrices

Volume 12, Number 3 (2018), 797–822 doi:10.7153/oam-2018-12-48

HOW TO DETERMINE THE EIGENVALUES

OF G–CIRCULANT MATRICES

ERIC NGONDIEP

Abstract. For a given nonnegative integer g, a matrix Cn,g of size n is called g -circulant
if Cn,g = [a(r−gs)modn]

n−1
r,s=0 . Such matrices arise in wavelet analysis, subdivision algorithms,

and more generally when dealing with multigrid/multilevel methods for structured matrices and
approximations of boundary value problems. In this paper, we study the eigenvalues of g -
circulants. The relationship to the harmonic analysis is explored and based on the new recur-
sive formulas for eigenvalues of such class of matrices are obtained. This result represents an
extension of the work due to E. Ngondiep and S. Serra Capizzano in establishing bounds for
preconditioners for the linear system of equations determined by the same matrix and it could
be seen as a tool for the analysis of the preconditioners. Numerical experiments are presented to
illustrate the theoretical result.
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