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Abstract. In this note, we give an easy algorithm to construct the rational canonical form of a
square matrix or an endomorphism h of a finite dimensional vector space which does not depend
on either the structure theorem for finitely generated modules over principal ideal domains or
matrices over the polynomial ring. The algorithm is based on the construction of an element
whose minimum polynomial coincides with the minimum polynomial of the endomorphism and
on the fact that the h -invariant subspace generated by such an element admits an h -invariant
complement. It is also shown that this element can be easily obtained without the factorisation
of a polynomial as a product of irreducible polynomials.

1. Introduction

One of the classical problems in matrix theory has been to identify whether two
given n×n matrices over a field K are similar. Recall that two matrices A , B∈M n(K)
are similar if there exists a regular matrix P ∈ M n(K) such that B = P−1AP . This
problem has been solved by finding a suitable representative of the similarity class,
namely a canonical form or a normal form. Since an n× n matrix over a field K can
be regarded as the matrix of an endomorphism of a K -vector space V of dimension n
in basis B and two matrices of the same endomorphism in different bases are similar,
our problem is equivalent to proving the existence of a basis B′ in which the matrix is
a canonical form; the columns of the regular matrix P are the coordinate vectors of the
vectors of the basis B′ in the original basis B . In what follows, K will denote a fixed
field, V a K -vector space of finite dimension n , and h a fixed endomorphism of V .

One of the most interesting canonical forms was introduced by Frobenius in [2]
and is called the rational canonical form or Frobenius canonical form. Its main advan-
tage is that it can be obtained just with field operations from the entries of the matrix and
so it is invariant under field extensions. This matrix is a diagonal sum of the so-called
companion matrices associated to monic polynomials. For a polynomial p = p(x) , we
will denote its degree by δ p .
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DEFINITION 1. Let p = a0 + a1x+ · · ·+ am−1xm−1 + xm be a monic polynomial
with coefficients in K of degree m = δ p � 1. The companion matrix of p is the m×m
matrix

C(p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2
...

...
...

. . .
...

...
0 0 0 . . . 0 −am−2

0 0 0 . . . 1 −am−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

THEOREM 2. There exists a basis of V in which the coordinate matrix of h is
the diagonal sum of matrices C(d1) , C(d2), . . . , C(ds) , where d1 , d2, . . . , ds are non-
constant monic polynomials with coefficients in K and d1 | d2 | . . . | ds . Moreover, the
polynomials d1 , d2, . . . , ds are uniquely determined by h.

The polynomials d1 , d2, . . . , ds receive the name of invariant factors of h .
It follows by Theorem 2 that each square matrix over a field K is similar to a

unique rational canonical form. Other canonical matrices which can be taken as stan-
dard representatives of the similarity class of a matrix include the primary rational
canonical form, the Jordan canonical form and its generalisations (see, for instance, [3,
Chapter 3, Section 10] or [4] for details), and the Weyr canonical form [8].

Most of the known proofs of Theorem 2 depend on the structure of finitely gen-
erated modules over principal ideal domains (see, for instance, [3, Chapter 3]) or the
diagonal Smith form for matrices with polynomial entries (like in [1, Section 12.2])
and do not give efficient algorithms to compute the rational canonical form or the basis
associated to this matrix. The PhD thesis of Ozello [6] contains a constructive proof
for the calculation of the rational canonical form of a square matrix, by means of sim-
ilarity transformations in the matrix. These algorithms have also been presented in the
book [5].

In this note, we present an improvement of Ozello’s algorithm to compute the ra-
tional canonical form with the help of elements of the vector space whose minimum
polynomial coincides with the minimum polynomial of the endomorphism. The com-
putation of these elements is usually presented with the help of the decomposition of
a polynomial as a product of irreducible polynomials (see Remark 8 below) or as a
consequence of Theorem 2. However, exact or efficient algorithms for the computation
of this decomposition can be unavailable for some fields and some polynomials. It is
well known that Euclid’s algorithm is an efficient method for the computation of the
greatest common divisor and so of the least common multiple of two polynomials. In
Section 2 we show that the interesting factors needed to compute the least common
multiple of two polynomials can be obtained without determining explicitly the de-
composition of the polynomials as products of irreducible polynomials. In Section 3 a
method to compute an element whose minimum polynomial coincides with the mini-
mum polynomial of the endomorphism is presented. The results of Section 2 are used
in Section 3 to show that this element can be computed without appealing to the fac-
torisation of a polynomial as a product of irreducible polynomials. Section 4 provides
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a proof of Theorem 2. Finally, Section 5 presents an example of the computation of the
rational canonical form of a matrix as an application of the results of this paper.

2. A remark on the least common multiple of two polynomials

Let f , g be two monic polynomials in the polynomial ring R = K[x] . We can
decompose them as

f = rst and g = jkl, (1)

where r , s , t , j , k , and l are monic polynomials such that:

1. r is the product of all powers of irreducible factors in f which appear also in g
with exponents more than or equal to the corresponding exponents in f ,

2. s is the product of all powers of irreducible factors in f which appear also in g
but with exponents strictly less than the corresponding exponents in f ,

3. t is the product of all powers of irreducible factors in f which do not appear
in g ,

4. j is the product of all powers of irreducible factors in g which appear also in f
with exponents less than or equal to the corresponding exponents in g ,

5. k is the product of all powers of irreducible factors in g which appear also in f
but with exponents strictly greater than the corresponding exponents in g ,

6. l is the product of all powers of irreducible factors in g which do not appear
in f ,

where the products are understood to be 1 if no irreducible factors satisfy the corre-
sponding condition. For example, let

f = x2(x−1)3(x−2)(x−3) and g = x2(x−1)2(x−2)4(x−4).

The corresponding decomposition (1) is f = rst and g = jkl , with r = x2(x− 2) ,
s = (x−1)3 , t = x−3, j = x2(x−2)4 , k = (x−1)2 , l = x−4.

The purpose of this section is to describe how to effectively compute the factors r ,
s , t , j , k , and l without finding the factorisations of f and g as a product of irreducible
monic polynomials, but using only the sum, the product, the Euclidean division, and the
Euclidean algorithm.

It is well known that the decomposition (1) allows us to calculate the greatest
common divisor and the least common multiple of two monic polynomials.

LEMMA 3. Let f , g ∈ K[x] be two monic polynomials and let f = rst , g = jkl
as in (1). Then gcd{ f ,g} = rk and lcm{ f ,g} = st jl .

Now we state the main result of this section.
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LEMMA 4. The factors r , s , t , j , k , and l of Lemma 3 can be obtained from
f and g with polynomial operations (sum, multiplication, Euclidean division, and the
Euclidean algorithm to compute the greatest common divisor) without needing to know
the decompositions of f and g as products of powers of irreducible polynomials.

In order to prove Lemma 4, we will use the following lemma.

LEMMA 5. Assume that f and g are monic polynomials. Decompose f = pq
such that p contains all powers of irreducible factors in f appearing in g, and q
contains all powers of irrreducible factors in f not appearing in g. Then p and q can
be computed as

p = gcd{ f ,gμ} and q = f/gcd{ f ,gμ},
where μ is any natural number satisfying p | gμ .

Proof. Since q and g are coprime, it follows that q and gμ are coprime. Hence

gcd{ f ,gμ} = gcd{pq,gμ} = gcd{p,gμ} = p. �

Note that since p divides some power of g , we can always take μ � δ f in
Lemma 5.

Proof of Lemma 4. Let f = rst and g = jkl as in (1). An application of Lemma 5
to the polynomials f = rst and d = gcd{ f ,g} = rk allows us to identify p1 = rs and
q1 = t . Similarly, an application of Lemma 5 to g and d allows us to identify p2 = jk
and q2 = l . Note that s/k = (rs)/(rk) = p1/d . Moreover, s , k , and s/k all contain
the same irreducible factors by the definition of s and k . Hence, applying Lemma 5
to p1 = rs and s/k = p1/d we obtain p3 = s and q3 = r , and, similarly, applying
Lemma 5 to p2 = jk and p3 = s we obtain p4 = k and q4 = j . �

3. The minimum polynomial of an element and an endomorphism

Given a polynomial f = f (x) = a0 + a1x+ a2x2 + · · ·+ amxm ∈ K[x] , we denote
by f v = f (x)v = f (h)(v) = a0v + a1h(v) + a2h2(v) + · · ·+ amhm(v) ∈ V . With this
definition, V acquires a structure of module over the polynomial ring K[x] .

Given a vector v ∈ V , the set of all polynomials f ∈ K[x] such that f v = 0 is an
ideal of K[x] . This ideal cannot be zero, because the set {v,h(v),h2(v), . . . ,hm(v)} must
be linearly dependent for some m . Since K[x] is a principal ideal domain, this ideal has
a unique monic generator minpolv , called the minimum polynomial or the order of v
under h . The minimum polynomial of a vector can be easily obtained by computing the
elements v , h(v) , h2(v), . . . , until we find that these elements are linearly dependent.
The dependency relation between these elements will give the minimum polynomial
of v .

The ring of endomorphisms of V is a K -vector space of dimension n2 and so
the set {idV ,h,h2, . . . ,hm} must be K -linearly dependent for some m . If m is the
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smallest number for which there is a linear dependence relation a0 idV +a1h+ a2h2 +
· · ·+ amhm = 0 with not all coefficients equal to 0, then the polynomial f (x) = a0 +
a1x + a2x2 + · · ·+ amxm satisfies that f v = 0 for each v ∈ V . Therefore, for every
subset S of V , the set of all polynomials f ∈ K[x] such that f v = 0 for all v ∈ S is
again a non-zero ideal of K[x] and its unique monic generator is called the minimum
polynomial of S under h . When S =V , the minimum polynomial of V is simply called
the minimum polynomial of h and denoted by minpolh .

The following result is elementary.

LEMMA 6. (see [3, Chapter 3, Section 3]) If {v1, . . . ,vn} is a basis of V , then
minpolh = lcm{minpolvi : 1 � i � n} .

The next result can be used to obtain vectors with given minimum polynomials.

LEMMA 7. (see [3, page 68])

1. Assume that f , g ∈ K[x] are monic and that v ∈V satisfies that minpolv = f g .
Then minpolgv = f .

2. Assume that f , g ∈ K[x] are monic, gcd{ f ,g} = 1 and that v, w ∈ V are such
that f = minpolv and g = minpolw. Then minpol(v+w) = f g .

We say that a subspace W of V is h-invariant if h(W )⊆W . Let R = K[x] . Denote
by Ra = { f a : f ∈ R} . Then Ra is an h -invariant subspace of V . If p = minpola =
a0 +a1x+a2x2 + · · ·+am−1xm−1 + xm , then {a,h(a),h2(a), . . . ,hm−1(a)} is a basis of
Ra and the coordinate matrix of h|Ra in this basis is precisely the companion matrix
C(p) .

REMARK 8. It is possible to use Lemma 7 with the help of the decomposition of
a polynomial as a product of irreducible polynomials to conclude easily the existence
of a vector in V whose minimum polynomial coincides with the minimum polynomial
of the endomorphism. For example, let {v1, . . . ,vn} be a basis of V . Let fi be the
minimum polynomial of vi and, for a monic irreducible polynomial p dividing the
minimum polynomial of h , suppose that fi = pmp,iqp,i where p does not divide qp,i .
Choose ip such that mp,ip = max{mp,i | 1 � i � n} . Then the minimum polynomial of
wp = qp,ipvip is pmp,ip . The sum of the wp for all irreducible polynomials p dividing
the minimum polynomial of h has as minimum polynomial the minimum polynomial
of h by Lemma 6. The drawback of this approach is that the algorithms to compute
exactly the irreducible factors of a polynomial can be unavailable or inefficient.

Theorem 2 admits the following alternative statement.

THEOREM 9. Let K be a field, let V be a vector space over K of finite dimension
n and let h be an endomorphism of V . Then there exist elements a1 , a2, . . . , as of
V such that V = Ra1 ⊕Ra2 ⊕ ·· · ⊕Ras and if d j = minpola j for 1 � j � s, then
d1 | d2 | · · · | ds . Moreover, the polynomials d1 , d2, . . . , ds are uniquely determined
by h.
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The proofs known to us for the existence of an element v∈V such that minpolv =
minpolh (Theorem 11 below) follow from Theorem 9 or are proved by induction on
the dimension of V and rely on the following result, which generalises the second part
of Lemma 7.

LEMMA 10. Given two vectors v, w ∈V , there exists c ∈V such that

minpolc = lcm{minpolv,minpolw}.
Proof of Lemma 10. Write f = minpolv and g = minpolw , and decompose f =

rst and g = jkl as in (1). By Lemma 7, we have that minpolrv = st and minpolkw =
jl . Since s , t , j , and l are pairwise coprime, it follows that minpol(rv + kw) =
(st)( jl) = lcm{ f ,g} . �

We must observe that, despite the polynomials r , s , t , j , k , and l can be defined
as products of certain irreducible monic factors, they can be obtained without knowing
efficient factorisation algorithms, according to Lemma 4.

The last result of this section, which is established with elementary arguments,
will play a major role in our approach.

THEOREM 11. There exists an element v ∈V with minpolv = minpolh.

Proof. Let {v1, . . . ,vn} be a basis of V . Let w1 = v1 , and for 2 � i � n we
construct an element wi such that

minpolwi = lcm{minpolwi−1,minpolvi}
with the help of Lemma 10. By Lemma 6, minpolwn = minpolh . �

4. The rational canonical form

Ozello’s algorithm [6] begins with the computation of a weak Frobenius form, in
which the associated matrix is a direct sum of companion matrices, but the divisibility
property is not ensured. This form can be used to obtain the rational canonical form.
However, we observe that Ozello’s algorithm would give directly the matrix of Theo-
rem 2 if an element satisfying Theorem 11 were given as an input value.

THEOREM 12. Let a∈V such that the minimum polynomial of a is the minimum
polynomial of h . Then there exists an h-invariant subspace W of V such that V =
W ⊕Ra.

It is worth mentioning that other algorithms give the existence of an element v∈V
whose minimum polynomial coincides with the minimum polynomial of the endomor-
phism and such that Rv admits and h -invariant complement in V . Theorem 12 shows
that Ra has an h -invariant complement in V for every element a∈V whose minimum
polynomial coincides with the minimum polynomial of the endomorphism.
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Although Theorem 12 can be obtained from an application of the procedures on
[6, pages 29–35] and [6, Théorème 4], we will present here a direct and shorter proof
for the reader’s interest.

Proof of Theorem 12. Let p = minpolh and m = δ p . Consider the natural basis

{a,h(a),h2(a), . . . ,hm−1(a)}
of Ra . Let us complete it to a basis B = {v1, . . . ,vn} of V , where vn−m+1+i = hi(a)
for 0 � i � m−1. In this basis, the coordinate matrix of h is

A = (ai, j) =
[
B O
C C(p)

]
.

We will obtain the result if we replace the elements v1, . . . , vn−m of B in such a way
the block corresponding to C vanishes. Assume that the last k rows of the matrix C
are null, with 0 � k � m−2, and let α = an−k, j �= 0 with 1 � j � n−m . Consider the

basis B = {v1, . . . , vn} , where v j = v j −αvn−k−1 and vl = vl for l �= j . The effect of
this basis change on the matrix A is to subtract to the j -th column of A its n−k−1-th
column, so that the element an−k, j becomes 0, and to add to the n− k− 1-th row of
A its j -th row. Since the m right elements of the j -th row of A are zero, the block
corresponding to C(p) does not change. The k last rows of C do not change. Arguing
in this way, we can find a new basis B̃ = {ṽ1, . . . , ṽn} of V in such a way the matrix
associated to h in B̃ has the form

Ã = (ãi, j) =
[
B O
C̃ C(p)

]
,

where all rows of C̃ except perhaps the first one are null. Suppose that β = ãn−m+1, j �= 0
with 1 � j � n−m . Consider the set of vectors {ṽ j,h(ṽ j), . . . ,hm(ṽ j)} . The matrix
which has as columns the coordinate vectors of these vectors in the basis B̃ has the
form

j →

n−m+1→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗ . . . ∗ ∗
...

...
...

...
...

1 ∗ ∗ . . . ∗ ∗
...

...
...

...
...

0 ∗ ∗ . . . ∗ ∗
0 β ∗ . . . ∗ ∗
0 0 β . . . ∗ ∗
...

...
...

. . .
...

...
0 0 0 . . . β ∗
0 0 0 . . . 0 β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where each symbol “∗” denotes an unspecified element of K . The rank of this matrix
is m+1. This implies that the minimum polynomial of ṽ j has degree greater than m ,
in contradiction with the fact that the minimum polynomial of h has degree m . Hence
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C̃ = O . In particular, W = 〈ṽ1, . . . , ṽn−m〉 is an h -invariant subspace and we have the
desired decomposition. �

Most of the proofs we know of the unicity of the polynomials d1 , d2, . . . , ds in
Theorem 9 are based on the structure theorems for finitely generated modules over
principal ideal domains or require the Smith canonical form for matrices over K[x] .
Our proof of the unicity of Theorem 9 will use the following theorem, which does
not require these results and is more general, because the divisibility of the minimum
polynomials is not required.

THEOREM 13. Let V = Ra1⊕·· ·⊕Ras with minpolai = di , 1 � i � s. Let p be
an irreducible monic polynomial. Let m be a natural number. Then the number of di

divisible by pm is
dimK Ker p(h)m −dimK Ker p(h)m−1

δ p
.

Proof. Choose any m � 0 and let v∈Ker p(h)m . Write v = f1a1 + · · ·+ fsas with
fi ∈ R . Then pm f1a1 + · · ·+ pm fsas = 0 and so pm fiai = 0 for each i . Therefore
di | pm fi . Write di = pniqi , where gcd{p,qi} = 1. Then pniqi | pm fi yields pni | pm fi
and qi | fi . Substituting fi = riqi , we get pni | pmri . Thus we have

Ker p(h)m =

{
s

∑
i=1

riqiai
∣∣ ri ∈ R and pni | pmri for each i

}
.

For each i we have two possibilities: if ni � m , then always pni | pmri , and if ni > m ,
then pni | pmri forces ri ∈ Rpni−m . Thus

Ker p(h)m =

⎛⎜⎝ ⊕
1�i�s
ni�m

Rqiai

⎞⎟⎠⊕

⎛⎜⎝ ⊕
1�i�s
ni>m

Rpni−mqiai

⎞⎟⎠ .

To compute the dimension of this space, note that by Lemma 7 the minimum polyno-
mial of qiai is pni and the minimum polynomial of pni−mqiai is pm if ni > m . Con-
sequently, dimK(Rqiai) = (δ p) ·ni and, if ni > m , then dimK(Rpni−mqiai) = (δ p) ·m ,
which yields

dimK Ker p(h)m = (δ p)

⎛⎜⎝ ∑
1�i�s
ni�m

ni + ∑
1�i�s
ni>m

m

⎞⎟⎠ .

Now choosing m � 1 and applying this formula for m and for m−1, we easily see that

dim
(
Ker p(h)m)−dim

(
Ker p(h)m−1) = (δ p) ∑

1�i�s
ni�m

1,

as needed. �
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We are now in a position to give a proof of Theorem 9, and so a proof of Theo-
rem 2.

Proof of Theorem 9. In order to prove the existence of the decomposition, we
argue by induction on n . If n = 1, then obviously V = Ra with a ∈ V \ {0} . Assume
that the result is true for vector spaces of dimension m < n . By Theorem 11, there
exists a∈V such that minpolh= minpola . By Theorem 12, there exists an h -invariant
subspace W of V such that V =W⊕Ra . By induction, there exist a1 , a2, . . . , as−1 ∈W
such that W = Ra1 ⊕ Ra2 ⊕ ·· · ⊕ Ras−1 and if di = minpolai , 1 � i � s− 1, then
d1 | d2 | · · · | ds−1 . Now minpolh|W = minpolW divides minpolh . Let as = a , then
minpolai | minpolh = minpolas for 1 � i � s−1 and the existence follows.

The unicity of the di follows immediately from Theorem 13. �

5. An example

As an application of the above techniques, we consider the endomorphism h of
a vector space V of dimension 7 over the rational field Q such that the matrix in the
basis B = {v1, . . . ,v7} is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
2 4 1 −1 −7 −2 −1
0 0 1 0 0 0 0
1 0 0 1 0 0 0
0 0 0 0 1 0 0
2 1 1 −1 −5 1 −1
1 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let us compute its rational canonical form C as well as the transition matrix P such
that P−1AP = C . Although the computations can be done by hand, we can make use
of a computer algebra system like Scilab [7].

The minimum polynomials of the elements of the basis B are

minpolv1 = x2−3x+2,

minpolv2 = x2−5x+6,

minpolv3 = x2−2x+1,

minpolv4 = x2−3x+2,

minpolv5 = x3−6x2 +11x−6,

minpolv6 = x2−5x+6,

minpolv7 = x2−3x+2.

We compute a vector whose minimum polynomial coincides with the minimum
polynomial of A . In this case, we could easily obtain factorisations of all these polyno-
mials as products of linear polynomials, but we will not use the factorisations to obtain
that vector.
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Following Theorem 11, we set w1 = v1 . Now we apply Lemma 10 to compute
a vector w2 with minimum polynomial lcm{minpolw1,minpolv2} = lcm{x2 − 3x +
2,x2−5x+6}= x3−6x2 +11x−6. Let us find the factors of Lemma 3 with Lemma 4;
we will use the notation of these lemmas. Let f = minpolw1 = x2 − 3x+ 2 and g =
minpolv2 = x2 − 5x + 6. Since d = gcd{x2 − 3x + 2,x2 − 5x + 6} = x− 2, we can
compute p1 = rs = gcd{x2 − 3x + 2,(x− 2)2} = x− 2 and q1 = t = x− 1. Then we
can identify p2 = jk = gcd{x2 − 5x+ 6,(x− 2)2} = x− 2 and q2 = l = x− 3. Now
with p1 = rs = x− 2 and s/k = p1/d = (x− 2)/(x− 2) = 1 we compute p3 = s =
gcd{x− 2,1} = 1 and q3 = r = x− 2 and, with p2 = jk = x− 2 and p3 = s = 1 we
obtain p4 = k = gcd{x−2,1}= 1 and q4 = j = x−2. By Lemma 10, w2 = rw1 +kv2 =
(x−2)w1 + v2 = 3v2 + v4 +2v6 + v7 has minimum polynomial x3 −6x2 +11x−6.

We use again Lemma 3 now with the polynomials f = minpolw2 = x3 − 6x2 +
11x− 6 and g = minpolv3 = x2 − 2x + 1 to obtain a vector w3 with minimum poly-
nomial minpolw3 = lcm{ f ,g} = x4 − 7x3 + 17x2 − 17x + 6. Note that d = rk =
gcd{minpolw2,minpolv3} = x − 1. We can compute p1 = gcd{x3 − 6x2 + 11x−
6,(x−1)3} = x− 1 = rs and q1 = t = x2 − 5x + 6. Now with g and d we can
identify p2 = jk = gcd{x2 − 2x + 1,(x− 1)2} = x2 − 2x+ 1 and l = 1. Now s/k =
p1/d = (x−1)/(x−1) = 1. With p1 = rs = x− 1 and s/k = 1 we obtain p3 = s =
gcd{rs,(s/k)1}= gcd{x−1,1}= 1 and q3 = r = x−1, and, from p2 = jk = x2−2x+1
and p3 = s = 1 we obtain p4 = k = gcd{x2−2x+1,1}= 1 and q4 = j = x2−2x+1.
By Lemma 10, w3 = rw2 +kv3 = (x−1)w2+v3 = 3v2+v3+v6 . Note that minpolw3 =
minpolA , and so we can work with this element.

The set {w3,h(w3),h2(w3),h3(w3)} is linearly independent and we can complete
it with v1 , v4 , v5 to obtain a new basis

B1 = {v1,v4,v5,w3,h(w3),h2(w3),h3(w3)}

of V . The matrix whose columns are the coordinate vectors of B1 in B is

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 0 0 3 11 34 103
0 0 0 1 1 1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 5 16 49
0 0 0 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix of h in B1 is

B = Q−1AQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
−6 3 19/2 0 0 0 −6

25/2 −7 −89/4 1 0 0 17
−8 5 16 0 1 0 −17
3/2 −1 −13/4 0 0 1 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Now we will make zeros in the last four rows and the first three columns, starting from
the last row, with similarity elementary operations. In order to know the new basis, we
can also make the column operations on the matrix Q . We do it by putting Q below
B . We add to the first column −3/2 times the sixth column, to the second column
the sixth column, and to the third column 13/4 times the sixth column, and we do the
inverse operations on files, namely we add to the sixth row 3/2 times the first row, −1
times the second row, and −13/4 times the third row. We obtain the following matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
−6 3 19/2 0 0 0 −6

25/2 −7 −89/4 1 0 0 17
−6 4 51/4 0 1 0 −17
0 0 0 0 0 1 7
1 0 0 0 0 0 0

−51 34 221/2 3 11 34 103
−3/2 1 13/4 1 1 1 1

0 1 0 0 0 0 0
0 0 1 0 0 0 0

−24 16 52 1 5 16 49
−3 2 13/2 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we subtract to the first column −6 times the fifth column, to the second column
4 times the fifth column, and to the third column 51/4 times the fifth column, and
we make the inverse operations on rows, that is, we add to the fifth row −6 times the
first row, 4 times the second row, and 51/4 times the third row. We get the following
matrix: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
−6 3 19/2 0 0 0 −6
9/2 −3 −19/2 1 0 0 17
0 0 0 0 1 0 −17
0 0 0 0 0 1 7
1 0 0 0 0 0 0
15 −10 −119/4 3 11 34 103
9/2 −3 −19/2 1 1 1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
6 −4 −47/4 1 5 16 49
3 −2 −25/4 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, we subtract to the first column 9/2 times the fourth one, to the second column
−3 times the fourth one, and to the third column −19/2 times the fourth one, and we
do the corresponding inverse operations on rows, namely we add to the fourth row 9/2
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times the first one, −3 times the second one, and −19/2 times the third one. We obtain
the following matrix: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 −6
0 0 0 1 0 0 17
0 0 0 0 1 0 −17
0 0 0 0 0 1 7
1 0 0 0 0 0 0

3/2 −1 −5/4 3 11 34 103
0 0 0 1 1 1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0

3/2 −1 −9/4 1 5 16 49
3 −2 −25/4 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let v1 = v1 +(3/2)v2 +(3/2)v6 + 3v7 , v2 = −v2 + v4− v6 − 2v7 , v3 = −(5/4)v2 +
v5 − (9/4)v6 − (25/4)v7 . Then BW = {v1, v2, v3} is a basis for an h -invariant sub-
space W and the matrix of h|W with respect to BW is

A1 =

⎡⎣2 0 0
1 1 0
0 0 1

⎤⎦ .

Now minpol v1 = x2−3x+2 and minpol v2 = minpol v3 = x−1. Hence minpol v1 =
minpolA1 . Therefore we can consider the linearly independent set {w1,h(w1)} =
{v1,2v1 + v2} , that we complete to a basis BW = {v3, v1,2v1 + v2} of W by adjoin-
ing the element v3 , that is, BW = {w̃1, w̃2, w̃3} with w̃1 = (−5/4)v2 + v5− (9/4)v6−
(25/4)v7 , w̃2 = v1 + (3/2)v2 + (3/2)v6 + 3v7 , and w̃3 = 2v1 + 2v2 + v4 + 2v6 + 4v7 .
Let Q be the matrix whose columns are the coordinate vectors of this basis in the basis
BW , that is,

Q =

⎡⎣0 1 2
0 0 1
1 0 0

⎤⎦ .

The matrix of h|W in this new basis is

Q
−1

A1Q =

⎡⎣1 0 0
0 0 −2
0 1 3

⎤⎦ .

Since the entry (3,1) of this matrix is 0, this matrix is in the block-diagonal form
corresponding to the rational canonical form and the algorithm ends here. Then W =
〈w̃1〉 ⊕Rw̃2 and both summands are h -invariant. Hence the rational canonical form
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of h is

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 0 −2 0 0 0 0
0 1 3 0 0 0 0
0 0 0 0 0 0 −6
0 0 0 1 0 0 17
0 0 0 0 1 0 −17
0 0 0 0 0 1 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The transition matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 0 0 0 0
−5/4 3/2 2 3 11 34 103

0 0 0 1 1 1 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0

−9/4 3/2 2 1 5 16 49
−25/4 3 4 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
satisfies that P−1AP = C . The invariant factors are d1 = x− 1, d2 = x2 − 3x + 2,
d3 = x4−7x3 +17x2−17x+6.

Acknowledgements. This work has been supported by the grants MTM2014-54707-
C3-1-P from the Ministerio de Economı́a y Competitividad, Spain, and FEDER, Euro-
pean Union, and PROMETEO/2017/057 from the Generalitat (Valencian Community,
Spain). The first author has been also supported by a project from the National Natural
Science Foundation of China (NSFC, No. 11271085) and a project of Natural Science
Foundation of Guangdong Province, China (No. 2015A030313791). The third author
has been also supported by a predoctoral grant from the programme Atracció del talent
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e-mail: Ramon.Esteban@uv.es

and
Institut Universitari de Matemàtica Pura i Aplicada

Universitat Politècnica de València
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