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BESSEL PROPERTY AND BASICITY OF THE

SYSTEM OF ROOT VECTOR–FUNCTIONS OF DIRAC

OPERATOR WITH SUMMABLE COEFFICIENT

VALI M. KURBANOV AND AFSANA M. ABDULLAYEVA

Abstract. In the paper we study one-dimensional Dirac operator

Dy = By′ +P(x)y, y = (y1, y2)
T ,

where B =
(

0 1
−1 0

)
, P(x) = diag(p(x),q(x)) , p(x) and q(x) are complex valued functions

from the class L1(G) , G = (0,2π) .
Necessary and sufficient conditions of Bessel property and unconditional basicity (the

Riesz basicity) of the system of root-functions of the operator D in L2
2(G) are set up. A theorem

on equivalent basicity for these systems in L2
2(G) is proved.
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