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MATRIX N –DILATIONS OF QUANTUM CHANNELS

JEREMY LEVICK AND ROBERT T. W. MARTIN

Abstract. We study unital quantum channels which are obtained via partial trace of a ∗ -auto-
morphism of a finite unital matrix ∗ -algebra. We prove that any such channel, q , on a unital
matrix ∗ -algebra, A , admits a finite matrix N -dilation, αN , for any N ∈ N . Namely, αN is
a ∗ -automorphism of a larger bi-partite matrix algebra A ⊗B so that partial trace of M -fold
self-compositions of αN yield the M -fold self-compositions of the original quantum channel,
for any 1 � M � N . This demonstrates that repeated applications of the channel can be viewed
as ∗ -automorphic time evolution of a larger finite quantum system.
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