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QUADRATIC WEIGHTED GEOMETRIC MEAN

IN HERMITIAN UNITAL BANACH ∗–ALGEBRAS

S. S. DRAGOMIR

(Communicated by F. Kittaneh)

Abstract. In this paper we introduce the quadratic weighted geometric mean

x�ν y :=
∣∣∣∣∣yx−1

∣∣ν x
∣∣∣2

for invertible elements x, y in a Hermitian unital Banach ∗ -algebra and real number ν . We
show that

x�ν y = |x|2 �ν |y|2 ,

where �ν is the usual geometric mean and provide some inequalities for this mean under various
assumptions for the elements involved.

1. Introduction

Let A be a unital Banach ∗ -algebra with unit 1 . An element a ∈ A is called
selfadjoint if a∗ = a. A is called Hermitian if every selfadjoint element a in A has real
spectrum σ (a) , namely σ (a) ⊂ R .

In what follows we assume that A is a Hermitian unital Banach ∗ -algebra.
We say that an element a is nonnegative and write this as a � 0 if a∗ = a and

σ (a) ⊂ [0,∞) . We say that a is positive and write a > 0 if a � 0 and 0 /∈ σ (a) . Thus
a > 0 implies that its inverse a−1 exists. Denote the set of all invertible elements of A
by Inv (A) . If a,b ∈ Inv (A) , then ab ∈ Inv (A) and (ab)−1 = b−1a−1. Also, saying
that a � b means that a−b � 0 and, similarly a > b means that a−b > 0.

The Shirali-Ford theorem asserts that [12] (see also [2, Theorem 41.5])

a∗a � 0 for every a ∈ A. (SF)

Based on this fact, Okayasu [11], Tanahashi and Uchiyama [13] proved the following
fundamental properties (see also [5]):

(i) If a, b ∈ A, then a � 0, b � 0 imply a+b � 0 and α � 0 implies αa � 0;

(ii) If a, b ∈ A, then a > 0, b � 0 imply a+b > 0;

Mathematics subject classification (2010): 47A63, 47A30, 15A60, 26D15, 26D10.
Keywords and phrases: Weighted geometric mean, weighted harmonic mean, Young’s inequality, op-

erator modulus, arithmetic mean-geometric mean-harmonic mean inequality.

c© � � , Zagreb
Paper OaM-12-61

1009

http://dx.doi.org/10.7153/oam-2018-12-61


1010 S. S. DRAGOMIR

(iii) If a, b ∈ A, then either a � b > 0 or a > b � 0 imply a > 0;

(iv) If a > 0, then a−1 > 0;

(v) If c > 0, then 0 < b < a if and only if cbc < cac, also 0 < b � a if and only if
cbc � cac;

(vi) If 0 < a < 1, then 1 < a−1;

(vii) If 0 < b < a, then 0 < a−1 < b−1, also if 0 < b � a, then 0 < a−1 � b−1.

Okayasu [11] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach ∗ -algebra with continuous involution, namely if a, b ∈ A and
p ∈ [0,1] then a > b (a � b) implies that ap > bp (ap � bp) .

In order to introduce the real power of a positive element, we need the following
facts [2, Theorem 41.5].

Let a∈ A and a > 0, then 0 /∈ σ (a) and the fact that σ (a) is a compact subset of
C implies that inf{z : z ∈ σ (a)} > 0 and sup{z : z ∈ σ (a)} < ∞. Choose γ to be close
rectifiable curve in {Rez > 0}, the right half open plane of the complex plane, such
that σ (a) ⊂ ins(γ) , the inside of γ. Let G be an open subset of C with σ (a) ⊂ G. If
f : G → C is analytic, we define an element f (a) in A by

f (a) :=
1

2π i

∫
γ

f (z) (z−a)−1 dz.

It is well known (see for instance [3, pp. 201–204]) that f (a) does not depend on the
choice of γ and the Spectral Mapping Theorem (SMT)

σ ( f (a)) = f (σ (a))

holds.
For any α ∈ R we define for a ∈ A and a > 0, the real power

aα :=
1

2π i

∫
γ
zα (z−a)−1 dz,

where zα is the principal α -power of z. Since A is a Banach ∗ -algebra, then aα ∈ A.
Moreover, since zα is analytic in {Rez > 0}, then by (SMT) we have

σ (aα) = (σ (a))α = {zα : z ∈ σ (a)} ⊂ (0,∞) .

Following [5], we list below some important properties of real powers:

(viii) If 0 < a ∈ A and α ∈ R , then aα ∈ A with aα > 0 and
(
a2
)1/2 = a, [13,

Lemma 6];

(ix) If 0 < a ∈ A and α, β ∈ R , then aαaβ = aα+β ;

(x) If 0 < a ∈ A and α ∈ R , then (aα)−1 =
(
a−1
)α = a−α ;
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(xi) If 0 < a, b ∈ A , α, β ∈ R and ab = ba, then aαbβ = bβ aα .

We define the following means for ν ∈ [0,1] , see also [5] for different notations:

a∇νb := (1−ν)a+ νb, a, b ∈ A (A)

the weighted arithmetic mean of (a,b) ,

a!νb :=
(
(1−ν)a−1 + νb−1)−1

, a, b > 0 (H)

the weighted harmonic mean of positive elements (a,b) and

a�νb := a1/2
(
a−1/2ba−1/2

)υ
a1/2 (G)

the weighted geometric mean of positive elements (a,b) . Our notations above are moti-
vated by the classical notations used in operator theory. For simplicity, if ν = 1

2 , we use
the simpler notations a∇b, a!b and a�b. The definition of weighted geometric mean
can be extended for any real ν.

In [5], B. Q. Feng proved the following properties of these means in A a Hermitian
unital Banach ∗ -algebra:

(xii) If 0 < a, b ∈ A, then a!b = b!a and a�b = b�a;

(xiii) If 0 < a, b ∈ A and c ∈ Inv (A) , then

c∗ (a!b)c = (c∗ac)!(c∗bc) and c∗ (a�b)c = (c∗ac)�(c∗bc) ;

(xiv) If 0 < a, b ∈ A and ν ∈ [0,1] , then

(a!νb)−1 =
(
a−1)∇ν

(
b−1) and

(
a−1)�ν

(
b−1)= (a�νb)−1 .

Utilising the Spectral Mapping Theorem and the Bernoulli inequality for real num-
bers, B. Q. Feng obtained in [5] the following inequality between the weighted means
introduced above:

a∇νb � a�νb � a!νb (HGA)

for any 0 < a, b ∈ A and ν ∈ [0,1] .
In [13], Tanahashi and Uchiyama obtained the following identity of interest:

LEMMA 1. If 0 < c, d and λ is a real number, then

(dcd)λ = dc1/2
(
c1/2d2c1/2

)λ−1
c1/2d. (1.1)

We can prove the following fact:
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PROPOSITION 1. For any 0 < a, b ∈ A we have

b�1−νa = a�νb (1.2)

for any real number ν.

Proof. We take in (1.1) d = b−1/2 and c = a to get

(
b−1/2ab−1/2

)λ
= b−1/2a1/2

(
a1/2b−1a1/2

)λ−1
a1/2b−1/2.

If we multiply both sides of this equality by b1/2 we get

b1/2
(
b−1/2ab−1/2

)λ
b1/2 = a1/2

(
a1/2b−1a1/2

)λ−1
a1/2. (1.3)

Since

(
a1/2b−1a1/2

)λ−1
=
[(

a1/2b−1a1/2
)−1

]1−λ
=
(
a−1/2ba−1/2

)1−λ

then by (1.3) we get
a�1−νb = b�νa.

By swapping in this equality a with b we get the desired result (1.2). �

In this paper we introduce the quadratic weighted geometric mean for invertible
elements x, y in a Hermitian unital Banach ∗ -algebra and real number ν . We show
that it can be represented in terms of �ν , which is the usual geometric mean and provide
some inequalities for this mean under various assumptions for the elements involved.

2. Quadratic weighted geometric mean

In what follows we assume that A is a Hermitian unital Banach ∗ -algebra.
We observe that if x ∈ Inv (A) , then x∗ ∈ Inv (A) , which implies that x∗x ∈

Inv(A) . Therefore by Shirali-Ford theorem we have x∗x > 0. If we define the mod-
ulus of the element c ∈ A by |c| := (c∗c)1/2 then for c ∈ Inv (A) we have |c|2 > 0 and
by (viii), |c| > 0. If c > 0, then by (viii) we have |c| = c.

For x, y ∈ Inv (A) we consider the element

d := (x∗)−1 y∗yx−1 =
(
yx−1)∗ yx−1 =

∣∣yx−1
∣∣2 . (2.1)

Since yx−1 ∈ Inv (A) then d > 0, d ∈ Inv(A) , d−1 =
∣∣yx−1

∣∣−2
, and also

d−1 =
(
(x∗)−1 y∗yx−1

)−1
= xy−1 (y−1)∗ x∗ =

∣∣∣(y−1)∗ x∗
∣∣∣2 . (2.2)
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For ν ∈ R , by using the property (viii) we get that dν =
∣∣yx−1

∣∣2ν
> 0 and dν/2 =∣∣yx−1

∣∣ν > 0. Since

x∗dνx = x∗
∣∣yx−1

∣∣2ν
x =

∣∣∣∣∣yx−1
∣∣ν x
∣∣∣2

and
∣∣yx−1

∣∣ν x ∈ Inv (A) , it follows that x∗dνx > 0.
We introduce the quadratic weighted mean of (x,y) with x, y ∈ Inv (A) and the

real weight ν ∈ R , as the positive element denoted by x�νy and defined by

x�νy := x∗
(
(x∗)−1 y∗yx−1

)ν
x = x∗

∣∣yx−1
∣∣2ν

x =
∣∣∣∣∣yx−1

∣∣ν x
∣∣∣2 . (S)

When ν = 1/2, we denote x�1/2y by x�y and we have

x�y = x∗
(
(x∗)−1 y∗yx−1

)1/2
x = x∗

∣∣yx−1
∣∣x =

∣∣∣∣∣yx−1
∣∣1/2

x
∣∣∣2 .

We can also introduce the 1/2-quadratic weighted mean of (x,y) with x, y ∈
Inv (A) and the real weight ν ∈ R by

x�1/2
ν y := (x�νy)1/2 =

∣∣∣∣∣yx−1
∣∣ν x
∣∣∣ . (1/2-S)

Correspondingly, when ν = 1/2 we denote x�1/2y and we have

x�1/2y =
∣∣∣∣∣yx−1

∣∣1/2
x
∣∣∣ .

The following equalities hold:

PROPOSITION 2. For any x, y ∈ Inv (A) and ν ∈ R we have

(x�νy)−1 = (x∗)−1 �ν (y∗)−1 (2.3)

and (
x−1)�ν

(
y−1)= (x∗�νy∗)−1 . (2.4)

Proof. We observe that for any x, y ∈ Inv (A) and ν ∈ R we have

(x�νy)−1 =
(
x∗
(
(x∗)−1 y∗yx−1

)ν
x
)−1

= x−1
(
xy−1 (y∗)−1 x∗

)ν
(x∗)−1

and

(x∗)−1 �ν (y∗)−1

=
(
(x∗)−1

)∗(((
(x∗)−1

)∗)−1(
(y∗)−1

)∗
(y∗)−1

(
(x∗)−1

)−1
)ν

(x∗)−1

= x−1
(
xy−1 (y∗)−1 x∗

)ν
(x∗)−1 ,



1014 S. S. DRAGOMIR

which proves (2.3).
If we replace in (2.3) x by x−1 and y by y−1 we get

((
x−1)�ν

(
y−1))−1

= x∗�νy∗

and by taking the inverse in this equality we get (2.4). �
If we take in (S) x = a1/2 and y = b1/2 with a, b > 0 then we get

a1/2�νb1/2 = a�νb

for any ν ∈ R that shows that the quadratic weighted mean can be seen as an extension
of the weighted geometric mean for positive elements considered in the introduction.

Let x, y ∈ Inv (A) . If we take in the definition of “�ν ” the elements a = |x|2 > 0
and b = |y|2 > 0 we also have for real ν

|x|2 �ν |y|2 = |x|
(
|x|−1 |y|2 |x|−1

)υ |x| = |x|
∣∣∣|y| |x|−1

∣∣∣2υ |x| =
∣∣∣∣∣∣|y| |x|−1

∣∣∣υ |x|∣∣∣2 .

It is then natural to ask how the positive elements x�νy and |x|2 �ν |y|2 do com-
pare, when x, y ∈ Inv (A) and ν ∈ R ?

We need the following lemma that provides a slight generalization of Lemma 1.

LEMMA 2. If 0 < c, d ∈ Inv (A) and λ is a real number, then

(dcd∗)λ = dc1/2
(
c1/2 |d|2 c1/2

)λ−1
c1/2d∗. (2.5)

Proof. We provide an argument along the lines in the proof of Lemma 7 from [13].

Consider the functions F (λ ) := (dcd∗)λ and G(λ ) := dc1/2
(
c1/2 |d|2 c1/2

)λ−1
c1/2d∗

defined for λ ∈ R . It is obvious that F (1) = G(1) .
We have

G2
(

1
2

)
= dc1/2

(
c1/2 |d|2 c1/2

)−1/2
c1/2d∗dc1/2

(
c1/2 |d|2 c1/2

)−1/2
c1/2d∗

= dc1/2
(
c1/2 |d|2 c1/2

)−1/2
c1/2 |d|2 c1/2

(
c1/2 |d|2 c1/2

)−1/2
c1/2d∗

= dcd∗ = F2
(

1
2

)

and

G22
(

1
22

)
=

(
dc1/2

(
c1/2 |d|2 c1/2

) 1−22

22
c1/2d∗

)22

= dc1/2
(
c1/2 |d|2 c1/2

)− 3
4
c1/2d∗dc1/2

(
c1/2 |d|2 c1/2

)− 3
4
c1/2d∗
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dc1/2
(
c1/2 |d|2 c1/2

)− 3
4
c1/2d∗dc1/2

(
c1/2 |d|2 c1/2

)− 3
4
c1/2d∗

= dc1/2
(
c1/2 |d|2 c1/2

)− 3
4
c1/2 |d|2 c1/2

(
c1/2 |d|2 c1/2

)− 3
4
c1/2d∗

dc1/2
(
c1/2 |d|2 c1/2

)− 3
4
c1/2 |d|2 c1/2

(
c1/2 |d|2 c1/2

)− 3
4
c1/2d∗

= dc1/2
(
c1/2 |d|2 c1/2

)− 1
2
c1/2d∗dc1/2

(
c1/2 |d|2 c1/2

)− 1
2
c1/2d∗

= dc1/2
(
c1/2 |d|2 c1/2

)− 1
2
c1/2 |d|2 c1/2

(
c1/2 |d|2 c1/2

)− 1
2
c1/2d∗

= dcd∗ = F22
(

1
22

)
.

By induction we can conclude that G2n ( 1
2n

)
= F2n ( 1

2n

)
for any natural number

n � 0. Since for any a > 0 we have
(
a2
)1/2 = a, [13, Lemma 6], hence G

(
1
2n

)
=

F
(

1
2n

)
for any natural number n � 0.

Since F (λ ) ; G(λ ) are analytic on the real line R and 1
2n → 0 for n → 0, we

deduce that F (λ ) = G(λ ) for any λ ∈ R . �

REMARK 1. The identity (2.5) was proved by. T. Furuta in [6] for positive opera-
tor c and invertible operator d in the Banach algebra of all bonded linear operators on
a Hilbert space by using the polar decomposition of the invertible operator dc1/2 .

THEOREM 1. If x, y ∈ Inv (A) and λ is a real number, then

x�νy = |x|2 �ν |y|2 (2.6)

Proof. If we take d = (x∗)−1 and c = |y|2 > 0 in (2.5), then we get

(
(x∗)−1 |y|2 x−1

)λ
= (x∗)−1 |y|

(
|y|
∣∣∣(x∗)−1

∣∣∣2 |y|)λ−1

|y|x−1

= (x∗)−1 |y|
(
|y|
(
(x∗)−1

)∗
(x∗)−1 |y|

)λ−1
|y|x−1

= (x∗)−1 |y|
(
|y|x−1 (x∗)−1 |y|

)λ−1 |y|x−1

= (x∗)−1 |y|
(
|y|(x∗x)−1 |y|

)λ−1 |y|x−1

= (x∗)−1 |y|
(
|y| |x|−2 |y|

)λ−1 |y|x−1.

If we multiply this equality at left by x∗ and at right by x , we get

x∗
(
(x∗)−1 |y|2 x−1

)λ
x = |y|

(
|y| |x|−2 |y|

)λ−1 |y| = |y|
(
|y|−1 |x|2 |y|−1

)1−λ |y| ,
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which means that
x�νy = |y|2 �1−ν |x|2 . (2.7)

By (1.2) we have for a = |x|2 > 0 and b = |y|2 that

|y|2 �1−ν |x|2 = |x|2 �ν |y|2 . (2.8)

Utilising (2.7) and (2.8) we deduce (2.6). �
Now, assume that f (z) is analytic in the right half open plane {Rez > 0} and for

the interval I ⊂ (0,∞) assume that f (z) � 0 for any z∈ I. If u∈ A such that σ (u)⊂ I,
then by (SMT) we have

σ ( f (u)) = f (σ (u)) ⊂ f (I) ⊂ [0,∞)

meaning that f (u) � 0 in the order of A.
Therefore, we can state the following fact that will be used to establish various

inequalities in A.

LEMMA 3. Let f (z) and g(z) be analytic in the right half open plane {Rez > 0}
and for the interval I ⊂ (0,∞) assume that f (z) � g(z) for any z ∈ I. Then for any
u ∈ A with σ (u) ⊂ I we have f (u) � g(u) in the order of A.

We have the following inequalities between means:

THEOREM 2. For any x, y ∈ Inv (A) and ν ∈ [0,1] we have

|x|2 ∇ν |y|2 � x�νy � |x|2!ν |y|2 . (2.9)

Proof. 1. Follows by the inequality (HGA) and representation (2.6)
2. A direct proof using Lemma 3 is as follows.
For t > 0 and ν ∈ [0,1] we have the scalar arithmetic mean-geometric mean-

harmonic mean inequality

1−ν + νt � tν �
(
1−ν + νt−1)−1

. (2.10)

Consider the functions f (z) := 1− ν + νz , g(z) := zν and h(z) =
(
1−ν + νz−1

)−1

where zν is the principal of the power function. Then f (z) , g(z) and h(z) are analytic
in the right half open plane {Rez > 0} of the complex plane and by (2.10) we have
f (z) � g(z) � h(z) for any z > 0.

If 0 < u ∈ Inv (A) and ν ∈ [0,1] , then by Lemma 3 we get

1−ν + νu � uν �
(
1−ν + νu−1)−1

.

If x, y ∈ Inv (A) , then by taking u =
∣∣yx−1

∣∣2 ∈ Inv (A) we get

1−ν + ν
∣∣yx−1

∣∣2 �
∣∣yx−1

∣∣2ν �
(
1−ν + ν

∣∣yx−1
∣∣−2
)−1

(2.11)
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for any ν ∈ [0,1] .
If a > 0 and c ∈ Inv (A) then obviously c∗ac =

∣∣a1/2c
∣∣2 > 0. This implies that, if

a � b > 0, then c∗ac � c∗bc > 0.
Therefore, if we multiply the inequality (2.11) at left with x∗ and at right with x,

then we get

x∗
(
1−ν + ν

∣∣yx−1
∣∣2)x � x∗

∣∣yx−1
∣∣2ν

x � x∗
(
1−ν + ν

∣∣yx−1
∣∣−2
)−1

x (2.12)

for any ν ∈ [0,1] .
Observe that

x∗
(
1−ν + ν

∣∣yx−1
∣∣2)x = x∗

(
1−ν + ν (x∗)−1 y∗yx−1

)
x

= x∗
(
1−ν + ν (x∗)−1 y∗yx−1

)
x

= (1−ν) |x|2 + ν |y|2 = |x|2 ∇ν |y|2

and

x∗
(
1−ν + ν

∣∣yx−1
∣∣−2
)−1

x = x∗
(

1−ν + ν
(
(x∗)−1 y∗yx−1

)−1
)−1

x

= x∗
(
1−ν + νxy−1 (y∗)−1 x∗

)−1
x

= x∗
(
x
(
(1−ν)x−1 (x∗)−1 + νy−1 (y∗)−1

)
x∗
)−1

x

= x∗
(
x
(
(1−ν)(x∗x)−1 + ν (y∗y)−1

)
x∗
)−1

x

= x∗ (x∗)−1
(
(1−ν)(x∗x)−1 + ν (y∗y)−1

)−1
x−1x

=
(
(1−ν) |x|−2 + ν |y|−2

)−1
= |x|2!ν |y|2 .

Therefore by (2.12) we get the desired result (2.9). �
We can define the weighted means for ν ∈ [0,1] and the elements x, y ∈ Inv (A)

and ν ∈ [0,1] by

x∇1/2
ν y :=

(
|x|2 ∇ν |y|2

)1/2
=
(
(1−ν) |x|2 + ν |y|2

)1/2

and

x!1/2
ν y :=

(
|x|2!ν |y|2

)1/2
=
(
(1−ν) |x|−2 + ν |y|−2

)−1/2
.

COROLLARY 1. Let A be a Hermitian unital Banach ∗ -algebra with continuous
involution. Then for any x, y ∈ Inv (A) and ν ∈ [0,1] we have

x∇1/2
ν y � x�1/2

ν y � x!1/2
ν y. (2.13)
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Proof. It follows by taking the square root in the inequality (2.9 ) and by using
Okayasu’s result from the introduction. �

Recall that a C∗ -algebra A is a Banach ∗ -algebra such that the norm satisfies the
condition

‖a∗a‖ = ‖a‖2 for any a ∈ A.

If a C∗ -algebra A has a unit 1 , then automatically ‖1‖ = 1.

It is well know that, if A is a C∗ -algebra, then (see for instance [10, 2.2.5 Theo-
rem])

b � a � 0 implies that ‖b‖ � ‖a‖ .

COROLLARY 2. Let A be a unital C∗ -algebra. Then for any x, y ∈ Inv (A) and
ν ∈ [0,1] we have

(1−ν)‖x‖2 + ν ‖y‖2 �
∥∥∥(1−ν) |x|2 + ν |y|2

∥∥∥�
∥∥∥∣∣yx−1

∣∣ν x
∥∥∥2

. (2.14)

3. Refinements and reverses

If X is a linear space and C ⊆ X a convex subset in X , then for any convex
function f :C→R and any zi ∈C,ri � 0 for i∈ {1, . . . ,k} ,k � 2 with ∑k

i=1 ri = Rk > 0
one has the weighted Jensen’s inequality:

1
Rk

k

∑
i=1

ri f (zi) � f

(
1
Rk

k

∑
i=1

rizi

)
. (J)

If f : C → R is strictly convex and ri > 0 for i ∈ {1, . . . ,k} then the equality case hods
in (J) if and only if z1 = . . . = zn.

By Pn we denote the set of all nonnegative n -tuples (p1, . . . , pn) with the prop-
erty that ∑n

i=1 pi = 1. Consider the normalised Jensen functional

Jn ( f ,x,p) =
n

∑
i=1

pi f (xi)− f

(
n

∑
i=1

pixi

)
� 0,

where f : C → R be a convex function on the convex set C and x = (x1, . . . ,xn) ∈Cn

and p ∈Pn.

The following result holds [4]:

LEMMA 4. If p, q ∈Pn , qi > 0 for each i ∈ {1, . . . ,n} then

max
1�i�n

{
pi

qi

}
Jn ( f ,x,q) � Jn ( f ,x,p) � min

1�i�n

{
pi

qi

}
Jn ( f ,x,q)(� 0) . (3.1)
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In the case n = 2, if we put p1 = 1− p, p2 = p, q1 = 1− q and q2 = q with
p ∈ [0,1] and q ∈ (0,1) then by (3.1) we get

max

{
p
q
,
1− p
1−q

}
[(1−q) f (x)+q f (y)− f ((1−q)x+qy)] (3.2)

� (1− p) f (x)+ p f (y)− f ((1− p)x+ py)

� min

{
p
q
,
1− p
1−q

}
[(1−q) f (x)+q f (y)− f ((1−q)x+qy)]

for any x, y ∈C.
If we take q = 1

2 in (3.2), then we get

2max{t,1− t}
[

f (x)+ f (y)
2

− f

(
x+ y

2

)]
(3.3)

� (1− t) f (x)+ t f (y)− f ((1− t)x+ ty)

� 2min{t,1− t}
[

f (x)+ f (y)
2

− f

(
x+ y

2

)]

for any x, y ∈C and t ∈ [0,1] .
We consider the scalar weighted arithmetic, geometric and harmonic means de-

fined by Aν (a,b) := (1−ν)a+νb, Gν (a,b) := a1−νbν and Hν (a,b)= A−1
ν
(
a−1,b−1

)
where a, b > 0 and ν ∈ [0,1] .

If we take the convex function f : R →(0,∞) , f (x) = exp(αx) , with α �= 0, then
we have from (3.2) that

max

{
p
q
,
1− p
1−q

}
[Aq (exp(αx) ,exp(αy))− exp(αAq (a,b))] (3.4)

� Ap (exp(αx) ,exp(αy))− exp(αAp (a,b))

� min

{
p
q
,
1− p
1−q

}
[Aq (exp(αx) ,exp(αy))− exp(αAq (a,b))]

for any p ∈ [0,1] and q ∈ (0,1) and any x, y ∈ R .
For q = 1

2 we have by (3.4) that

2max{p,1− p}[A(exp(αx) ,exp(αy))− exp(αA(a,b))] (3.5)

� Ap (exp(αx) ,exp(αy))− exp(αAp (a,b))
� 2min{p,1− p} [A(exp(αx) ,exp(αy))− exp(αA(a,b))]

for any p ∈ [0,1] and any x, y ∈ R .
If we take x = lna and y = lnb in (3.4), then we get

max

{
p
q
,
1− p
1−q

}[
Aq (aα ,bα)−Gα

q (a,b)
]

(3.6)

� Ap (aα ,bα)−Gα
p (a,b)

� min

{
p
q
,
1− p
1−q

}[
Aq (aα ,bα)−Gα

q (a,b)
]
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for any a, b > 0, for any p ∈ [0,1] , q ∈ (0,1) and α �= 0.
For q = 1

2 we have by (3.6) that

max{p,1− p}
(
b

α
2 −a

α
2

)2
� Ap (aα ,bα)−Gα

p (a,b) (3.7)

� min{p,1− p}
(
b

α
2 −a

α
2

)2

for any a, b > 0, for any p ∈ [0,1] and α �= 0.
For α = 1 we get from (3.7) that

max{p,1− p}
(√

b−√
a
)2

� Ap (a,b)−Gp (a,b) (3.8)

� min{p,1− p}
(√

b−√
a
)2

for any a, b > 0 and for any p∈ [0,1] , which are the inequalities obtained by Kittaneh
and Manasrah in [8] and [9].

For α = 1 in (3.6) we obtain

max

{
p
q
,
1− p
1−q

}
[Aq (a,b)−Gq (a,b)] (3.9)

� Ap (a,b)−Gp (a,b)

� min

{
p
q
,
1− p
1−q

}
[Aq (a,b)−Gq (a,b)] ,

for any a, b > 0, for any p ∈ [0,1] , which is the inequality (2.1) from [1] in the
particular case λ = 1 in a slightly more general form for the weights p, q.

We have the following refinement and reverse for the inequality (2.1):

THEOREM 3. For any x, y ∈ Inv (A) we have for p ∈ [0,1] and q ∈ (0,1) that

max

{
p
q
,
1− p
1−q

}(
|x|2 ∇q |y|2− x�qy

)
(3.10)

� |x|2 ∇p |y|2− x�py

� min

{
p
q
,
1− p
1−q

}(
|x|2 ∇q |y|2 − x�qy

)
.

In particular, we have

2max{p,1− p}
(
|x|2 ∇ |y|2 − x�y

)
(3.11)

� |x|2 ∇p |y|2− x�py

� 2min{p,1− p}
(
|x|2 ∇ |y|2 − x�y

)
,

for any p ∈ [0,1] .
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Proof. From the inequality (3.9) for a = 1 and b = t > 0 we have

max

{
p
q
,
1− p
1−q

}
(1−q+qt− tq) � 1− p+ pt− t p (3.12)

� min

{
p
q
,
1− p
1−q

}
(1−q+qt− tq) ,

where p ∈ [0,1] and q ∈ (0,1) .

Consider the functions f (z) := max
{

p
q , 1−p

1−q

}
(1−q+qz− zq) , g(z) := 1− p+

pz− zp and h(z) = min
{

p
q , 1−p

1−q

}
(1−q+qt− tq) where zν , ν ∈ {p,q}, is the princi-

pal of the power function. Then f (z) , g(z) and h(z) are analytic in the right half open
plane {Rez > 0} of the complex plane and and by (3.12) we have f (z) � g(z) � h(z)
for any z > 0.

If 0 < u ∈ Inv (A) and ν ∈ [0,1] , then by Lemma 3 we get

max

{
p
q
,
1− p
1−q

}
(1−q+qu−uq) � 1− p+ pu−up (3.13)

� min

{
p
q
,
1− p
1−q

}
(1−q+qu−uq) ,

where p ∈ [0,1] and q ∈ (0,1) .
If x, y ∈ Inv (A) , then by taking u =

∣∣yx−1
∣∣2 ∈ Inv (A) in (3.13) we have

max

{
p
q
,
1− p
1−q

}(
1−q+q

∣∣yx−1
∣∣2 −(∣∣yx−1

∣∣2)q)
(3.14)

� 1− p+ p
∣∣yx−1

∣∣2−(∣∣yx−1
∣∣2)p

� min

{
p
q
,
1− p
1−q

}(
1−q+q

∣∣yx−1
∣∣2−(∣∣yx−1

∣∣2)q)
,

where p ∈ [0,1] and q ∈ (0,1) .
By multiplying the inequality (3.14) at left with x∗ and at right with x we get the

desired result (3.10). �

REMARK 2. If 0 < a, b ∈ A, then by taking x = a1/2 and y = b1/2 in (3.10) and
(3.11) we get

max

{
p
q
,
1− p
1−q

}
(a∇qb−a�qb) � a∇pb−a�pb (3.15)

� min

{
p
q
,
1− p
1−q

}
(a∇qb−a�qb) ,

for any p ∈ [0,1] and q ∈ (0,1) .
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In particular, for q = 1/2 we have

2max{p,1− p}(a∇b−a�b) � a∇pb−a�pb (3.16)

� 2min{p,1− p}(a∇b−a�b),

for any p ∈ [0,1] .

4. Inequalities under boundedness conditions

We consider the function fν : [0,∞) → [0,∞) defined for ν ∈ (0,1) by

fν (t) = 1−ν + νt− tν = Aν (1,t)−Gν (1,t) ,

where Aν (·, ·) and Gν (·, ·) are the scalar arithmetic and geometric means.
The following lemma holds.

LEMMA 5. For any t ∈ [k,K] ⊂ [0,∞) we have

max
t∈[k,K]

fν (x) = Δν (k,K) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Aν (1,k)−Gν (1,k) if K < 1,

max{Aν (1,k)−Gν (1,k) ,Aν (1,K)−Gν (1,K)}
if k � 1 � K,

Aν (1,K)−Gν (1,K) if 1 < k
(4.1)

and

min
t∈[k,K]

fν (x) = δν (k,K) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aν (1,K)−Gν (1,K) if K < 1,

0 if k � 1 � K,

Aν (1,k)−Gν (1,k) if 1 < K.

(4.2)

Proof. The function fν is differentiable and

f ′ν (t) = ν
(
1− tν−1)= ν

t1−ν −1
t1−ν , t > 0,

which shows that the function fν is decreasing on [0,1] and increasing on [1,∞),
fν (0) = 1−ν, fν (1) = 0, limt→∞ fν (t) = ∞ and the equation fν (t) = 1−ν for t > 0

has the unique solution tν = ν
1

ν−1 > 1.
Therefore, by considering the 3 possible situations for the location of the interval

[k,K] and the number 1 we get the desired bounds (4.1) and (4.2). �

REMARK 3. We have the inequalities

0 � fν (t) � 1−ν for any t ∈
[
0,ν

1
ν−1

]
and

1−ν � fν (t) for any t ∈
[
ν

1
ν−1 ,∞

)
.
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Assume that x, y ∈ Inv (A) and the constants M > m > 0 are such that

M �
∣∣yx−1

∣∣� m. (4.3)

The inequality (4.3) is equivalent to

M2 �
∣∣yx−1

∣∣2 = (x∗)−1 |y|2 x−1 � m2.

If we multiply at left with x∗ and at right with x we get the equivalent relation

M2 |x|2 � |y|2 � m2 |x|2 . (4.4)

We have:

THEOREM 4. Assume that x, y ∈ Inv (A) and the constants M > m > 0 are such
that either (4.3), or, equivalently (4.4) is true. Then we have the inequalities

Δν
(
m2,M2) |x|2 � |x|2 ∇ν |y|2 − x�νy � δν

(
m2,M2) |x|2 , (4.5)

for any ν ∈ [0,1] , where Δν (·, ·) and δν (·, ·) are defined by (4.1) and (4.2), respec-
tively.

Proof. From Lemma 5 we have the double inequality

Δν (k,K) � 1−ν + νt− tν � δν (k,K)

for any x ∈ [k,K] ⊂ (0,∞) and ν ∈ [0,1] .
If u∈ A is an element such that 0 < k � u � K, then σ (u)⊂ [k,K] and by Lemma

3 we have in the order of A that

Δν (k,K) � 1−ν + νu−uν � δν (k,K) (4.6)

for any ν ∈ [0,1] .
If we take u =

∣∣yx−1
∣∣2 , then by (4.3) we have 0 < m2 � u � M2 and by (4.6) we

get in the order of A that

Δν
(
m2,M2)� 1−ν + ν

∣∣yx−1
∣∣2− ∣∣yx−1

∣∣2ν � δν
(
m2,M2) (4.7)

for any ν ∈ [0,1] .
If we multiply this inequality at left with x∗ and at right with x we get

Δν
(
m2,M2) |x|2 � (1−ν) |x|2 + νx∗

∣∣yx−1
∣∣2 x− x∗

∣∣yx−1
∣∣2ν

x (4.8)

� δν
(
m2,M2) |x|2

and since x∗
∣∣yx−1

∣∣2 x = x∗ (x∗)−1 |y|2 x−1x = |y|2 and x∗
∣∣yx−1

∣∣2ν
x = x�νy we get from

(4.8) the desired result (4.5). �
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COROLLARY 3. With the assumptions of Theorem 4 we have

R×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1−m)2 |x|2 if M < 1,

max
{

(1−m)2 ,(M−1)2
}
|x|2 if m � 1 � M,

(M−1)2 |x|2 if 1 < m,

(4.9)

� |x|2 ∇ν |y|2 − x�νy � r×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1−M)2 |x|2 if M < 1,

0 if m � 1 � M,

(m−1)2 |x|2 if 1 < m,

where ν ∈ [0,1], r = min{1−ν,ν} and R = max{1−ν,ν} .

Proof. From the inequality (3.8) we have for b = t and a = 1 that

R
(√

t−1
)2 � fν (t) = 1−ν + νt− tν � r

(√
t−1

)2
for any t ∈ [0,1].

Then we have

Δν
(
m2,M2)� R×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1−m)2 if M < 1,

max
{

(1−m)2 ,(M−1)2
}

if m � 1 � M,

(M−1)2 if 1 < m

and

δν
(
m2,M2)� r×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1−M)2 if M < 1,

0 if m � 1 � M,

(m−1)2 if 1 < m,

which by Theorem 4 proves the corollary. �
We observe that, with the assumptions of Theorem 4 and if A is a unital C∗ -

algebra, then by taking the norm in (4.5), we get

Δν
(
m2,M2)‖x‖2 �

∥∥∥|x|2 ∇ν |y|2− x�νy
∥∥∥� δν

(
m2,M2)‖x‖2 , (4.10)

for any ν ∈ [0,1] , which, by triangle inequality also implies that

Δν
(
m2,M2)‖x‖2 �

∥∥∥(1−ν) |x|2 + ν |y|2
∥∥∥−∥∥∥∣∣yx−1

∣∣ν x
∥∥∥2

� 0 (4.11)

for any ν ∈ [0,1] . This provides a reverse for the second inequality in (2.14).
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REMARK 4. If 0 < a, b ∈ A and there exists the constants 0 < k < K such that

Ka � b � ka > 0, (4.12)

then by (4.5) we get

Δν (k,K)a � a∇νb−a�νb � δν (k,K)a, (4.13)

while by (4.9) we get

R×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1−√

k
)2

a if K < 1,

max

{(
1−√

k
)2

,
(√

K−1
)2}

a if m � 1 � M,

(√
K−1

)2
a if 1 < k,

(4.14)

� a∇νb−a�νb � r×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1−√

K
)2

a if K < 1,

0 if k � 1 � K,

(√
k−1

)2
a if 1 < k

where ν ∈ [0,1], r = min{1−ν,ν} and R = max{1−ν,ν} .
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