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Fa –FRAME AND RIESZ SEQUENCES IN L2(R+)

YUN-ZHANG LI AND WEI ZHANG

(Communicated by D. Han)

Abstract. In application, L2(R+) can model casual signal space. This paper addresses the Fa -
frame theory in L2(R+) . The notion of Fa -frame for L2(R+) is somewhat like but distinct from
that of frame. One of its special cases is a dilation-and-modulation frame for L2(R+) . By intu-
ition, Fa -frames have properties similar to usual frames. But they are nontrivial. In this paper,
we introduce the notions of Fa -Bessel sequence and Fa -frame sequence in L2(R+) . We char-
acterize Fa -Bessel sequences, frame sequences and Riesz sequences, establish the links between
Fa -Bessel sequences (Fa -frame sequences) and usual Bessel sequences (frame sequences), be-
tween Fa -orthonormal sequences and Parseval Fa -frames, and obtain an expansion with respect
to Parseval Fa -frame sequences.

1. Introduction

The notions of frame and Riesz basis were first introduced by Duffin and Schaeffer
in studying nonharmonic Fourier series ([6]). An at most countable sequence {ei}i∈I

in a separable Hilbert space H is called a Riesz sequence if there exist constants 0 <
A � B < ∞ such that

A ∑
i∈I

|ci|2 � ‖ ∑
i∈I

ciei‖2 � B ∑
i∈I

|ci|2 for c ∈ l0(I ), (1.1)

where A , B are called Riesz bounds, l0(I ) denotes the set of finitely supported se-
quences on I ; it is called frame sequence if there exist constants 0 < A � B < ∞ such
that

A‖ f‖2 � ∑
i∈I

|〈 f , ei〉|2 � B‖ f‖2 for f ∈ span{ei}, (1.2)

where A , B are called frame bounds. In particular, it is called a Parseval frame se-
quence if A = B = 1 in (1.2). It is called a Bessel sequence in H if there exists a
constant 0 < B < ∞ such that

∑
i∈I

|〈 f , ei〉|2 � B‖ f‖2 for f ∈ H , (1.3)
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where B is called a Bessel bound. It is easy to check that {ei}i∈I is a Bessel sequence if
(1.3) holds for f ∈ span{ei} . In particular, a frame sequence (Riesz sequence) {ei}i∈I

is called a frame (Riesz basis) for H if span{ei} = H . It is well known that a Riesz
sequence is a frame sequence with the frame bounds being Riesz bounds, and that a
Riesz sequence is an exact frame sequence. The fundamentals of frames can be found
in [3, 6, 20, 21, 27]. Throughout this paper, for a sequence {hi}i∈I in H , h = ∑

i∈I
hi

means that the series ∑
i∈I

hi unconditionally converges to h in H . For a measurable

set E in R , χE denotes the characteristic function of E , two measurable functions on
E being equal means that they are equal almost everywhere on E .

Due to its applications in signal denoising, image compression, numerical treat-
ment of operator equations, etc., the theory of wavelet and Gabor frames in L2(R) has
interested many mathematicians, and seen great achievements during past more than
twenty years ([2, 4, 5, 7, 8, 13, 14, 17, 18, 24–26]). This paper focuses on the frame
theory in L2(R+) , where R+ = (0, ∞) . In [16], numerical experiments were made to
establish that the nonnegative integer shifts of the Gaussian function formed a Riesz
sequence in L2(R+) . In [15], a sufficient condition was obtained to determine whether
the nonnegative translates form a Riesz sequence on L2(R+) . Observe that R is a
group under the usual addition operation, while R+ is not. Some authors applied Can-
tor group operation to R+ , and used Walsh series theory to study wavelet frames for
L2(R+) . The readers can refer to [1, 9–12, 22] and references therein for details. Re-
cently, Hasankhani and Dehghan in [19] introduced the notion of function-value frame
in L2(R+) . For simplicity, we call a function-value frame as an Fa -frame. We recall
some notions and results in [19].

Given a > 1, a measurable function f on R+ is said to be a-dilation periodic
if f (a·) = f (·) a.e. on R+ , and a sequence { fn}n∈Z of measurable functions on R+
is said to be a-dilation periodic if every fn is a -dilation periodic. Obviously, an a -
dilation periodic function is determined by its values on [1, a) . Throughout this paper,
we always denote by {ψm}m∈Z the a -dilation periodic function sequence satisfying

ψm(·) =
1√

a−1
e2π i m·

a−1 on [1, a). (1.4)

For measurable functions f and g on R+ , we write 〈 f , g〉a(·) for a -dilation periodic
function satisfying

〈 f , g〉a(·) = ∑
j∈Z

a j f (a j·)g(a j·) a.e. on [1, a) (1.5)

if ∑
j∈Z

a j| f (a j·)g(a j·)| converges a.e. on [1, a) . In particular, we write ‖ f‖2
a(·) =

〈 f , f 〉a(·) on [1, a) . We call 〈 f , g〉a the Fa -inner product of f and g , which is so-
called function-valued inner product in [19,Definition 2.1]. Herein ψm and 〈 f , g〉a are
slightly different from those in [19]. They are both required to be a -dilation periodic.
Such requirement can simplify our expressions later. From [19, Theorem 2.2], we know
the Fa -inner product has many properties similar to those of usual inner products.
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For a sequence { fn}n∈Z in L2(R+) , we define its Fa -span by

Fa-span{ fn} =

{
∑

n,m∈Z

cn,mψm fn : c = {cn,m}n,m∈Z ∈ l0(Z2)

}
, (1.6)

and denote by Fa-span{ fn} the closure of Fa -span{ fn} in L2(R+) . We claim that
Fa -span is different from the usual span. Indeed,

Fa-span{ fn} =

{
∑
n∈Z

(
∑

m∈Z

cn,mψm

)
fn : c = {cn,m}n,m∈Z ∈ l0(Z2)

}
,

and

span{ fn} =

{
∑
n∈Z

cn fn : c = {cn}n∈Z ∈ l0(Z)

}
.

The coefficients of fn are functions in the former, and are scalars in the latter. We say
{ fn}n∈Z is Fa -complete in L2(R+) if Fa-span{ fn} = L2(R+) . For f , g ∈ L2(R+) , f
and g are called Fa -orthogonal (write f ⊥Fa g ) if 〈 f , g〉a(·) = 0 a.e. on [1, a).

DEFINITION 1.1. ([19, Definitions 3.2, 3.7]) A sequence { fn}n∈Z in L2(R+) is
called an Fa -orthonormal sequence if

〈 fm, fn〉a(·) = δm,n a.e. on [1, a), (1.7)

where the Kronecker delta is defined by δn,m =
{

1 if n = m;
0 if n �= m.

And it is called an Fa -

orthonormal basis for L2(R+) if it is an Fa -orthonormal sequence and Fa -complete in
L2(R+) .

DEFINITION 1.2. ([19, Definition 4.5]) A sequence { fn}n∈Z in L2(R+) is called
an Fa -frame sequence in L2(R+) if there exist constants 0 < A � B < ∞ such that

A‖ f‖2
a(·) � ∑

n∈Z

|〈 f , fn〉a(·)|2 � B‖ f‖2
a(·) a.e. on [1, a) for f ∈ Fa-span{ fn}, (1.8)

where A , B are called frame bounds. It is called an Fa -frame if it is an Fa -frame
sequence and Fa -complete in L2(R+) .

Observe that (1.7) and (1.8) are two pointwise expressions. This shows that the
notions of Fa -orthonormal basis and Fa -frame are very different from the usual ones in
L2(R+) . So it is mathematically reasonable to establish Fa -frame theory in L2(R+) .
Hasankhani and Dehghan in [19] proved that an arbitrary Fa -orthonormal sequence
admits an orthonormal sequence-like expansion in L2(R+) , and gave a link between
Fa -frames and usual frames. By [19, Theorems 3.10, 4.8, Proposition 3.5, Corollary
3.8], we have
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PROPOSITION 1.1. For a sequence { fn}n∈Z in L2(R+) , we have
(i) If { fn}n∈Z is an Fa -orthonormal sequence, then f = ∑

n∈Z

〈 f , fn〉a fn and ‖ f‖2
a(·)

= ∑
n∈Z

|〈 f , fn〉a(·)|2 a.e. on [1, a) for f ∈ Fa-span{ fn} .

(ii) { fn}n∈Z is an Fa -frame (Fa -orthonormal sequence, Fa -orthonormal basis)
for L2(R+) if and only if {ψm fn}m,n∈Z is a frame (orthonormal sequence, orthonormal
basis) for L2(R+) .

The proof of Proposition 1.1 in [19] shows that it is nontrivial to establish Fa -
frame theory in L2(R+) . We think that it is easy by intuition because we are used to
the usual frame theory. In particular, taking fn(·) = a

n
2 ψ(an·) with ψ ∈ L2(R+) in

Proposition 1.1 (ii), we see that { fn}n∈Z is an Fa -frame for L2(R+) if and only if

{a n
2 ψm(·)ψ(an·)}m,n∈Z (1.9)

is a frame for L2(R+) . This is an interesting fact since (1.9) is a dilation-and-modulation
system in L2(R+) generated by ψ . It is well known that translation, dilation and mod-
ulation are fundamental operations in wavelet analysis. A translation-and-dilation sys-
tem is a wavelet system; and a translation-and-modulation system is a Gabor system.
They have been extensively studied, while the systems of the form (1.9) have not. Ob-
serve that the modulation in (1.9) is somewhat different from the one in Gabor systems.
Frames of the form (1.9) in L2(R+) are investigated in [23]. In application, L2(R+)
can model casual signal space. Therefore, to establish Fa -frame theory is not only a
mathematical problem, but also worth expecting to have potential applications in signal
processing and the frame theory of dilation-and-modulation systems in L2(R+) . This
paper addresses some fundamental problems on Fa -frame theory in L2(R+) . For this
purpose, we introduce following Definitions 1.3–1.5.

We denote by L2(Z× [1, a)) the Hilbert space

L2(Z× [1, a))=

{
f = { fn}n∈Z :

∫ a

1
∑
n∈Z

| fn(x)|2dx < ∞,{ fn}n∈Z is a -dilation periodic

}

with the inner product

〈 f , g〉L2(Z×[1,a)) =
∫ a

1
∑
n∈Z

fn(x)gn(x)dx for f , g ∈ L2(Z× [1, a)).

DEFINITION 1.3. A sequence { fn}n∈Z in L2(R+) is called an Fa -Bessel se-
quence in L2(R+) if there exists a constant B > 0 such that

∑
n∈Z

|〈 f , fn〉a(·)|2 � B‖ f‖2
a(·) a.e. on [1, a) for f ∈ L2(R+), (1.10)

where B is called Bessel bound; it is called a Parseval Fa -frame sequence in L2(R+)
if it is an Fa -frame sequence with frame bound 1 (A = B = 1 in (1.8)).
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REMARK 1.1. By Lemma 2.4 below, f ∈ L2(R+) in (1.10) can be replaced by
f ∈ Fa-span{ fn} .

DEFINITION 1.4. An Fa -Bessel sequence { fn}n∈Z in L2(R+) is said to have
Riesz property if ∑

n∈Z

gn fn = 0 for some sequence {gn}n∈Z in L2(Z× [1, a)) implies

that gn = 0 for every n ∈ Z .

DEFINITION 1.5. A sequence { fn}n∈Z in L2(R+) is called an Fa -Riesz sequence
if there exist constants 0 < A � B < ∞ such that

A ∑
n,m∈Z

|cn,m|2 � ‖ ∑
n,m∈Z

cn,mψm fn‖2
L2(R+) � B ∑

n,m∈Z

|cn,m|2 (1.11)

for c ∈ l0(Z2) , where A, B are called Riesz bounds; it is called an Fa -Riesz basis for
L2(R+) if it is an Fa -Riesz sequence and Fa -complete in L2(R+) .

By a careful observation to [3, Lemma 5.5.4], we have

PROPOSITION 1.2. A sequence {ei}i∈I in a Hilbert space H is a frame se-
quence with frame bounds A and B if and only if ∑

i∈I
ciei is well defined for c ∈ l2(I )

and
A ∑

i∈I

|ci|2 � ‖ ∑
i∈I

ciei‖2 � B ∑
i∈I

|ci|2 for c ∈ N ⊥,

where N = {c ∈ l2(I ) : ∑
i∈I

ciei = 0} .

Proposition 1.2 reveals the essential difference between frame sequence and Riesz
sequence. If N = {0} , it characterizes Riesz sequences. If {ei}i∈N is complete in
H , it characterizes frames for H . And if N = {0} and {ei}i∈N is complete in
H , it characterizes Riesz bases for H . For simplicity, we call Proposition 1.2 a Riesz
characterization of frame sequence.

This paper focuses on Fa -frames and Riesz sequences in L2(R+) . In section 2, we
characterize Fa -Bessel sequences and Fa -frame sequences, establish the connections
between Fa -Bessel sequences (Fa -frame sequences) and usual Bessel sequences (frame
sequences), between Fa -orthonormal sequences and Parseval Fa -frames, and give an
expansion with respect to Parseval Fa -frame sequences. In section 3, we derive a Riesz
characterization of Fa -frame sequences like Proposition 1.2. Although these results
sound correct by intuition, their proofs are nontrivial. Another fundamental problem on
Fa -frames is to find Fa -dual frames. And we will study it in a following paper.

2. Fa -Bessel and frame sequences

This section focuses on Fa -Bessel and frame sequences in L2(R+) . We begin
with some notions and lemmas. Ba denotes the set

Ba = { f ∈ L∞(R+) : f is a-dilation periodic }.
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And L2
0(Z× [1, a)) and D denote the sets

L2
0(Z× [1, a)) = { f ∈ L2(Z× [1, a)) : there exists N ∈ N

such that fn = 0 for n with |n| > N},
and

D = { f : f is defined on R+, compactly supported and infinitely differentiable },
respectively. It is well known that D is dense in L2(R+) .

Let X be an arbitrary measure space with a positive measure μ . For 1 � p < ∞ ,
we denote by Lp(μ) the Banach space consisting of all complex measurable functions
f on X with the norm

‖ f‖Lp(μ) =
(∫

X
| f |pdμ

) 1
p

< ∞.

In particular, L2(μ) is a Hilbert space with the inner product

〈 f , g〉L2(μ) =
∫

X
f gdμ .

In what follows, for any two measurable functions f and g on X (not necessarily in
L2(μ)), we always write

〈 f , g〉L2(μ) =
∫

X
f gdμ

if f g ∈ L1(μ) . Let { fn}n∈Z be a sequence in L2(R+) . Define the Fa -analysis operator
D and the Fa -synthesis operator R by

Df = {〈 f , fn〉a}n∈Z (2.1)

for a measurable function f on R+ if it is well defined, and

Rg = ∑
n∈Z

gn fn (2.2)

for g = {gn}n∈Z ∈ L2(Z× [1, a)) if it is well defined.
By a standard argument, we have the following two lemmas:

LEMMA 2.1. For an arbitrary sequence { fn}n∈Z in L2(R+) , we have

〈 f , Rg〉L2(R+) = 〈Df , g〉L2(Z×[1,a))

for f ∈ D and g ∈ L2
0(Z× [1, a)) .

LEMMA 2.2. Let X be a measure space with a positive measure μ , and Ω a
dense linear subspace of L2(μ) . Suppose g is a measurable function on X , and there
exists a constant C such that

|〈 f , g〉L2(μ)| � C‖ f‖L2(μ)

for f ∈ Ω . Then g ∈ L2(μ) and ‖g‖L2(μ) � C.
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LEMMA 2.3. (i)
∫
[1,a) | f (x)|2dx = ∑

m∈Z

∣∣∣〈 f , ψm〉L2[1,a)

∣∣∣2 for f ∈ L1[1, a) .

(ii) For f , g ∈ L2(R+) and ϕ ∈ Ba , we have

〈 f , g〉a ∈ L1[1, a), 〈 f , ϕg〉a = ϕ〈 f , g〉a, (2.3)

〈 f , g〉L2(R+) =
∫ a

1
〈 f , g〉a(x)dx. (2.4)

‖ f +g‖2
a(·) = ‖ f‖2

a(·)+‖g‖2
a(·) a.e. on [1, a) if f ⊥Fa g. (2.5)

(iii) ∑
m∈Z

∣∣∣〈 f , ψmg〉L2(R+)

∣∣∣2 =
∫ a
1 |〈 f , g〉a(x)|2 dx for f , g ∈ L2(R+).

(iv) For f , g ∈ L2(R+) , f ⊥Fa g if and only if f ⊥ ψmg for each m ∈ Z .
(v) For f , g ∈ L2(R+) , if f ⊥Fa g, then f ⊥ ϕψmg for m ∈ Z and ϕ ∈ Ba .

Proof. It is obvious that (iii) implies (iv). And by a standard argument, we have
(ii). Next we prove (i), (iii) and (v).

(i) Since {ψm}m∈Z is an orthonormal basis for L2[1, a) when restricted on [1, a) ,∫
[1,a)

| f (x)|2dx = ∑
m∈Z

∣∣∣〈 f , ψm〉L2[1,a)

∣∣∣2 (2.6)

if f ∈ L2[1, a) . Now we prove (2.6) for f ∈ L1[1, a)\L2[1, a) . Suppose f ∈ L1[1, a)\
L2[1, a) . Then the left-hand side of (2.6) is infinity. Now we prove by contradiction
that the right-hand side of (2.6) is also infinity. Suppose it is finite. Since {ψm}m∈Z is
an orthonormal basis for L2[1, a) when restricted on [1, a) ,

g = ∑
m∈Z

(∫
[1,a)

f (x)ψm(x)dx

)
ψm

belongs to L2[1, a) , and thus to L1[1, a) . It has the same Fourier coefficients as f . So
f = g by the uniqueness theorem of Fourier coefficients, and thus f ∈ L2[1, a) . This is
a contradiction.

(iii) By (2.3) and (2.4), we have

〈 f , ψmg〉L2(R+) =
∫ a

1
〈 f , g〉a(x)ψm(x)dx.

This leads to (iii) by applying (i) to 〈 f , g〉a .
(v) By (2.3), we have f ⊥Fa ϕg and thus (v) by applying (iv). The proof is com-

pleted. �
As an immediate consequence of (2.5) and Lemma 2.3 (iv), we have

LEMMA 2.4. Let { fn}n∈Z be a sequence in L2(R+) , and P and Q be the orthog-
onal projections of L2(R+) onto Fa-span{ fn} and its orthogonal complement, respec-
tively. Then Q f ⊥Fa P f and

‖ f‖2
a(·) = ‖P f‖2

a(·)+‖Qf‖2
a(·) a.e. on [1, a) (2.7)

for f ∈ L2(R+) .
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LEMMA 2.5. Let { fn}n∈Z be a sequence in L2(R+) and ϕ ∈ Ba . Then

span{ϕψm fn}m,n∈Z ⊂ Fa-span{ fn}.

Proof. To prove the lemma, we only need to prove that, for f ∈L2(R+) , f ⊥ψm fn
for m, n ∈ Z implies that f ⊥ ϕψm fn for m, n ∈ Z and ϕ ∈ Ba . Suppose f ⊥ ψm fn
for m, n ∈ Z . Then f ⊥Fa fn for each n ∈ Z by Lemma 2.3 (iv), and thus f ⊥ ϕψm fn
for m, n ∈ Z and ϕ ∈ Ba by Lemma 2.3 (v). The proof is completed. �

LEMMA 2.6. Let { fn}n∈Z be a sequence in L2(R+) . The following are equiva-
lent:

(i) { fn}n∈Z is Fa -complete in L2(R+) .
(ii) For f ∈ L2(R+) , we have f = 0 whenever 〈 f , fn〉a(·) = 0 a.e. on [1, a) .

Proof. By the definition of Fa -completeness, { fn}n∈Z is Fa -complete in L2(R+)
if and only if {ψm fn}m,n∈Z is complete in L2(R+) , equivalently, f = 0 is a unique
solution to

〈 f , ψm fn〉L2(R+) = 0 for m, n ∈ Z (2.8)

in L2(R+) . By Lemma 2.3 (iii), we have

∑
m∈Z

|〈 f , ψm fn〉L2(R+)|2 =
∫ a

1
|〈 f , fn〉a(x)|2dx.

Thus (2.8) is equivalent to

〈 f , fn〉a(·) = 0 a.e. on [1, a) for n ∈ Z.

The lemma therefore follows. �
Next we turn to the main results of this section. The first one gives a characteriza-

tion of Fa -Bessel sequences in L2(R+) similar to the one of usual Bessel sequences.

THEOREM 2.1. Let { fn}n∈Z be a sequence in L2(R+) . Define the operators D
and R as in (2.1) and (2.2) respectively. Then the following are equivalent:

(i) { fn}n∈Z is an Fa -Bessel sequence in L2(R+) with Fa -Bessel bound B.
(ii) ∑

n∈Z

|〈 f , fn〉a(·)|2 � B‖ f‖2
a(·) a.e. on [1, a) for f ∈ D .

(iii) ‖Rg‖L2(R+) �
√

B‖g‖L2(Z×[1,a)) for g ∈ L2
0(Z× [1, a)) .

(iv) Rg is well defined and ‖Rg‖L2(R+) �
√

B‖g‖L2(Z×[1,a)) for g∈ L2(Z× [1, a)) .
D∗ = R and R∗ = D if one of (i)–(iv) holds.

Proof. Obviously, (i) implies (ii). Next we prove that (ii)⇒(iii)⇒ (iv)⇒(i).
(ii)⇒(iii). Arbitrarily fix g ∈ L2

0(Z× [1, a)) . By (ii), we have

‖Df‖2
L2(Z×[1,a)) � B

∫ a

1
‖ f‖2

a(x)dx = B‖ f‖2
L2(R+) for f ∈ D . (2.9)
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And by Lemma 2.1, we have

〈 f , Rg〉L2(R+) = 〈Df , g〉L2(Z×[1,a)) for f ∈ D .

This leads to ∣∣∣〈 f , Rg〉L2(R+)

∣∣∣� √
B‖g‖L2(Z×[1,a))‖ f‖L2(R+) for f ∈ D

by (2.9). Thus

‖Rg‖L2(R+) �
√

B‖g‖L2(Z×[1,a)) for g ∈ L2
0(Z× [1, a)) (2.10)

by Lemma 2.2.
(iii)⇒(iv). Fix g ∈ L2(Z× [1, a)) . For an arbitrary increasing sequence {Fl}∞

l=1

of finite subsets of Z satisfying
∞⋃

l=1
Fl = Z , define {g(l)}∞

l=1 by

g(l)
n =

{
gn if n ∈ Fl;
0 if n /∈ Fl.

Then
lim
l→∞

‖g(l)−g‖L2(Z×[1,a)) = 0. (2.11)

Again using (2.10) to g(l) , we have

‖Rg(l)‖L2(R+) �
√

B‖g(l)‖L2(Z×[1,a)) (2.12)

for l ∈ N . Letting l → ∞ in (2.12), we obtain that

‖Rg‖L2(R+) �
√

B‖g‖L2(Z×[1,a))

by (2.11).
(iv)⇒(i). Obviously, (iv) implies (iii). So we only need to prove (iii) implies (i).

Suppose (iii) holds, that is

‖Rg‖L2(R+) �
√

B‖g‖L2(Z×[1,a)) for g ∈ L2
0(Z× [1, a)). (2.13)

By Lemma 2.1, we have

〈Rg, f 〉L2(R+) = 〈g, Df 〉L2(Z×[1,a))

for f ∈ D and g ∈ L2
0(Z× [1, a)) . It follows that∣∣∣〈g, Df 〉L2(Z×[1,a))

∣∣∣ � ‖Rg‖L2(R+)‖ f‖L2(R+)

�
√

B‖ f‖L2(R+)‖g‖L2(Z×[1,a))

for f ∈ D and g ∈ L2
0(Z× [1, a)) by (2.13), and thus

‖Df‖L2(Z×[1,a)) �
√

B‖ f‖L2(R+) (2.14)
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for f ∈ D by Lemma 2.2. For a general f ∈ L2(R+) , there exists a sequence { f (k)} in
D such that

lim
k→∞

‖ f (k) − f‖L2(R+) = 0. (2.15)

It follows that

‖Df (k) −Df (l)‖L2(Z×[1,a)) �
√

B‖ f (k)− f (l)‖L2(R+) → 0

as k, l → ∞ by (2.14), and thus

lim
k→∞

‖Df (k) −h‖L2(Z×[1,a)) = 0 (2.16)

for some h ∈ L2(Z× [1, a)) . Next we show h = Df . By (2.16), there exists a subse-
quence { f (kl)} of { f (k)} such that

lim
l→∞

〈 f (kl ), fn〉a(·) = hn(·) a.e. on [1, a) (2.17)

for each n ∈ Z . Observe that∫ a

1
∑
j∈Z

∣∣∣a j
2 f (kl )(a jx)−a

j
2 f (a jx)

∣∣∣2 dx = ‖ f (kl) − f‖2
L2(R+) → 0

as l → ∞ by (2.4) and (2.15). So there exists a subsequence { f (klm )} of { f (kl)} such
that

lim
m→∞ ∑

j∈Z

∣∣∣a j
2 f (klm )(a j·)−a

j
2 f (a j·)

∣∣∣2 = 0

a.e. on [1, a) . This leads to

〈 f (klm ), fn〉a(·) =
〈
{a j

2 f (klm )(a j·)}, {a j
2 fn(a j·)}

〉
l2(Z)

→
〈
{a j

2 f (a j·)}, {a j
2 fn(a j·)}

〉
l2(Z)

= 〈 f , fn〉a(·)
a.e. on [1, a) for each n as m → ∞ , and thus h = Df by (2.17). Therefore,

lim
k→∞

‖Df (k) −Df‖L2(Z×[1,a)) = 0

by (2.16). Also
‖Df (k)‖L2(Z×[1,a)) �

√
B‖ f (k)‖L2(R+) (2.18)

by (2.14). Letting k → ∞ in (2.18), we obtain that

‖Df‖L2(Z×[1,a)) �
√

B‖ f‖L2(R+) (2.19)

for f ∈ L2(R+) . Replacing f by h f in (2.19) with h being an arbitrary element in Ba ,
we have ∫ a

1
|h(x)|2 ∑

n∈Z

|〈 f , fn〉a(x)|2dx � B
∫ a

1
|h(x)|2‖ f‖2

a(x)dx (2.20)
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for f ∈ L2(R+) by (2.3) and (2.4). This implies (i). Indeed, if (i) does not hold, then
∑

n∈Z

|〈 f , fn〉a(·)|2 > B‖ f‖2
a(·) on some E ⊂ [1, a) with |E| > 0. Then

∫ a

1
|h(x)|2 ∑

n∈Z

|〈 f , fn〉a(x)|2dx > B
∫ a

1
|h(x)|2‖ f‖2

a(x)dx

for h ∈ Ba satisfying h = χ ⋃
j∈Z

a jE
on [1, a) . It contradicts (2.20).

Suppose one of (i)–(iv) holds. Then they all hold since we have proved their
mutual equivalence. Arbitrarily fix f ∈ L2(R+) and g = {gn}n∈Z ∈ L2(Z× [1, a)) .
Choose sequences { f (k)} in D and {g(k)} in L2

0(Z× [1, a)) such that

lim
k→∞

‖ f (k) − f‖L2(R+) = lim
k→∞

‖g(k)−g‖L2(Z×[1,a)) = 0. (2.21)

Then
lim
k→∞

‖Df (k)−Df‖L2(Z×[1,a)) = lim
k→∞

‖Rg(k)−Rg‖L2(R+) = 0 (2.22)

by (2.19) and (iv). By Lemma 2.1, we have

〈 f (k), Rg(k)〉L2(R+) = 〈Df (k), g(k)〉L2(Z×[1,a))

for every k . Letting k → ∞ leads to

〈 f , Rg〉L2(R+) = 〈Df , g〉L2(Z×[1,a))

by (2.21) and (2.22). By the arbitrariness of f and g , we have D∗ = R and R∗ = D .
The proof is completed. �

The following theorem establishes the connection between Fa -Bessel sequences
(Fa -frame sequences) and usual Bessel sequences (frame sequences).

THEOREM 2.2. Let { fn}n∈Z be a sequence in L2(R+) . Then the following are
equivalent:

(i) { fn}n∈Z is an Fa -Bessel sequence (Fa -frame sequence) in L2(R+) .
(ii) {ψm fn}m,n∈Z is a Bessel sequence (frame sequence) in L2(R+) .
In this case, they have the same bounds.

Proof. By Remark 1.1, { fn}n∈Z is an Fa -Bessel sequence with Bessel bound B if
and only if

∑
n∈Z

|〈 f , fn〉a(·)|2 � B‖ f‖2
a(·) a.e. on [1, a) for f ∈ Fa-span{ fn}. (2.23)

So to prove the theorem, we only need to prove that, for positive constants C , and A, B
with A � B ,

∑
n∈Z

|〈 f , fn〉a(·)|2 � C‖ f‖2
a(·)
(

A‖ f‖2
a(·) � ∑

n∈Z

|〈 f , fn〉a(·)|2 � B‖ f‖2
a(·)
)

(2.24)
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a.e. on [1, a) for f ∈ Fa-span{ fn} if and only if

∑
m,n∈Z

|〈 f , ψm fn〉L2(R+)|2 � C‖ f‖2
L2(R+)

(
A‖ f‖2

L2(R+) � ∑
m,n∈Z

|〈 f , ψm fn〉L2(R+)|2 � B‖ f‖2
L2(R+)

)
(2.25)

for f ∈ Fa-span{ fn} . By Lemma 2.3 (ii) and (iii), we have

‖ f‖2
L2(R+) =

∫ a

1
‖ f‖2

a(x)dx,

∑
m,n∈Z

|〈 f , ψm fn〉L2(R+)|2 =
∫ a

1
∑
n∈Z

|〈 f , fn〉a(x)|2dx.

Thus (2.25) is equivalent to∫ a

1
∑
n∈Z

|〈 f , fn〉a(x)|2dx � C
∫ a

1
‖ f‖2

a(x)dx

(
A
∫ a

1
‖ f‖2

a(x)dx �
∫ a

1
∑
n∈Z

|〈 f , fn〉a(x)|2dx � B
∫ a

1
‖ f‖2

a(x)dx

)
(2.26)

for f ∈ Fa-span{ fn} . Therefore, we only need to prove the equivalence between (2.24)
and (2.26) to finish the proof. It is obvious (2.24) implies (2.26). Next we prove the
converse implication. We only deal with the “�” part outside the bracket, the other
part can be proved similarly. Suppose∫ a

1
∑
n∈Z

|〈 f , fn〉a(x)|2dx � C
∫ a

1
‖ f‖2

a(x)dx (2.27)

for f ∈ Fa-span{ fn} . Since
∫ a
1 ‖ f‖2

a(x) =
∫ ∞
0 | f (x)|2dx < ∞ , almost every point in

(1, a) is a Lebesgue point of ‖ f‖2
a(·) and ∑

n∈Z

|〈 f , fn〉a(·)|2 . Arbitrarily fix such a point

x0 . Replace f in (2.27) by 1√
2ε f χ ⋃

j∈Z

a j(x0−ε,x0+ε)
with ε small enough that (x0−ε, x0 +

ε) ⊂ [1, a)(this causes no trouble by Lemma 2.5). Then we have

1
2ε

∫ x0+ε

x0−ε
∑
n∈Z

|〈 f , fn〉a(x)|2dx � C
2ε

∫ x0+ε

x0−ε
‖ f‖2

a(x)dx,

and thus

∑
n∈Z

|〈 f , fn〉a(x0)|2 � C‖ f‖2
a(x0)

by letting ε → 0. By the arbitrariness of x0 , we have

∑
n∈Z

|〈 f , fn〉a(·)|2 � C‖ f‖2
a(·) a.e. on [1, a).

The proof is completed. �
As an immediate consequence of Theorem 2.2, we have
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COROLLARY 2.1. ([19, Theorem 4.8]) For a sequence { fn}n∈Z in L2(R+) , the
following are equivalent:

(i) { fn}n∈Z is an Fa -frame for L2(R+) with frame bounds A and B.
(ii) {ψm fn}m,n∈Z is a frame for L2(R+) with frame bounds A and B.

REMARK 2.1. In [19], Corollary 2.1 is proved by operator method which does
not work for frame sequences.

It is well known that a usual orthonormal sequence is a Parseval frame sequence
with every element having norm 1. The following theorem shows that an Fa -orthonormal
sequence for L2(R+) is a Parseval Fa -frame sequence for L2(R+) with “pointwise
norm” 1.

THEOREM 2.3. Let { fn}n∈Z be a sequence in L2(R+) . Then { fn}n∈Z is an Fa -
orthonormal sequence for L2(R+) if and only if { fn}n∈Z is a Parseval Fa -frame se-
quence for L2(R+) and ‖ fn‖a(·) = 1 a.e. on [1, a) for n ∈ Z .

Proof. Necessity. Suppose that { fn}n∈Z is an Fa -orthonormal sequence for L2(R+) .
Then ‖ fn‖a(·) = 1 a.e. on [1, a) by the definition of Fa -orthonormal sequence, and
{ψm fn}m,n∈Z is an orthonormal sequence in L2(R+) by Proposition 1.1 (ii). It follows
that {ψm fn}m,n∈Z is a Parseval frame sequence for L2(R+) , and thus { fn}n∈Z is a
Parseval Fa -frame sequence for L2(R+) by Theorem 2.2.

Sufficiency. Suppose that { fn}n∈Z is a Parseval Fa -frame sequence for L2(R+)
and ‖ fn‖2

a(·) = 1 a.e. on [1, a) for n ∈ Z . Then

∑
n∈Z

|〈 f , fn〉a(·)|2 = ‖ f‖2
a(·) a.e. on [1, a) for f ∈ Fa-span{ fn}. (2.28)

It follows that

1 = ‖ fm‖2
a(·) = ∑

n∈Z

|〈 fm, fn〉a(·)|2 = 1+ ∑
m�=n∈Z

|〈 fm, fn〉a(·)|2.

a.e. on [1, a) for m ∈ Z , and thus 〈 fm, fn〉a(·) = δm,n a.e. on [1, a) . Therefore,
{ fn}n∈Z is an Fa -orthonormal sequence for L2(R+) . The proof is completed. �

Next we show that a Parseval Fa -frame sequence admits an expansion as a usual
Parseval frame. For this purpose, we need the following lemma:

LEMMA 2.7. Let { fn}n∈Z be an Fa -Bessel sequence in L2(R+) . Then

〈Rg, h〉a(·) = ∑
n∈Z

gn(·)〈 fn, h〉a(·)

for g ∈ L2(Z× [1, a)) and h ∈ L2(R+) .
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Proof. By Theorem 2.1, for g ∈ L2(Z × [1, a)) and h ∈ L2(R+) , Rg is well-
defined, and ∫ ∞

0
Rg(x)h(x)dx = ∑

n∈Z

∫ ∞

0
gn(x) fn(x)h(x)dx,

equivalently, ∫ a

1
〈Rg, h〉a(x)dx = ∑

n∈Z

∫ a

1
gn(x)〈 fn, h〉a(x)dx. (2.29)

Observe that

∫ a

1
∑
n∈Z

|gn(x)〈 fn, h〉a(x)|dx �
∫ a

1

(
∑
n∈Z

|gn(x)|2
) 1

2
(

∑
n∈Z

|〈h, fn〉a(x)|2
) 1

2

dx

�
(∫ a

1
∑
n∈Z

|gn(x)|2dx

) 1
2
(∫ a

1
∑
n∈Z

|〈h, fn〉a(x)|2dx

) 1
2

�
√

B‖g‖L2(Z×[1,a))‖h‖L2(R+)

< ∞

where B is an Fa -Bessel bound of { fn}n∈Z . It follows that ∑
n∈Z

gn〈 fn, h〉a ∈ L1[1, a) ,

and (2.29) can be rewritten as

∫ a

1
〈Rg, h〉a(x)dx =

∫ a

1
∑
n∈Z

gn(x)〈 fn, h〉a(x)dx (2.30)

for g ∈ L2(Z× [1, a)) and h ∈ L2(R+) . So almost every point of (1, a) is a Lebesgue
point of both 〈Rg, h〉a and ∑

n∈Z

gn〈 fn, h〉a (obviously 〈Rg, h〉a ∈ L1[1, a)). Arbitrarily

fix such a x0 . Replacing h in (2.30) by 1
2ε hχ ⋃

j∈Z

a j (x0−ε,x0+ε)
with ε > 0 satisfying (x0−

ε, x0 + ε) ⊂ (1, a) , we have

1
2ε

∫ x0+ε

x0−ε
〈Rg, h〉a(x)dx =

1
2ε

∫ x0+ε

x0−ε
∑
n∈Z

gn(x)〈 fn, h〉a(x)dx.

Letting ε → 0, we obtain that

〈Rg, h〉a(x0) = ∑
n∈Z

gn(x0)〈 fn, h〉a(x0).

By the arbitrariness of x0 , the lemma follows. �

THEOREM 2.4. Let { fn}n∈Z be a Parseval Fa -frame sequence in L2(R+) . Then
f = ∑

n∈Z

〈 f , fn〉a fn for f ∈ Fa-span{ fn} .
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Proof. Since { fn}n∈Z is a Parseval Fa -frame sequence in L2(R+) ,

‖ f‖2
a(·) = ∑

n∈Z

|〈 f , fn〉a(·)|2 a.e. on [1, a)

for f ∈ Fa-span{ fn} . So, using the polarization identity in l2(Z) we have

〈 f , h〉a(·) = ∑
n∈Z

〈 f , fn〉a(·)〈 fn, h〉a(·) a.e. on [1, a)

for f , h ∈ Fa-span{ fn} . This leads to

〈 f , h〉a(·) =

〈
∑
n∈Z

〈 f , fn〉a fn, h

〉
a

(·) a.e. on [1, a)

by Lemma 2.7, equivalently〈
f − ∑

n∈Z

〈 f , fn〉a fn, h

〉
a

(·) = 0 a.e. on [1, a)

for f , h ∈ Fa-span{ fn} . It follows that〈
f − ∑

n∈Z

〈 f , fn〉a fn, h

〉
L2(R+)

= 0

for f , h ∈ Fa-span{ fn} by (2.4), and thus

f = ∑
n∈Z

〈 f , fn〉a fn

for f ∈ Fa-span{ fn} . The proof is completed. �

3. The Riesz characterization of Fa -frame sequences

This section is devoted to a Riesz characterization of Fa -frame sequences. As
its consequences, we obtain characterizations of Fa -frames and Fa -Riesz bases. In
addition, we prove that an Fa -Riesz sequence (basis) is an Fa -frame sequence (Fa -
frame) with Riesz property. For this purpose, we introduce a notion and a lemma.

By Theorem 2.1, for an arbitrary Fa -Bessel sequence { fn}n∈Z in L2(R+) , we can
define associated Fa -frame operator Sa by Sa = RD , that is

Sa f = ∑
n∈Z

〈 f , fn〉a fn, for f ∈ L2(R+).

Then Sa is well defined, and is a bounded operator on L2(R+) .

LEMMA 3.1. ([3, Theorem A.6.5]) Let U1 ,U2, U3 be self-adjoint operators on
a Hilbert space H . If U1 � U2, U3 � 0, and U3 commutes with U1 and U2, then
U1U3 � U2U3.
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THEOREM 3.1. A sequence { fn}n∈Z in L2(R+) is an Fa -frame sequence with
bounds A, B if and only if the operator R as in (2.2) is well defined on L2(Z× [1, a))
and

A‖g‖2
L2(Z×[1,a)) � ‖Rg‖2

L2(R+) � B‖g‖2
L2(Z×[1,a)) for g = {gn}n∈Z ∈ (kerR)⊥. (3.1)

Proof. Observing that L2(Z× [1, a)) = ker(R)+ker(R)⊥ , we see that

‖Rg‖2
L2(R+) � B‖g‖2

L2(Z×[1,a)) for g ∈ L2(Z× [1, a))

if R is well defined on L2(Z× [1, a)) , and the right-hand side inequality of (3.1) holds.
So we may as well assume that { fn}n∈Z is an Fa -Bessel sequence in L2(R+) with
Bessel bound B by Theorem 2.1. Next, under this assumption, we prove the equiva-
lence between

A‖ f‖2
a(·) � ∑

n∈Z

|〈 f , fn〉a(·)|2 a.e. on [1, a) for f ∈ Fa-span{ fn} (3.2)

and
A‖g‖2

L2(Z×[1,a)) � ‖Rg‖2
L2(R+) for g ∈ (kerR)⊥. (3.3)

First, we suppose (3.2) holds. Then

(
∑
n∈Z

|〈 f , fn〉a(·)|2
)2

= (〈Sa f , f 〉a(·))2

� ‖Sa f‖2
a(·)‖ f‖2

a(·)
� 1

A
‖Sa f‖2

a(·) ∑
n∈Z

|〈 f , fn〉a(·)|2

by Lemma 2.7, and thus

A ∑
n∈Z

|〈 f , fn〉a(·)|2 � ‖Sa f‖2
a(·) a.e. on [1, a)

for f ∈ Fa-span{ fn} . Integrating two sides of the inequality on [1, a) , we obtain that

A‖Df‖2
L2(Z×[1,a)) � ‖RD f‖2

L2(R+) for f ∈ Fa-span{ fn}. (3.4)

Also observe that Df = 0 for f ∈ L2(R+) satisfying f ⊥ (Fa-span{ fn}) by Lemma
2.3 (iv). It follows that range(D) = {Df : f ∈ Fa-span fn} , and (3.4) can be rewritten as

A‖g‖2
L2(Z×[1,a)) � ‖Rg‖2

L2(R+) for g ∈ range(D).

Thus
A‖g‖2

L2(Z×[1,a)) � ‖Rg‖2
L2(R+) � B‖g‖2

L2(Z×[1,a)) for g ∈ range(D). (3.5)
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Since D∗ = R by Theorem 2.1, we have range(D) = ker(R)⊥ . Therefore, (3.3) holds
by (3.5).

Now we turn to the converse implication. Suppose (3.3) holds. Then it is easy to
check that range(R) is closed, and thus range(D) is closed due to R∗ = D by Theorem
2.1. Also observe that ker(R)⊥ = range(D) and range(D) = {Df : f ∈ Fa-span fn} . It
follows from (3.3) that

A‖Df‖2
L2(Z×[1,a)) � ‖RD f‖2

L2(R+) for f ∈ Fa-span{ fn}. (3.6)

Since D∗ = R , we have

‖RD f‖2
L2(R+) = 〈RD f , RD f 〉L2(R+) = 〈(RD)∗RD f , f 〉L2(R+) = 〈S2

a f , f 〉L2(R+),

and

‖Df‖2
L2(Z×[1,a)) = 〈Df , Df 〉L2(Z×[1,a)) = 〈RD f , f 〉L2(R+) = 〈Sa f , f 〉L2(R+).

So (3.6) can be rewritten as

A〈Sa f , f 〉L2(R+) � 〈S2
a f , f 〉L2(R+) for f ∈ Fa-span{ fn}.

It follows that
ASa � (Sa)2 on Fa-span{ fn}. (3.7)

Since Fa-span{ fn} ⊂ range(R) and range(R) is closed, we derive that Fa-span{ fn} ⊂
range(R) . Also observing that range(R) ⊂ Fa-span{ fn} , we have

range(R) = Fa-span{ fn}.
Also since D∗ = R and both range(D) and range(R) are closed, we see that Sa is a
bounded and invertible operator when restricted on range(R) . So we have

AI � Sa on Fa-span{ fn}
by (3.7) and Lemma 3.1, equivalently,

A
∫ a

1
‖ f‖2

a(x)dx �
∫ a

1
∑
n∈Z

|〈 f , fn〉a(x)|2dx for f ∈ Fa-span{ fn} (3.8)

by (2.4) and Lemma 2.7. Fix f ∈ Fa-span{ fn} . Also observing that∫ a

1
∑
n∈Z

|〈 f , fn〉a(x)|2dx � B
∫ a

1
‖ f‖2

a(x)dx = B‖ f‖2
L2(R+) < ∞,

we claim that almost every point of (1, a) is a Lebesgue point of ‖ f‖2
a and ∑

n∈Z

|〈 f , fn〉a|2 .

Arbitrarily fix such a point x0 . For ε > 0 with (x0 − ε, x0 + ε) ⊂ [1, a) , we have
1√
2ε f χ ⋃

j∈Z

a j (x0−ε,x0+ε)
∈ Fa-span{ fn} by Lemma 2.5.
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Replace f in (3.8) by 1√
2ε f χ ⋃

j∈Z

a j (x0−ε,x0+ε)
, we have

A
2ε

∫ x0+ε

x0−ε
‖ f‖2

a(x)dx � 1
2ε

∫ x0+ε

x0−ε
∑
n∈Z

|〈 f , fn〉a(x)|2dx,

and thus
A‖ f‖2

a(x0) � ∑
n∈Z

|〈 f , fn〉a(x0)|2

by letting ε → 0. So (3.2) holds by the arbitrariness of x0 . The proof is completed. �
As an immediate consequence of Theorem 3.1, we have

COROLLARY 3.1. A sequence { fn}n∈Z in L2(R+) is an Fa -frame if and only if
the following two conditions are satisfied:

(i) { fn}n∈Z is Fa -complete in L2(R+) .
(ii) The operator R as in (2.2) is well defined on L2(Z× [1, a)) and

A‖g‖2
L2(Z×[1,a)) � ‖Rg‖2

L2(R+) � B‖g‖2
L2(Z×[1,a)) for g = {gn}n∈Z ∈ (kerR)⊥.

The following theorem gives a characterization of Fa -Riesz sequences in L2(R+) .

THEOREM 3.2. Let { fn}n∈Z be a sequence in L2(R+) . The following are equiv-
alent:

(i) { fn}n∈Z is an Fa -Riesz sequence in L2(R+) with Riesz bounds A, B.
(ii) The operator R as in (2.2) is well defined on L2(Z× [1, a)) and

A‖g‖2
L2(Z×[1,a)) � ‖Rg‖2

L2(R+) � B‖g‖2
L2(Z×[1,a)) for g = {gn} ∈ L2(Z× [1, a)).(3.9)

(iii) { fn}n∈Z is an Fa -frame sequence in L2(R+) with frame bounds A, B, and
has Riesz property.

Proof. (i)⇒(ii). Suppose (i) holds. Then

A ∑
n,m∈Z

|cn,m|2 �
∥∥∥∥∥ ∑

n,m∈Z

cn,mψm fn

∥∥∥∥∥
2

L2(R+)

� B ∑
n,m∈Z

|cn,m|2 (3.10)

for c = {cn,m}n,m∈Z ∈ l0(Z2) . Since l0(Z2) is dense in l2(Z2) , ∑
n,m∈Z

cn,mψm fn con-

verges unconditionally in L2(R+) and (3.10) holds for c ∈ l2(Z2) . For an arbitrary
g ∈ L2(Z× [1, a)) with gn = ∑

m∈Z

cn,mψm for each n ∈ Z , we have

‖c‖l2(Z2) = ‖g‖L2(Z×[1,a)) < ∞.

It follows that ∑
n∈Z

gn fn converges unconditionally in L2(R+) , and

∑
n∈Z

gn fn = ∑
n,m∈Z

cn,mψm fn.
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Also observing that (3.10) holds for c ∈ l2(Z2) , we obtain (ii).
(ii)⇒(iii). Suppose (ii) holds. Then kerR = {0} , and thus (kerR)⊥ = L2(Z×

[1, a)) . Applying Theorem 3.1, { fn}n∈Z is an Fa -frame sequence with bounds A and
B , and has Riesz property.

(iii)⇒(i). Suppose (iii) holds. Then

A‖g‖2
L2(Z×[1,a)) �

∥∥∥∥∥∑
n∈Z

gn fn

∥∥∥∥∥
2

L2(R+)

� B‖g‖2
L2(Z×[1,a)) for g = {gn} ∈ L2(Z× [1, a))

(3.11)
by Theorem 3.1 and Definition 1.4. For an arbitrary c = {cn,m}n,m∈Z ∈ l0(Z2) , we have

∑
n,m∈Z

cn,mψm fn = ∑
n∈Z

(
∑
m∈Z

cn,mψm

)
fn = ∑

n∈Z

gn fn,

‖c‖2
l2(Z2) = ‖g‖2

L2(Z×[1,a)),

where g = {gn}n∈Z with gn = ∑
m∈Z

cn,mψm . Applying (3.11) to such g , we obtain that

A‖c‖2
l2(Z2) �

∥∥∥∥∥ ∑
n,m∈Z

cn,mψm fn

∥∥∥∥∥
2

L2(R+)

� B‖c‖2
l2(Z2).

This gives (i) by the arbitrariness of c ∈ l0(Z2) . The proof is completed. �

As an immediate consequence of Theorem 3.2, we have

COROLLARY 3.2. Let { fn}n∈Z be a sequence in L2(R+) . Then { fn}n∈Z is an
Fa -Riesz basis for L2(R+) if and only if it is an Fa -frame for L2(R+) with Riesz prop-
erty.

RE F ER EN C ES

[1] S. ALBEVERIO, S. EVDOKIMOV, M. SKOPINA, p-adic multiresolution analysis and wavelet frames,
J. Fourier Anal. Appl. 16 (2010), 693–714.

[2] J. J. BENEDETTO, S. LI, The theory of multiresolution analysis frames and applications to filter
banks, Appl. Comput. Harmon. Anal. 5 (1998), 389–427.

[3] O. CHRISTENSEN, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
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