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NORMWISE, MIXED AND COMPONENTWISE CONDITION

NUMBERS OF MATRIX EQUATION X −∑p
i=1 AT

i XAi + ∑q
j=1 BT

j XBj = Q

JIE MENG AND HYUN-MIN KIM

Abstract. We consider a symmetric matrix equation X−∑p
i=1 AT

i XAi+∑q
j=1 BT

j XBj = Q , where

A1 ,A2 , . . . , Ap , B1 , B2 , . . . , Bq ∈ R
n×n , and Q is an n×n symmetric positive definite matrix.

The explicit expressions of normwise, mixed and componentwise condition numbers of the ma-
trix equation are investigated. Some numerical examples are given to show the sharpness of the
three condition numbers.
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