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ORTHONORMAL SEQUENCES AND TIME FREQUENCY
LOCALIZATION RELATED TO THE RIEMANN-LIOUVILLE OPERATOR

AMRI BESMA AND HAMMAMI AYMEN

(Communicated by D. Han)

Abstract. For every real number p > 0, we define the p-dispersion p, .y, (f) of a measur-
able function f on [0,+eo[xRR, where Vv, is some positive measure. We prove that for ev-

ery orthonormal basis (@) e 2 of L?(dvg), the sequences (pl’>Va((P”1>")>(m e’

<p,,#va (,%((pmﬁ,,)))( - can not be simultaneously bounded, where ﬁwa is some Fourier
mn)e

transform. The main tool is a time frequency localization inequality for orthonormal sequences

in L2(dvy).

On the other hand, we construct an orthonormal sequence (Wi ) (n)e n2 C L%(dvg) such

m,n)

that the sequence <pp>va (Vi) Pp,ve (%(Wmn))) e is bounded.

(m,n)e

1. Introduction

The uncertainty principles play an important role in harmonic analysis. These
principles state that a nonzero function f and its Fourier transform f can not be si-
multaneously and sharply localized at the same time. Many mathematical formulations
of this fact have been checked in the last decades [8, 10, 11, 16, 17, 25, 26]. In [30],
Shapiro has studied the localization for an orthonormal sequence (@ )re n. He showed
that if the means and the dispersions of the orthonormal sequence (¢ )re n and their
Fourier transforms (()ze n are uniformly bounded, then (¢ )ic v is finite. In [22],
the authors gave a quantitative version of the precedent theorem, that is if (@)re v is
an orthonormal sequence in LZ(R), then for every n € N,

(n+1)? .

n
2 ~ 112 >
Y (Il B+1b3) > -

k=0

Recently, in [24], the author obtains a quantitative multivariables version of Shapiro’s
theorem for generalized dispersion, in fact the author showed that if (@)rc v is an
orthonormal sequence in L?(R?); then for every positive real number p and for every

ne N*
P

! P P~ A
Y, (Idfoc 1B+ 19186 1B) > cn
k=1
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where C is a constant which does not depend on p. The author obtains also a multi-
plicative form of the above theorem by showing that if (¢ )e v is an orthonormal basis
of L?(R?), then for every positive real number p,

L Lo~
sup (11 /8 i 12 1] 918 [12) = -+
ke N

On the other hand, in [5], the authors have defined the Riemann-Liouville operator
Ra; o020, by

%/l/lf(VS\/l—t27x+rt)(l—12)0‘—%

—1J-1

Ko (f)(rx) = x(1—-s2)%tdrds, ifo>0, (1.1)
—/ frvV1—12 x—|—rt)\/1dt_t2, if o =0;

where f is any continuous function on R?, even with respect to the first variable.
The dual operator ' Z,, is defined by

\/? ooy ut—r?
T 20T a+1 / a8 x )

x(uz—vz—rz)o‘_lu du dv, ifa>0,
\/E/ \/ P2+ (x—y)2,y)dy, if . =0;

where g is any continuous function on R?, even with respect to the first variable and
with compact support.
In particular, for o = 0 and by a change of variables, we get

Fa(9) (%) = (12

1 2 )
Ro(f)(rx) = ﬁ/o f(rcos0,x+rsin0)do.

This means that Zo(f)(r,x) is the mean value of f on the circle centered at (0,x) and
with radius r.

The mean operator %, and its dual ‘%, play an important role and have many
applications, for example, in image processing of the so-called synthetic aperture radar
(SAR) data [19, 20] or in the linearized inverse scattering problem in acoustics [15].

The operators %, and its dual %, have the same properties as the Radon trans-
form [18], for this reason, Z,, is called sometimes the generalized Radon transform.

The Fourier transform .%,, associated with the operator %, is defined by

V0, 1) € Yy Falf)(ho,A) = /ON/Rf(r,x)% (cos(Ao-)e ) (rx)dVe (1)
_ /O - /R F(rx) jo(ry) 22+ A2)e M dve (rx),
where Y is the set given by

Y = R2U{(id0,A); (A0, A) € R [Ag] < [A]}. (1.3)
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dvy(r,x) is the measure defined on [0, +o[XR by

et ldr - dx
20T (a+1) ~ 2¢
Jo 18 the modified Bessel function that will be defined in the second section.

Many harmonic analysis results have been established for the Fourier transform
Fo (1, 4,5, 6,7, 28, 29]. Also, many uncertainty principles related to the Fourier
transform .% have been proved [2, 3, 21, 26, 27].

Our investigation in this work is to prove a generalized quantitative version of the
mean-dispersion Shapiro’s theorem related to the Riemann-Liouville operator.

This paper is arranged as follows. In the second section, we collect some harmonic
analysis results for the Riemann-Liouville operator %, and its connected Fourier trans-
form .%,. The third section contains the main results of this work, we will prove a
quantitative version of the mean-dispersion shapiro’s theorem. Next, we establish a
multiplicative form of this theorem.

(1.4)

dve(rx) =

2. The Riemann-Liouville transform

In this section, we recall some harmonic analysis results related to the convolution
product and the Fourier transform associated with the Riemann-Liouville operator.
Let D and E be the singular partial differential operators defined by

d
D=
ox’
2 2 1 2
E:&__Fii 8 '(r’x)e}(),—i-oo[xR,(X}O,

or? o dr  ox%’
For all (Ag,A) € C?, the system

Du(r,x) = —idu(r,x);
Eu(r,x) = —lgu(r,x);

u(0,0) =1, %(O,x) =0; Vxe R,

admits a unique solution @y, ; given by

V(r,x) € [0,+oo[xR, @11 (1x) = jou(ry/A3+A2) e ™, 2.1)

where j, is the modified Bessel function defined by

. Ja(2) & (=DF 7\ 2k
= 2T+ 1) =T(a+1) ¥ e ()
Ja(2) (o4 1) = =Tlo+ >,§0k!r(a+k+1) 2)
and J,, is the Bessel function of first kind and index o [13, 14, 23, 35]. The modified
Bessel function j, has the integral representation

Mlo+1) /l (1—12)%~ 3 exp(—izt)dt. (2.2)
) J-1

Jja(z) = m
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Consequently, for every k € N and z € C, we have
i¥ ()| < e, 2.3)

PROPOSITION 2.1. The eigenfunction @y, ; satisfies the following properties

i. The function @, ; is bounded on R if, and only if (Ag,A) € Y, where Y is the
set given by the relation (1.3) and in this case,

sup @4 (nx)| = 1. (2.4)
(rx)e R?

ii. The function @y, ; has the following Mehler integral representation

%LII[IICOS(%rSm)eXp(_WH”))
x(1=1)972 (1= %)% \drds: if o > 0,
(Plo.,l(r,x) = %/ cos (rlo\/?tz) exp( iA( x—|—rt)) (2.5)

X

dt
T ifoo=0.

REMARK 2.2. The Mehler integral representation (2.5) of the eigenfunction ¢
allows us to define the integral transform %, by

%/;11/711f(FS\/m7x+rt)(l —12)067%

Rao(f)(r,x) = x(1—s2)*Vdrds, if >0, (2.6)
_/ fr Vl—ﬂx—l—rt)% if o =0;
—t

where f is any continuous function on R2; even with respect to the first variable. Then,
the relations (2.5) and (2.6) show that

(7 l(rax> = %a(cos(%')eim.)(rax% 2.7
which gives the mutual connection between the functions ¢, ; and cos(Ag-)e .
For this reason, the operator %y, is called the Riemann-Liouville transform asso-
ciated with the operators D and Z.

The partial differential operators D and Z satisfy the intertwining properties with
the Riemann-Liouville operator and its dual

32
[%aa(f) 92 t%a(f) t%aD(f) :Dt%a(f)’

2
=Half) = Rasg (/). DRalf) = RaD()
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where f is a sufficiently smooth function.
We denote by LP(dvy); p € [1,+eo], the Lebesgue space formed by the measur-
able functions f on [0, 4eo[xR such that ||f|| v, < +e°, with

)t e 1
fllpve = (f " froora)ipe et o

ess su X if p = 4o,
(rx)e [0,+°<>p[><R ’f( )| b

and dvy, is given by the relation (1.4).
(.].)v, the inner product on the Hilbert space L?(dv) defined by

(fle)v / /frx r,x) dvg(r,x).

%o..(R?) the space of continuous function on R?, even with respect to the first variable
such that
lim  f(r,x) =0,
r24x2 oo

the space %y .(R?) is equipped with the norm

flleove = sup|f(rx)].

(rx)€ [0,+eo[xR

To define the translation operator associated with the Riemann-Liouville transform, we
use the product formula for the eigenfunction @ ;, thatis for (r,x), (s,y) € [0, +eo[xR,

Ta+1)

NGO / @100 (V12 452+ 2rscos B,x-+y) sin**(6)d6.
o

Pro (1,X) P30 2. (5,y) =

DEFINITION 2.3. i) For every (r,x) € [0,4eo[xR, the translation operator 7.,
associated with the Riemann-Liouville transform is defined on L?(dvy); p € [1,+eo],
by

F((X—i—l) & 2 2 20
7\/51“(0(—#%)/0 f(\/r + 5%+ 2rscos0,x+y)sin**(0)d6.  (2.9)

ii) The convolution product of f,g € L' (dvy) is defined for every (r,x) € [0,+oo[xR,
by

T(r,x)f(s7y) =

~+oo
f*g(rx) / / (r—x) )g(s,y)dVe(s,y), (2.10)

where f(s,y) = f(s,—).

The set [0, +eo[xR equipped with the convolution product = is an hypergroup in
the sense of [9].
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PROPOSITION 2.4.

For every f € LP(dvy); p € [1,4], and for every (r,x) € [0,+oo[xR, the
function T, (f) belongsto LF(dvy) and we have

70 D] v, < 1oy 2.11)

For every f € L'(dvy) and (r,x) € [0,+oo[xR,

/ / (r) (F)(8,¥)dVa(s,) / /fsydva(s y). (2.12)

Forevery f € LP(dvy); p € [1,+0o], we have

. )hII(l ) (F) = f1],.0 = O- (2.13)

For every f € %p.(R?) and every (r,x) € R, the function T(v) (f) belongs to
%0..(R?) and

. )hm %) () = f].oy, = O (2.14)

Let ¢ be a nonnegative measurable function on R x R, even with respect to the

first variable, such that
+°°
/ / o (r,x)dvy(r,x) = 1.
0 R

Then the family (@(a.p)) (4,5 ()2 defined by

1 roXx
V(rx) € RXR, @up(rx) = m‘l’(;, 5>
is an approximation of the identity in LP(dvy); p € [1,4ee|, that is for every
fe LP(dvy), we have

I @) = Fllpwe =0 (2.15)

For every f € Cgo,e(Rz)’

im0y~ Fllse = 0. @2.16)

If 1 < p,q,r < +oo are such that % = 11_7+ Llj —landif f € LP(dvy),
g € Li(dvy), then the function f g belongs to L' (dvy), and we have the
Young’s inequality

<l pove 8l lg.ve- (2.17)
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In the following, we need the notations Y is the subset of Y’ given by
Y. =Ry x RU{(it,x); (t,x) € R% 0<r < x|}

Py, is the o -algebra defined on Yy by

Py, ={07'(B), Be Bor([0,+[xR)},

where 6 is the bijective function defined on the set Y by

0o, A) = (\/AF+2A2,1), (2.18)

and Bor ([0,+oo[xR) is the usual Borel ¢ -algebra on [0,+eo[xR.
dYy is the measure defined on %y, by

VA€ By, Yu(A) =va(0(A)).

LP(dYa); p € [1,420], the Lebesgue space consisting of measurable function g on
Y such that
lgllp.yec < oo

S the inner product on the Hilbert space L?(dy,) given by
Yo

(Fle)=[ [ 302) 502 dvala.2).

PROPOSITION 2.5.

i. For all nonnegative measurable function g on Y4, we have

//mg(%’l)dm(ﬂo,x)

B m(/(,+mfkg<w><l€+”>“% dho 2

s [ [ 02002 <3730 arg ).

ii. For all nonnegative measurable function f on [0,+e[xR (respectively inte-
grable on [0,+e[XR with respect to the measure dvgy ), f o0 is a nonnegative
measurable function on Y (respectively integrable on Y with respect to the
measure dYy ) and we have

//m(foe)(%,?t)dya(ﬂ@/l):/OJM/Rf(r,x)dva(r,x). (2.19)

Now, using the eigenfunction ¢, ; given by the relation (2.1), we can define the
Fourier transform.
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DEFINITION 2.6. The Fourier transform associated with the Riemann-Liouville
operator is defined on L!(dvy) by

+oo
V(Ao ) € Y, %(f)(am):/o /Rf(nx)(pw(r,x)dva(nx).

PROPOSITION 2.7.

i. Forevery f € L'(dvy), the function Fo(f) belongs to the space L*(dvy) and
we have

[ Fa (... < 1F11ve (2.20)
ii. Let f € LY(dvg). Forevery (r,x) € [0,+e[xR, we have
V(d0,4) € Y, Fo (T4 (£)) A0, 1) = 92,2 (r.X) Fa(f) (A0, ).
iii. For f,g € L'(dvy), we have
V(do,A) € Y, Fal(f*8)(A0,A) = Fulf) (A0, A) Fa(8)(A0,A).  (2.21)
vi. For f € L'(dvgy), we have
YA €Y, Falf)k0.2) = Falf)o0(0,d),  (222)
where for every (Ag,A) € R?,
— oo
Fal)002) = [ [ F00ja(A)exp(-idx)ava(r),  (223)
0 R

and 0O is the function defined by the relation (2.18).

Also, the Fourier transform %, satisfies the following properties

THEOREM 2.8.

i. Let f € L'(dvy) such that the function Fo(f) belongs to the space L'(dYe),
then we have the following inversion formula for F, for almost every (r,x) €
[0,+oo[xR,

Flrx) = / [ Zal) (0,2 02 ) 1)
- /OM/R‘%(JC)(%’M Ja(rdo) €M dve(ho,A).  (2.24)

ii. (Plancherel theorem) The Fourier transform %, can be extended to an isometric
isomorphism from L*(dve) onto L*(dvy) and for every f € L*(dvq),
Za (200 = 1f1]2,ve- (2.25)
In particular, we have the Parseval equality; for all f,g € L*(dvy),

(f1 8 vy = (Falf) | Fale) >')/oc' (2.26)
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Using the relations (2.20), (2.25) and the Riesz-Thorin theorem’s [31, 32], we de-
duce that for every f € LP(dVy); p € [1,2], the function .Z,(f) lies in L” (dyy); p' =
, and we have

[ Za (O], < 1Allpve- (2.27)

We denote by .7,(R?) the space of infinitely differentiable functions on R?, rapidly
decreasing together with all their derivatives, even with respect to the first variable.
The space .7, (R?) is endowed with the topology generated by the family of norms

(@) = su 1472+ D (0)(r,)]. 2.28
pulp) = s A )"0 (9) (1) (2.28)
k+|B]<m

2,(R?) the subspace of .7, (R?) formed by the functions with compact support.

From [33, 34], the transform .%, given by the relation (2.23) is a topological
isomorphisme from .7, (R?) onto itself and we have

Fo' D) = [ [ 100.2) jalr20) ¢ dva(o.r) = Fol ).

3. Main results

In this section we shall prove the dispersion principle and one multiplicative form
related to the Riemann-Liouville operator. For this, we need some intermediate results.

DEFINITION 3.1. Let p be a positive real number.

i. For every measurable function f on [0,+co[xR, the p-dispersion of f with
respect to the measure dvy, is defined by

o) = ([ [ 100 170 ava)7

ii. For every measurable function g on Y., the p-dispersion of g with respect to
the measure dy, is defined by

puaa(®)= ([ [ 1800, 1)1 ls(o 1) dvalo n)

DEFINITION 3.2. Let € be a positive real number and let f be a square integrable
function on [0, +eo[xR with respect to the measure d vy, .

i. We say that f is &-concentrated in the ball By = {(r,x) € [0,+eo[xR; r? 4+x* <

p?} if 1
// dva(rx)>7 <
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ii. We say that f is £-bandlimited in the ball B} = {(%,1) € Yy: |0(%,A)* =
AG 202 < p?Yif

(/ sy

Let S be a measurable subset of [0, +co[xR and let X be a measurable subset of
Y such that

N0 M dya(io,1))” <

Vo (S) < 4eo and Yy (X) < +eo.

We denote by Ps and Py the bounded self adjoint operators defined on L?(dvg) re-

spectively by Ps(f) = Ls.f and Ps(f) = Z5 ' (13 7a(f))-
We have the following interesting result

THEOREM 3.3. The operators PsPs and PsPs are Hilbert-Schmidt operators such
that

1PsPsllns < v/ Va(S)Ya(E)  and  ||PsPsas < v/ Vo (S)Ya(Z),

where ||.||gs denotes the Hilbert-Schmidt norm.

Proof. Since Vg (S) < 40 and ¥4(X) < +oo, then for every f € L*(dVy), 1s.f
belongs to L!(dve ) NL*(dvy) and forevery g € L*(dYy), 15.g belongs to L (dyy) N
L?(dYy) . Consequently, for every f € L*(dvy),

PPs(f)(rx) = Z ' (15 7a(ls.)) (1)
= [ [ 12(10.2) Fa1s.f)(20.2) 0202 ) (0. 2)
.
= [ [ 1:(00.2)9,3 00
Ty
([ 1503) F0.3) 91(0.9) AVa(e.)) dral2,2)

Applying Fubini’s theorem, we get

PsPs(f —//lsry £(t,y)

(/. 12(%%)‘!’%,&0&)%{)4(”»x)d%c(%»l»dva(%y)

_/ /fty X), (6,))dVa(t,), (3.1)
where K is the kernel given by
K((r0:9) = 1503) ([ [ 12(20.2)0202(.9) 022 2 Y (h0.2))

= ls(t,y o ! (IZ(P s - t;)’))(’:x)~
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Using the Plancherel theorem for .%,,, Fubini’s theorem and the relation (2.4), we get

K12,

= [ L5 ([ [ 15000102 4005) Para(20,2) ) avat.y)
.,
< Va(S)Ya(Z). (3.2)
The relations (3.1) and (3.2) show that PsPs is an Hilbert Schmidt operator and that
|

As the same way, for every f € L'(dvy)NL?(dvy) and for every (r,x) € [0,+oo[xR,

<V Va(S)Ya(X). (3.3)

PsPs(f)(rx) = 15(rx) 7, ' (1= Za(f)) (1)
= 15(r) / [ 15(20,2)7a() (0. 2) 920 2 X)d%a (20,2
=159 [ [ o) ([ [ #6022 (5.5)dva(s.9)
X @y 2 (1X)dYa (Ao, A).

Applying Fubini’s theorem, we have

P () = 15 [ [ 76 ([ [ 100,220 =)
X 92025 ) A%a(0. 1) ) dVa(5.9)
= [ [ (0 529) dvals.y).
where H is the kernel given by

H((r.x),(5,3)) = 1s(rx)F5 ' (1z9..(r,—x)) (5, ).

Applying again Fubini-Tonnelli theorem and the Plancherel theorem for %, we get
2
I H((5), (5.9)) | @va(r0)ava(s.y)
([0, 4eoxR])?

_/ /13 r,X) / /‘ lz(p x))(s,y)‘zdva(s,y)>dva(r,x)
= [ [ s //m}12(207/1)%07,1(1’,—x)|2dya(7to7/l)>dva(r7x)
< Va(S)Ya(2)- 34)

The last inequality shows that the operator PsPs is an Hilbert-Schmidt operator and that

[1PsPsllas = [|H||2voove < VVa(S)1a(2). D
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THEOREM 3.4. (Time frequency localization) Let S C [0, +oo[xR; £ C Yy such
that Ve (S) < +oo and Yy (Z) < +oo. Let # be afinite subset of N* and let (Qmn) (mmye 2
be an orthonormal sequence in L*(dvy,). Then
3 3

Z (1 3 dmn ($)— Eb’“m(z)) < Va(S)1a(E), (3-5)
(m,n)e &

where

amn(S) = ||Lse and by (Z) = ||Isc Fo(Omn) 12,70 - (3.6)

Proof. For every (m,n) € N?; we put

BII—
~
L]
4
B

20t T+ 1
e alrx) = (ot LD )2 o
' 2" 2nll(m+ o+ 1)

where (L%),c n are the Laguerre polynomials and (H,),c n are the Hermite polyno-
mials. Then, (e ,) nn)e n2 is an Hilbert basis of L?(dvg) [27]. Moreover, the family
(&nn) mmye ne defined by

Emn(A0,A) = €,,00(A0, 1)
is an Hilbert basis of L?(d7,) such that
Fales,) = (i) E%,. (3.7)

On the other hand, for every bounded operator 7 on L?(dv,), we denote by T* the
adjoint operator of T defined by

(T 8hva = {F I T*(@)hva : frg € L2 (dVa).

Then, the operators Ps and Py are self adjoint and satisfy P2 = Ps, PZ = Ps. Let ¢
be the self adjoint operator defined by ¢ = (PsPs)"(PsPs), then ¢ can be written ¢ =
PsPsPs and ¢ is an operator with trace such that

(@)= X, |IPePs(ef,)ly,

(m,n)e N2

= 2 <¢(egl,n)‘e$7n>wz
(m,n)e N2

2
= ||PsPs||s-

Applying Theorem 3.3, we get

(m,n)€ N2
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Now, let (@m,n)(mn)e » be an orthonormal sequence in L?(dvy), then (Qmn) (mmye 2
can be completed to an Hilbert basis of L?(dv,,) denoted by (@mn) mnye N2 - SO,

Y NBPs@ua)lzy, = X [IPePs(en )iy,

(m,n)e N2 (m,n)e N2

= 1r(9) < Va(S)Ya(Z).

In particular,

Z HPZPS((Pm,n)H%,va = Z (O (@) | Pmn) vy

(mn)e & (m,n)e N2
< Va(8)1a(E). (3.8)

On the other hand, for every (m,n) € N2,

<¢’((Pm,n)|(/)m,n>va = <PS&PS((pm,n)|(Pm,n>va = <PEPS((Pm,n)|PS((Pm,n)>va
= (PePs(Pmn) | Omn)ve — (PP (@) | @ — Ps(@mn) ) v

but,

<P5:PS((Pm,n)|§0m,n>va PS((pm,n)|PZ(§0m,n)>va

=
= (Ps(@mn) | Pmn)ve — (Ps(Onn) | O — Pe(Prnn)) v
= 1= @mn— Ps(Pmn) | Pmn)ve — (Ps(@Onn) | @mn — Pe(Prun) ) vee -

The relations (3.9) and (3.9) imply that

(O (Pmn) | Pmn)ve = 1= (P — PS(Prnn) | @) vee — (Ps (P ) | P — Ps(Pmn)) vy
_<PZPS((Pm,n)|(pm.,n _PS((pm,n)>va~

Thus,

(O (Pmn) | Omn)ve = ‘ (O (Pmn) | Omn) v,

> 1= [(@mn = Ps(Oman) mavis| — |(Ps(@m) @ — PO

| (PP (@) B — Pl @) v (3.9)
However, for every (m,n) € N?,
am,n(S) = HIS" (Pm,n | ‘2,v,1 - H(Pm,n - PS(Pm,n ‘ |2.,va
2 ‘<(Pm,n_PS(Pm,n‘(Pm,n>va 5 (310)

|PZPSH H(Pm,n _Ps(Pm,nHlVa
|(Pm,n_PS(Pm,nH2,va :am,n(S)7 (311)

<PZPS(Pm,n|(Pm,n - PS(Pm,n>va < ‘
<|
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2Va

<PS(Pm,n‘(pm,n - PZ(pm,n>va < HPSH H(Pm,n — PZ(Pm,n|
S ‘ 2% = bm,n(z)~ (3.12)

|ga((.0m,n - PZ(Pm,n)|
Combining the relations (3.9), (3.10), (3.11) and (3.12), we get
(O (Pman) | ) vy = 1= 2amn(S) — bynn(Z). (3.13)

Similarly, let R be the self adjoint operator defined by
R = (PsPs)"(PsPs) = PsPsP,

by Theorem 3.3, we have

tr(R) = 2 |[PsPs(@m.n)| %,va
(m,n)€ N2
= Z (R(@mn) | Pm.n) v
(m,n)€ N2
= [[PsPs|frs < Va(S)Ya (). (3.14)
As the same way, for every (m,n) € N2, we have
(R(@mn) | @mn)vy = 1= amn(S) = 2bmn(Z). (3.15)

Using the relations (3.8), (3.13), (3.14) and (3.15), we deduce that
Y (2= 3ama(S) = 3bma(%))

(mn)e A
< Z (O (@) | Qi) ve + Z (R(@mn) | Pmn) v
(mn)e A (m,n)e A
< 2 (O (Pmn) | Pmn) ve + 2 (R(@mn) | Pmn) v
(m,n)€ N2 (m,n)€ N2
< 2va(S) 7 (D). (3.16)

The proof of theorem is complete. [

COROLLARY 3.5. Let €, p and N be positive real numbers such that 0 < € < %
Let # C N? be a nonempty subset and let ((p,,m)(m’,,)E v be an orthonormal sequence
in L*(dvy). If for every (m,n) € ', Qun is €— concentrated in the ball Bj and @
is €—bandlimited in the ball Eﬁ, then the subset ¢ is finite and

p2o¢+3 n2a+3

card( ') < 5-
(1-3g) 22043 (Do +3))

(3.17)

Proof. Let J#) be a finite subset of . From the hypothesis, for every (m,n) €
'% 9

am’,,(B;) = (//(B;)C }(Pm,n(r,x)}zdva(r,x)f <e
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o= (/[

and consequently, for every (m,n) € 1,

and

22 Par(e.n) <e,

3 3 ~
1— Eamm(B;) — Ebm’n(B;!’_) 2 1 —38

According to Theorem 3.4, it follows that

(1-3e)card( 1) < Y (1—5am,n(B;)—§bm,n(§g))

However, we have
p2a+3 ~ ( ~ ) N
=——————and % (B;) = vo(0(B})) = vu(B}) =
2043 T(o+3) ! ! !
This involves that for every finite subset %] of %, we have

200+3 2043
p n

(1—3¢) 22043 (T(or+3))°

card(J4]) <

Consequently, ¢ is a finite subset and
p2a+3 n2a+3

(1-3e) 22043 (M(a+3))*

card(#") <

COROLLARY 3.6. Let a,p be positive real numbers. Let & be a nonempty sub-
set of N* and let (@, n)(mnye N2 be an orthonormal sequence in L?(dve). Assume that
for every (m,n) € A,

Pp,va (‘Pm,n) <aand P,y (ﬁa((l’mm)) La.
Then ¢ is a finite subset and
2%(2a+3)72a71a2(2a+3)

card( %) <
S T ey

Proof. Let p,n be positive real numbers, from the hypothesis, we deduce that for
every (m,n) € X,

1 oo
//(B;)c |qom7,,(r7x)|2dva(r7x) < ﬁ/o /]R|(p,,,7n(r7)c)|2 |(r7)c)|17 dvg(rx) < (%)p
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and
/ Ji | Zetma) G 2) Pzt )

// 02 M| | o (Pun) (R ) Pl (R, 1)

<(n)-

4
In particular, if we pick p =1 =a 25 we deduce that for every (m,n) € 5 @y p is
1 _concentrated in the ball B , and 1 -bandlimited in the ball B ,

a2P a2 I’

Applying Corollary 3.5, it follows that .# is a finite subset of N> and that

2
card(.7") < Ea

%)2a+3 (aZ%)MH - 3 2043)~(20+1) 2(2a+3)
T (1-7)227 (e +3))° (Fa+3))°

O

LEMMA 3.7. Let p >0 and let (@un) (e w2 be an orthonormal sequence in
L*(dVy). Then, there exists jo € 7 such that

V(m,n) € N?, max{pmv(x((l’m,n): Pp.va (ﬁa((l)m,n))} > 20,
Proof. Forevery je€ Z,let

Pj:{(m n)e N?; 2/ max{ppva Omn), ppya(fa Omn )} <2’+1}

Then, N> = | | P;, Pj, NP;, =0 if ji # j, and for every (m,n) € P;,
JEZ

Ppove(@nn) <27 and pp . (Fo(@ua)) <27
Applying Corollary 3.6, we deduce that P; is finite and
8
2;(20:-&-3)_(20:-&-1) )
card(P;) < ————— (27F1)4°, (3.18)
J 51) 2
(F(OC + 5))

Thus, for j negative and |j| sufficiently large, we get card(P;) =0 or P; = 0. This
means that there exists jo € Z such that Vj < jo, P; = 0. So,

~+oo
=Ur=UPr
JjE Z J=Jo
This implies that

V(m,n) € sz maX{Pp,va((Pm,n), Pp.v (ya(q)m,n))} =20 O
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THEOREM 3.8. (Quantitative version of the mean-dispersion Shapiro’s theorem)
Let (Qmn) (mnye n2 be an orthonormal sequence in L?(dVy), then for every positive

real number p and for every nonempty finite subset # C N?, we have

Z ((Pp.,m ((pm.,n))p + (pp,)/a (ga((Pmm)) )17)

(mn)e &

1—~2(a+ %)(2406-&-6_ 1)>ﬁ

1+
P (Ca”d(%/)) " ( 2(2a+3)(%+3)+3

(3.19)

Proof. Let jo be defined in Lemma 3.7. Then for every (m,n) € N2,

max {pPNa (@mn)s Pp.ye (ﬂa(¢m7n)) } > 200,

For every k > jo, we put

k
Oc=J P
Jj=Jjo
From the relation (3.18),

k
card(Qy) = Y card(P))
j=Jo
2%(2a+3)7(2a+1) k '
< - 2 (24a+6)1+1

(e ) 7

2%(2a+3)7(2a+1)
— 2 (40+6)(jo+1)

2%(20&3)7(20&1)

(r(a+§))2 (24046 _ 1)

2%(2a+3)—(2a+1)

(r(a+§))2 (24046 _ 1)

2(4a+6)(k—j0+1) 1

2(40{-‘1—6)(/{-‘1—2). (320)

N

i) If card(#") > 2 2(4a+6)(0+2); Jet k > jo such that

75 (200+3)= (204 1) 5 (40+6) (k+1) 75 (20+3)=(20+1) 5 (40+6) (k+2)
2 7 Lcard(F) <2 5 . (3.21)
- 4a+6 - 4o+6
(r(a+2)) 2 1) <F<a+2>> 2 1)
From the relations (3.20) and (3.21, we have
8
2—(2a+3)7(2a+1)2(4a+6)(k+1) A
card(Qp_1) < = - < card(A) (3.22)

(r(a+ §)>2 (laro_py 2
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On the other hand,
2 ((ppvva((pm,”))p—i_ (plh)’a (fa(q)m,")))p)
(mn)e A

= Z <(Pp7va(§0m7n))p+ (Pp.,)/a (ya((Pm,n)))p)
(mn)e A N0k
£ Y (ol onn)” + (Ppe (Faloman)”)

(mn)€ A\Ok—1

> Z <(Pp7va(§0m7n))p+ (Pp.,)/a (ga((Pm,n)))p).

(mn)€ A \Qg—

But, for every (m,n) € Z\QOi—1,

(Pp,va((Pm,n))p + (Pp,)'a (ﬁa((l’m,n)))p = <maX {pmva((l’m,n)a Pp.va (g\a((l)m,n)) }>17
> 2k

So,

( > ((pp,va(<pm,n))” + (Pp.1e (%(wm,n)))”) > 2k card( A\ Qx_1).
mpn)e K

Then, from the relation (3.22), we deduce that

card(Z
2 ((pp,va((/)m,n))pﬁ- (pp.,)/a (ga((Pmm)))p) 2 2kp # (323)
(mn)e &
Now, from the relation (3.21), we have
d 2kp=1 o
car ('%/) 1+L — 2kp—l(card(%)) 4ap+6
(card(x)) " %S
28 (20043)~(20+1) T
< pkp-1] o r 5 o(40+6)(k+2)
5 4o+6
(F(a+§>> (2406 1)
(1-kp)a6) ~ T

+148 2043)— 20+ 1)+ (k+2) (40+6)

(e Dy

(r(es3)) o)

2(20¢+3)(3+"70)+3

p
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which means that

(e )0\ ™

kp—1 l+ﬁ
2 Lcard(¢") > (card(%)) SGaGr D5

.(3.24)

Combining the relations (3.23) and (3.24), we get
Z ((pm\'a ((Pm,n))p + (Pmax (g\a((Pm,n)))p)

(mn)e &
roc+é 2(2“0‘+6—1) s
(r(e+3))

. 1+ 7L+
> (card(%)) * 2(2a+3)(3+%))+3

2%(2a+3)—(2a+1) ‘
i) If card(#) <2 5 2(4+6)(0+2) By Lemma 3.7, we
(T(a+3))" (2446 —1)

have

((pmv(z((l’m,n))p + (Pp.1 (906((Pm,n)))p>

A
> Y (max{pmva((Pm,n);Pp,Ya(fa(‘Pm,n))}y

As the same way,
card(¢) 2/op

. P
= 2/07 (card(%")) *¥0
(card(%))Hﬁ ( )

~ 776
2%(2a+3)7(2a+1)
> 2ior | 2 2 (4a+6)(jo+2)

2
(r(a+3)) @ -0
= Jo(40-H6)+ 145 (200+3)—(200+3)+2+(jo+2) (4er-+6)

(e Dy e

)4
4046

)4
4a+6

2(2a+3)(3+g)+3

(r(e+3)) "

(r(e3) @ 0)
T .

5(20043)(3+ 19)+3

24(X+6

WV
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Then,

Z <(pP7V0¢ (q’mm)) s (Ppﬂa (ﬂa ((Pm,n)) )p>

(mn)e A

1—~2(a+ %)(24a+6_ 1)> ﬁ
3 .

-
> (card()) " a3 )W 3+

REMARK 3.9.

i. Therelation (3.19) shows in particular that for every orthonormal basis (@m,n) ( n)en2
of L2(dvy) and for every p >0,

Y ((Prsa@nn)” + (pe(Falona))”) = o=

(m,n)eN?

ii. In[27, Remark 1], the authors have established the well known Heisenberg Pauli-
Weyl uncertainty principle for the Riemann-Liouville transform, that is for every
f €L*(dvy), we have

0] 1B, +1118(R0, 1) Fa(AIE 4, = (2o+3) IfIB,y,. (3.25)

Let f € L*(dvy)\ {0} and let o9 = ———. The set {@yo} can be com-

pleted to an Hilbert basis (@n),, e n2 Of L*(dvy). Taking # = {(0,0)} in the
relation (3.19), we deduce that for every p > 0,
Fa(NI3

1)1 2 +1116(20,4)] NNy

T2(0+ 3)(2440 — 1)\ s
= ( (2a+3)(70+3 ) Hf”2 Va© (326)

14
2

The relation (3.26) generalizes the relation (3.25). However, in the relation
(3.25), the constant 2¢ 4 3 is optimal (the best). [

LEMMA 3.10. For every positive real number a, there exists a non zero function
f € L*(dvy) which vanishes almost everywhere on B = {(rx) € [0,4e[xR; P+
x> < a*} and such that Fy(f) vanishes almost every where on B = {(%0,A) €
Yo |0(A0,A)P =23 +242 <a?}.

Proof. Let ., be the Hankel transform defined on L' (duy) NL?*(dpy) b

(1) (Do) = /0 " 1) ja(rho) dita(r)

r20(+1 dr
where d|l, is the measure defined on [0, +eo[ by dy(r) = Tt 1) Let a >0,

according to [12], there exists a nonzero function g € L*(dp,) such that g and .7 (g)
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vanish almost everywhere on [0,a]. As the same way and using [24], there exists a
nonzero function # € L?(R,dx) such that i and & vanish almost everywhere on [—a, d]
where

W) = J% /R h(x) e~ *dx.

We consider the function f(r,x) = g(r)h(x). By construction, f belongs to L*(dvy)
and f vanishes on B} . Moreover, for every (49,A) € Y,

Fa(f) (ko 1) = Ha(8) (\/ 23+ A2)h(2),
consequently, % (f) vanishes almost everywhere on
B = {(A0, 1) € Ty 10(A0,A)[> = A3 +24° < az}. O

THEOREM 3.11. (Multiplicative version of the mean-dispersion Shapiro’s theo-
rem) Let (Qmpn)(nn)c 2 be an orthonormal basis of L*(dvg). Forevery p >0, the

sequence (pp’va((pm,n)pp’ya (ﬁa (qom’,,))> ) 2 is not bounded, that is

sup (Pp,m((Pm,n)Pp,y(X (ﬁa((pmm))) — too.

(m,n)€ N2
Proof. Suppose that

sup <Pp,va((Pm.,n)Pp’Ya (ﬂa((Pm,n))) < oo,

(m,n)€ N2
Then, there exists a positive constant C such that
V(m,n) € N*, pp.vo (@) Pp.ve (Fo(Pmn)) < C.
For every k € Z, we put

A= {(m,n) € N 275 C < ppvg (Qma) <27 C},

then Ay, NAg, =0 if ky #ky and | J Ax = N2
ke 7
Moreover, for every (m,n) € Ay,
Ppva(@mn) <2751 C and ppyy (Fal@mn)) <2 C. (3.27)

On the other hand, for all p,17 >0 and (m,n) € Ag, we have

/ /(BPW.}<Pm,n(r,x)}2dva(r,x) < p—lp /O ) /]R |(72) || @ (1) P Ve (1,)

—k+1
_ (W)qu - c>p

(3.28)
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[ fas

and

7, ((Pm.,n)(%l)}zd%x(”ﬂ) ! (Ppya(Ja((Pmn)))p

ne
2k C\r
< (—> . (3.29)
n
4 4
In particular, for p = C 271 2% and n = C 27 2%, we deduce that for every (m,n) €
Ay, the function @y, is %—concentrated in the ball B™ 4, and %—bandlimited in
" Cc2pT 2k
the ball BY , . Using Corollary 3.5, we conclude that the set Ay is finite and that
c2p 2k

(C 2%+12_k)206+3 (C 2%2;{)20546

(g 03

2(2043) 5 5(2043)+2
_¢ ’ . (3.30)

(r(a+3))

Now, let R > 0. By Lemma 3.10, there exists f € L?(dVg); ||f]|2.ve = | such that f
vanishes on B} and .#,(f) vanishes on B . Forevery (m,n) € Ay, we have

[ Fl@madva |’ //B+ |fr)x’g
//B+ ’f r,X) dVa (r,x) / /’rx | @ (r,%)| dva(rx)>

pp va(wmn)

card(Ay) <

’ X | |(pmn X |dva 7, X) )2

Using the relation (3.27), we get

2 (2C)P2He

|(Flomnlva|” < 47 (3.31)

Similarly, for every (m,n) € Ay,

[EAGIEACS) M //B+ |J|"; %A/f f,“,” a(zo,x))

// 0020, )|" | Fal9ma) (20, 1) dra(20, 1))
pPVa(Ja((pmn))
Again, by the relation (3.27), we have

2kp. (3.32)

(o) TPy |
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Using the relations (3.31), (3.32) and the Parseval equality for .%,,, it follows that for
every (m,n) € Ay,

|AApma)ve|” = [(Za (1) Fa(@mn))re |
2C\r . k —k - 2C\ P 7‘k|
< (F) min{227) = (25) 27H (3.33)
On the other hand, we know that

113y =1= z |<f\<pm.,n>ml2
E

Z( Y [lonnl)- (3.34)

k€ Z " (mn)e Ay

By the relations (3.30) and (3.33), we have

1< (%)p Y 271P card(Ay)

ke Z
C220+3)+p 9y Qa3 +pt2 o

- 222—"1’—1)

N

RP(F(OH-E))z k=0
e 25203 +PE2 op | 1) 535
RP(F((X-i-%))z 2l |
This gives a contradiction because we can choose R sufficiently large. [J
PROPOSITION 3.12. There exists an orthonormal sequence (W) e w2 Such

that for every p > 0,

sup (Pp,va(Wm,n)Pp’Ya (ya(‘lfm,n)» < oo

(m,n)e N2

Proof. Let y € Z,(R?); supp(y) C {(rx) € R?; 1 < |(r,x)| <2} such that
= 1. Since the transform .%, is a topological isomorphism from .7, (R?)

onto itself, we deduce that %(w) belongs to .7, (R?). Consequently, from Definition
3.1 and the relation (2.19), for every p > 0,

Pp.va(W) < +eoand ppy, (Fa(¥)) = ppve (Fa(W)) < +eo.
Let 6 : N> — N be a bijective application, we define the sequence (l[/m7n)(m7n)€ N2 by
V(rx) € [0,4eo[XR, Wy nu(rx) = 2(@+3)0(mn) l//(Ze(m’")r,Ze(m’")x).

For every (m,n) € N?;
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and
supp(¥inn) € { () € B2 27000 < [ <2100 (336)
Let (m,n),(m',n') € N?; (m,n) # (m',n’), then 8(m,n) # 6(m',n’), for example
0(m,n) < 0(m',n’), or 1+ 60 (m,n) < 6(m',n').
Then, from the relation (3.36),
V(r,x) € [0,+0o[XR; Yiu(r,x) Wy (r,x) =0,

In particular ( Wu|W w )v, = 0. Consequently, (u/m,n)( N2 1s an orthonormal

mn)e
sequence in L?(dVe). On the other hand, by a standard computation, we have

—0(m,n)

Pp.ve(Vinn) = " Ppva (W) (3.37)
Fo (W) (Do, 1) = 27 (@F200) 2, () (2700mm 3 9=00mm) )

Pp.va (ﬁa(ll/mm)) = 26(mn) Pp.va (ya(ll/))- (3.38)
The relations (3.37) and (3.38) show that

V(m,n) € N2, pmv(x(‘l/m,n)l)p,ya (ﬁa(ll/mm)) = pPNa(V’)pPJ’a (fa(ll/))- U
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