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TOWARDS LOCALIZATION IN LONG–RANGE CONTINUOUS

INTERACTIVE ANDERSON MODELS

VICTOR CHULAEVSKY

Abstract. This paper is a follow-up of [8]. The main novelty is the proof of spectral and dynam-
ical localization for a class of interactive Anderson models in Euclidean spaces with realistic,
infinite-range inter-particle and media-particle potentials featuring a power-law decay at infinity.
Specifically, we prove that in an energy interval near the bottom of the spectrum, the spectral
measure is pure point with probability one, and the decay rate of the averaged eigenfunction
correlators in this energy interval admits a summable power-law bound, the exponent of which
grows along with the growth of the decay exponents of the potentials. The localized eigen-
functions admit a fractional-exponential bound on their decay rate. Earlier rigorous works on
interactive Anderson models assumed the media-particle potential to be compactly supported.
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