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Abstract. In this note, we strengthen some of flatness results for mono-polynomially hyponormal
and mono-weakly 2-hyponormal 2-variable weighted shifts in [15, 16, 17].

1. Introduction

Let H be a complex Hilbert space and B(H) be the algebra of bounded linear
operators on H. An operator T ∈ B(H) is called normal if T ∗T = TT ∗, it is called
subnormal if there is a Hilbert space K ⊇ H and a normal operator N on K such that
NH ⊆ H and T = N|H , and it is called hyponormal if [T ∗,T ] := T ∗T −TT ∗ � 0. The
notions of hyponormal and subnormal operators were introduced by Halmos in 1950
(cf. [3, 18]). Note that if T is subnormal, then p(T ) is also subnormal for each p ∈
C[z], that is, subnormality is preserved under polynomial calculus. However, this is not
the case for hyponormal operators, which can be easily seen from the kind of so called
unilateral weighted shift operators. Recall that given a bounded sequence of positive
real numbers α : α0,α1, · · · , the unilateral weighted shift Wα associated with α (called
weights) is the operator on l2(Z+) defined by Wαen := αnen+1 (n � 0) , where {en}∞

n=0
is the canonical orthonormal basis of l2(Z+) . Given a hyponormal weighted shift Wα ,
there exists p ∈ C[z] such that p(Wα) is not hyponormal, see [13, 14] for such kind of
examples. So hyponormality is not preserved under polynomial calculus. An operator
T on B(H) is called polynomially hyponormal if p(T ) is hyponormal for each p ∈
C[z], and is called weakly k-hyponormal if p(T ) is hyponormal for each p∈ C[z], with
degree no more than k. A nature problem asks whether each polynomially hyponormal
operator is subnormal, which had been an open problem for a relatively long period
and was answered negatively by Curto and Putinar in [11] via the so called Agler’s
dictionary [1] by establishing the relationship between positive linear functionals on
specific convex cones of polynomials and bounded linear maps acting on a Hilbert
space, with a distinguished cyclic vector.
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Before Curto and Putinar’s remarkable work to prove that there exists a weighted
shift that is polynomially hyponormal but not subnormal, a phenomenon for weighted
shifts called flatness originated from Stampfli (cf. [21]) had attracted much attention,
and been thought to provide an appropriate way to give a counterexample. Recall that
a weighted shift Wα is called flat if αk+1 = αk for all k � 1. Stampfli showed that if a
weighted shift Wα is subnormal and αn = αn+1 for some n ∈ N , then Wα is flat. Joshi
[14] and Fan [13] also constructed interesting related examples. Later, Curto [5] proved
that if the weighted shift Wα is quadratically hyponormal (i.e. weakly 2-hyponormal),
and if αn = αn+1 = αn+2 for some n ∈ N, then Wα is flat. Moreover, when Wα is
2-hyponormal, the equality of any of the consecutive weights leads to the flatness of the
weighted shift. The propagation phenomena for single weighted shifts are largely stud-
ied in the literature (see [5, 6, 4, 19] and the references therein) and the corresponding
results and techniques are important in the theory of subnormal operators, relating to
the study of dilations and extensions of operators on Hilbert spaces.

In [10, 8], the authors introduced the notion of flatness for 2-variable weighted
shifts T = (T1,T2) which is the correct analogue of flatness for 1-variable weighted
shifts. First let us recall some related notions. We denote by C0 the class of commuting
operator pairs on a given Hilbert space H. Recall that a k -tuple T = (T1, · · · ,Tk) on the
Hilbert space H is called (jointly) hyponormal if the operator matrix

[T∗,T] := ([T ∗
j ,Ti])k

i, j=1

is positive on the direct sum of k copies of H (cf. [2, 20]). A commuting pair T =
(T1,T2) ∈ C0 is called k -hyponormal if

T(k) := (T1,T2,T
2
1 ,T2T1,T

2
2 , · · · ,Tk

1 ,T2T
k−1
1 , · · · ,Tk

2 )

is hyponormal, or equivalently, the operator matrix

Mk(T) := ([(Tq
2 T p

1 )∗,Tn
2 Tm

1 ])1�m+n�k,1�p+q�k

is positive (cf. [7]). Recall that a commuting operator pair T = (T1,T2) is called sub-
normal if there is a Hilbert space K ⊇ H and a commuting normal operator pair N on
K such that H is the common invariant subspace of N and T = N|H . For operator pairs
in C0 , let us denote the class of subnormal pairs by H∞ and the class of k -hyponormal
pairs by Hk for each integer k � 1. Then we have H∞ ⊆ ·· · ⊆ Hk ⊆ ·· · ⊆ H1. An op-
erator pair T = (T1,T2) ∈ C0 is called mono-weakly k -hyponormal (cf. [16]) if it holds
that

〈Mk(T)

⎛
⎜⎜⎜⎝

λ(1,0)x
λ(0,1)x

...
λ(0,k)x

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

λ(1,0)x
λ(0,1)x

...
λ(0,k)x

⎞
⎟⎟⎟⎠〉 � 0, ∀ λ(1,0),λ(0,1), · · · ,λ(0,k) ∈ C, ∀ x ∈ H, (1.1)

which is equivalent to

〈[(λ (1,0)T1 + λ (0,1)T2 + · · ·λ (0,k)T
k
2 )∗,(λ (1,0)T1 + λ (0,1)T2 + · · ·λ (0,k)T

k
2 )]x,x〉 � 0.

(1.2)
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T is called mono-polynomially hyponormal if (1.1) holds for each integer k � 1. Note
in [12], the notion of mono-weakly k -hyponormal operator pair is also introduced,
and called weakly k -hyponormal instead. One can see examples in [12, 9] that illus-
trated the relationship between mono-weakly hyponormal and hyponormal 2-variable
weighted shifts. Compared with the one variable case, the notion of mono-weakly k -
hyponormal operator pair is natural, as explained in [12, 16]. Clearly, from (1.2), the
operator pair T∈C0 is mono-weakly k -hyponormal if and only if for each p∈C[z1,z2]
with deg p � k , p(T1,T2) is hyponormal, and from (1.1), k -hyponormal ⇒ mono-
weakly k -hyponormal for each k .

In [8, 10], the authors investigated the flatness for subnormal as well as k -hypo-
normal weighted shifts, and in [15, 16, 17], the authors investigated the flatness for
mono-weakly k -hyponormal 2-variable weighted shifts. Based on the idea in [15, 16,
17], we can strengthen some of flatness results in [15, 16, 17], i.e., we can weaken
the hypothesis leading to the flatness of 2-variable weighted shifts. We can do this by
restricting operator pairs to two types of common invariant subspaces so as to obtain
more information about weights.

Let Z2
+ = Z+ ×Z+ , k = {k1,k2} ∈ Z2

+. Recall that a 2-variable weighted shift
T = (T1,T2) on the Hilbert space l2(Z2

+) is defined by

T1ek := αkek+ε1 , T2ek := βkek+ε2 , (1.3)

where {ek : k ∈ Z2
+} forms an orthonormal basis of l2(Z2

+) , ε1 = (1,0), ε2 = (0,1),
αk,βk > 0, k ∈ Z

2
+ ({αk},{βk} ∈ l∞(Z2

+) are called the weight sequence).
It is obvious that T1T2 = T2T1 is equivalent to

α(k1,k2+1)β(k1,k2) = β(k1+1,k2)α(k1,k2), for all (k1,k2) ∈ Z
2
+. (1.4)

The definition of flatness for commuting 2-variable weighted shifts was introduced in
[8, 10]. A 2-variable weighted shift W(α ,β ) is called horizontally flat (resp. vertically
flat), if α(k1,k2) = α(1,1) for all k1,k2 � 1 (resp. β(k1,k2) = β(1,1) for all k1,k2 � 1).
Moreover, W(α ,β ) is called flat if W(α ,β ) is horizontally and vertically flat, and W(α ,β )
is called symmetrically flat if W(α ,β ) is flat and α(1,1) = β(1,1) .

First we review some basic results of flatness for 1-variable weighted shifts.

PROPOSITION 1.1. (Subnormality, see [22]) Let Wα be a subnormal weighted
shift with weight sequence {αk}∞

k=0 . If αk = αk+1 for some k � 0 , then Wα is flat.

PROPOSITION 1.2. (2-hyponormality, see [5]) Let Wα be a 2-hyponormal
weighted shift with weight sequence {αk}∞

k=0 . If αk = αk+1 for some k � 0 , then
Wα is flat.

PROPOSITION 1.3. (Quadratic hyponormality, see [4]) Let Wα be a unilateral
weighted shift with weight sequence {αk}∞

k=0 , and assume that Wα is quadratically
hyponormal. If αk = αk+1 for some k � 1 , then Wα is flat.
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PROPOSITION 1.4. (Polynomial hyponormality, see [4]) Let Wα be a unilateral
weighted shift with weight sequence {αk}∞

k=0 , and assume that Wα is polynomially
hyponormal. If αk = αk+1 for some k � 0 , then Wα is flat.

With respect to the 2-variable case, we can strengthen the corresponding results in
[15, 16, 17]. The main results are the following theorems.

THEOREM 1.5. Let T = (T1,T2) ∈ C0 be a mono-polynomially hyponormal
weighted shift. If α(k1,k2) = α(k1+1,k2) and β(l1,l2+1) = β(l1,l2) for some k1,k2, l2 � 0
and l1 � 1 , then T is flat.

THEOREM 1.6. Let T = (T1,T2) ∈ C0 be a mono-weakly 2-hyponormal weighted
shift. If α(k1,k2) = α(k1+1,k2) and β(l1,l2) = β(l1,l2+1) for some k1,k2, l2 � 1 and l1 � 2 ,
then T is flat.

2. Proof of Theorem 1.5

We first note that the restriction of a joint hyponormal operator pair to a common
invariant subspace is joint hyponormal. Also the restriction of a mono-polynomially
hyponormal operator pair to a common invariant subspace is mono-polynomially hy-
ponormal. The following results are frequently used throughout this paper.

LEMMA 2.1. (cf. [15]) Given T = (T1,T2) ∈ C0 . Then for any m,n > 0 , it holds
that T = (T1,T2)∈ C0 is mono-weakly k-hyponormal if and only if (mT1,nT2) is mono-
weakly k-hyponormal (k � 1) .

Before we prove Theorem 1.5, we give the following result.

LEMMA 2.2. Let T= (T1,T2)∈C0 be a mono-polynomially hyponormalweighted
shift. If α(k1,k2) = α(k1+1,k2) and β(l1,l2) = β(l1,l2+1) for some k1, l2 � 0 and k2 � 1 ,
l1 � 2 , then T is flat.

Proof. Given k1 , l2 � 0, k2 � 1, and l1 � 2. According to Lemma 2.1, without
loss of generality, we assume that α(k1,1) = α(k1+1,1) = 1 and β(2,l2) = β(2,l2+1) = b >
0. Since T is mono-polynomially hyponormal, it follows that T1 and T2 are both
polynomially hyponormal. By Proposition 1.4, we have α(k1,1) = α(k1+1,1) = 1 and
β(2,l2) = β(2,l2+1) = b for all k1, l2 � 0. Since T = (T1,T2) ∈ C0 is mono-polynomially
hyponormal, we have

[(T1 +T2)∗,(T1 +T2)] � 0.

Let M(n) :=
∨{

e(k1,k2) : k1 + k2 = n
}

and Pn be the orthogonal projection from H
to the subspace M(n) . Then it is easy to see that M(n) is an invariant subspace of
[(T1 +T2)

∗,(T1 +T2)].
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By definition, we have

[(T1 +T2)
∗,(T1 +T2)]e(k1,k2)

= [T ∗
1 ,T1]e(k1,k2) + [T∗

2 ,T2]e(k1,k2) + [T ∗
1 ,T2]e(k1,k2) + [T∗

2 ,T1]e(k1,k2)

= [α2
(k1,k2)−α2

(k1−1,k2)]e(k1,k2) + [β 2
(k1,k2)−β 2

(k1,k2−1)]e(k1,k2)

+ [α(k1−1,k2+1)β(k1,k2) −α(k1−1,k2)β(k1−1,k2)]e(k1−1,k2+1)

+ [α(k1,k2)β(k1+1,k2−1)−α(k1,k2−1)β(k1,k2−1)]e(k1+1,k2−1),

(2.1)

where α(k1,k2) = 0 and β(l1,l2) = 0 when any of k1, l1,k2, l2 is smaller than 0.
Note that [(T1 +T2)

∗,(T1 +T2)]M(n) ⊂ M(n), and consider the operator

M1 := P3[(T1 +T2)
∗,(T1 +T2)]P3,

then it has the following matrix representation to the ordered basis {e(3,0),e(2,1),e(1,2),
e(0,3)} ,

M1 =

⎡
⎢⎢⎣

a11 b21 0 0
b21 a22 b32 0
0 b32 a33 b43

0 0 b43 a44

⎤
⎥⎥⎦ ,

where

aii := α2
(4−i,i−1)−α2

(3−i,i−1) + β 2
(4−i,i−1)−β 2

(4−i,i−2), 1 � i � 4,

bi+1i := α(3−i,i)β(4−i,i−1)−α(3−i,i−1)β(3−i,i−1), 1 � i � 3.

On the other hand, α(k1,1) = 1 and β(2,l2) = b for all k1, l2 � 0. Hence, the matrix M1

can be written as follows,

M1 =

⎡
⎢⎢⎣

α2
(3,0)−α2

(2,0) + β 2
(3,0) β(3,0)−bα(2,0) 0 0

β(3,0)−bα(2,0) 0 bα(1,2)−β(1,1) 0
0 bα(1,2)−β(1,1) a33 b43

0 0 b43 a44

⎤
⎥⎥⎦ .

Suppose that Q1 is the orthogonal projection onto
∨{e(3,0),e(2,1)} . Then M2 :=

Q1M1Q1 is clearly positive, that is,

M2 =
[

α2
(3,0)−α2

(2,0) + β 2
(3,0) β(3,0)−bα(2,0)

β(3,0)−bα(2,0) 0

]
� 0.

Hence, we get
detM2 := −[β(3,0)−bα(2,0)]

2 � 0,

⇒ β(3,0) = bα(2,0).

On the other hand, the commuting property of T gives that

β(3,0)α(2,0) = α(2,1)β(2,0).
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So

β(3,0) = b, α(2,0) = 1. (2.2)

Suppose that Q2 is the orthogonal projection onto
∨{e(2,1),e(1,2)} . Then M3 :=

Q2M1Q2 is clearly positive, that is,

M3 =
[

0 bα(1,2)−β(1,1)
bα(1,2)−β(1,1) α2

(1,2)−α2
(0,2) + β 2

(1,2)−β 2
(1,1)

]
� 0.

Hence, we get
detM3 := −[bα(1,2)−β(1,1)]

2 � 0,

⇒ β(1,1) = bα(1,2).

Moreover, with the commuting property of T , we have

α(1,1)β(2,1) = α(1,2)β(1,1)

which yields that

α(1,2) = 1, β(1,1) = b. (2.3)

Since T = (T1,T2) ∈ C0 is mono-polynomially hyponormal, we have

[(T 2
1 +T2)∗,(T 2

1 +T2)] � 0.

An easy computation gives that

[(T 2
1 +T2)∗,(T 2

1 +T2)]e(k1,k2)

= [T 2∗
1 ,T 2

1 ]e(k1,k2) + [T ∗
2 ,T2]e(k1,k2) + [T 2∗

1 ,T2]e(k1,k2) + [T ∗
2 ,T 2

1 ]e(k1,k2)

= [α2
(k1,k2)

α2
(k1+1,k2)

−α2
(k1−1,k2)

α2
(k1−2,k2)

]e(k1,k2) + [β 2
(k1,k2)−β 2

(k1,k2−1)]e(k1,k2)

+ [β(k1,k2)α(k1−1,k2+1)α(k1−2,k2+1)−β(k1−2,k2)α(k1−1,k2)α(k1−2,k2)]e(k1−2,k2+1)

+ [β(k1+2,k2−1)α(k1,k2)α(k1+1,k2)−β(k1,k2−1)α(k1,k2−1)α(k1+1,k2−1)]e(k1+2,k2−1).

(2.4)

Given nonnegative integers n , k1 , k2 , let M̃(n) :=
∨{

e(k1,k2) : k1 +2k2 = n
}

be

an invariant subspace of [(T 2
1 +T2)

∗
,(T 2

1 +T2)] , P̃n be the orthogonal projection from
H onto M̃(n) , and M4 := P̃4[(T 2

1 +T2)∗,(T 2
1 +T2)]P̃4. Then with respect to the ordered

basis {e(4,0),e(2,1),e(0,2)} , M4 has the following matrix representation,

M4 =

⎡
⎣ a11 β(4,0)−bα(3,0) 0

β(4,0)−bα(3,0) 0 bα(0,2)−β(0,1)
0 bα(0,2)−β(0,1) a33

⎤
⎦ ,

where

aii := α2
(7−2i,i−1)α

2
(6−2i,i−1)−α2

(5−2i,i−1)α
2
(4−2i,i−1)+β 2

(6−2i,i−1)−β 2
(6−2i,i−2), 1 � i � 3,
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bi+1i := β(6−2i,i−1)α(5−2i,i)α(4−2i,i)−β(4−2i,i−1)α(5−2i,i−1)α(4−2i,i−1), 1 � i � 2.

Let Q̃1 be the orthogonal projection onto
∨{e(4,0),e(2,1)} . Then M5 := Q̃1M4Q̃1

is clearly positive, that is,

M5 =
[

a11 β(4,0)−bα(3,0)
β(4,0)−bα(3,0) 0

]
� 0.

Hence, we get
detM5 := −[β(4,0)−bα(3,0)]

2 � 0,

⇒ β(4,0) = bα(3,0).

On the other hand, from the commuting property of T , it follows that α(3,0)β(4,0) =
β(3,0)α(3,1), so we have

β(4,0) = b, α(3,0) = 1. (2.5)

Suppose that Q̃2 is the orthogonal projection onto
∨{e(2,1),e(0,2)} . Then M6 := Q̃2M4Q̃2

is clearly positive, that is,

M6 =
[

0 bα(0,2)−β(0,1)
bα(0,2)−β(0,1) a33

]
� 0.

Hence, we get
detM6 := −[bα(0,2)−β(0,1)]

2 � 0,

⇒ β(0,1) = bα(0,2).

Moreover, with the commuting property of T , we have

β(0,1)α(0,2) = α(0,1)β(1,1),

⇒ β(0,1) = b,α(0,2) = 1.

Since T is mono-polynomially hyponormal, T1 is polynomially hyponormal. From
Proposition 1.4 and α(0,2) = α(1,2) = 1, it follows that

α(k1,2) = 1, for all k1 � 0. (2.6)

From (2.2) and (2.5), it follows that α(2,0) = α(3,0) = 1. So by Proposition 1.4 again, it
follows that

α(k1,0) = 1, for all k1 � 0. (2.7)

Moreover, from (2.2) and (2.3), we have

β(3,0) = β(1,1) = b. (2.8)

From (2.6), (2.7), (2.8), the assumption that α(k1,1) = 1 for all k1 � 0 and the commut-
ing property of T , we conclude that

β(l1,0) = β(l1,1) = b, for all l1 � 0.



162 Y. DUAN, S. PANG AND S. WANG

So by the polynomial hyponormality of T2, we have

β(l1,l2) = b.

Combining with the commuting property of T , we conclude that

α(k1,k2) = 1,

as desired. �

LEMMA 2.3. Let T= (T1,T2)∈C0 be a mono-polynomially hyponormalweighted
shift. If α(k1+1,k2) = α(k1,k2) and β(l1,l2+1) = β(l1,l2) for some k1, l2 � 0 and k2, l1 � 1 ,
then T is flat.

Proof. From Lemma 2.2, we need only to show that if there exists a weighted shift
T = (T1,T2) ∈ C0 which is mono-polynomially hyponormal and

α(k1,1) = α(k1+1,1) = 1, β(1,l2) = β(1,l2+1) = b (b > 0), (2.9)

for some l2 � 0 and k1 � 0, then T is flat. On the contrary, we assume that T is not
flat.

Since T = (T1,T2) ∈ C0 is mono-polynomially hyponormal, we have

[(T1 +T2)∗,(T1 +T2)] � 0.

Restrict the operator [(T1 +T2)∗,(T1 +T2)] to the invariant subspace M(2), and by the
same reasoning as in Lemma 2.2, we conclude that

β(2,0) = β(0,1) = b, α(1,0) = α(0,2) = 1. (2.10)

Let α(1,2) = x0 . By the commuting property of T , we have bx0 = β(2,1). From the
hyponormality of T1 and (2.10), we have x0 � 1. Now we claim that x0 > 1. Otherwise,
x0 = 1. Combining (2.10) with the commuting property of T, we get α(0,2) = α(1,2) = 1
and β(2,0) = β(2,1) = b . By Lemma 2.2, we show that T is flat, which is contradicting
to the assumption. Hence, x0 > 1, as desired.

Let α(k1,2) = xk1−1 (k1 � 1) . We conclude that xk1−1 is strictly increasing as k1

is increasing. Otherwise, with the same reasoning as in the preceding paragraph that
leads to x0 > 1, we can get that T is flat, which is contradicting to the assumption.

Therefore, with the commuting property of T , β(2,1) = bx0 , β(3,1) = bx0x1, · · · ,
β(k1,1) = bx0x1 · · ·xk1−2 . So we can get β(k1,1) > bxk1−1

0 , and thus, lim
k1→∞

β(k1,1) = ∞,

which is contradicting to the boundedness of T2.

This contradiction shows that T is flat, as desired. �

Now we can complete the proof of Theorem 1.5.
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Proof of Theorem 1.5. Let α(k1,0) = α(k1+1,0) = 1 for some k1 � 0 and β(1,l2) =
β(1,l2+1) = b for some l2 � 0. Proposition 1.4 shows that α(k1,0) = 1 and β(1,l2) = b for
all k1, l2 � 0. Since T = (T1,T2) ∈ C0 is mono-polynomially hyponormal, we get

[(T1T2)
∗,(T1T2)] = T ∗

2 T ∗
1 T1T2−T1T2T

∗
2 T ∗

1 � 0.

Moreover,

[(T1T2)
∗,(T1T2)]e(k1,k2) = (α2

(k1,k2+1)β
2
(k1,k2) −α2

(k1−1,k2)β
2
(k1−1,k2−1))e(k1,k2),

where α(k1,k2) = 0 and β(l1,l2) = 0 when any of k1, l1,k2, l2 is smaller than 0. So we
get

α2
(k1,k2+1)β

2
(k1,k2)−α2

(k1−1,k2)β
2
(k1−1,k2−1) � 0.

With the commuting property of T , we have

α2
(k1,k2+1)β

2
(k1,k2)−α2

(k1−1,k2)β
2
(k1−1,k2−1) = α2

(k1,k2+1)β
2
(k1,k2)−α2

(k1−1,k2−1)β
2
(k1,k2−1).

Therefore,
α2

(1,2)β
2
(1,1)−α2

(0,0)β
2
(1,0) � 0,

⇒ α2
(1,2)b

2−b2 ·1 � 0,

⇒ α(1,2) � 1.

Since α(2,2) � α(1,2), it follows that α(2,2) � 1. If α(2,2) > 1, let α(k1,2) = xk1 , β(k1,0) =
zk1 , β(k1,1) = yk1 . Clearly, yk1 � zk1 for each k1 � 1. With the commuting property of
T , we obtain

b2Πn−1
k1=1xk1 = ynzn.

Therefore, y2
n � b2Πn−1

k1=1xk1 . Since xk1 > 1, yn → +∞ . Clearly, it is contradicting to
the boundedness of T2. So we conclude that α(2,2) = 1, and thus, α(1,2) = 1. Then from
Lemma 2.3, we show that T is flat. �

3. Proof of Theorem 1.6

Recall that the restriction of a mono-weakly k -hyponormal operator pair to an
invariant subspace is also mono-weakly k -hyponormal. We first prove the following
results.

LEMMA 3.1. Let T = (T1,T2) ∈ C0 be a mono-weakly 2-hyponormal weighted
shift. If α(k1,k2) = α(k1+1,k2) and β(l1,l2) = β(l1,l2+1) for some k1 , l2 � 1 and k2 � 2 ,
l1 � 3 or k2 � 3 , l1 � 2 , then T is flat.

Proof. We assume that α(k1,2) = α(k1+1,2) = 1 and β(3,l2) = β(3,l2+1) = b for some
k1, l2 � 1 and b > 0. Since T1 and T2 are both weakly 2-hyponormal, by Proposition
1.3, we have

α(k1,2) = 1 and β(3,l2) = b , for all k1, l2 � 1. (3.1)
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Since T = (T1,T2) ∈ C0 is mono-weakly 2-hyponormal, we have

[(T1 +T2)∗,(T1 +T2))] � 0.

Recall from the proof of Lemma 2.2, M(n) =
∨{

e(k1,k2) : k1 + k2 = n
}

and it
holds that [(T1 +T2)∗,(T1 +T2)]M(n) ⊂ M(n) . We consider the operator

M7 := P5[(T1 +T2)
∗,(T1 +T2)]P5.

From (2.1), with respect to the ordered basis {e(5,0),e(4,1),e(3,2),e(2,3),e(1,4),e(0,5)} , M7

can be written as follows,

M7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 b21 0 0 0 0
b21 a22 β(4,1)−bα(3,1) 0 0 0
0 β(4,1)−bα(3,1) 0 bα(2,3)−β(2,2) 0 0
0 0 b43 a44 b54 0
0 0 0 b54 a55 b65

0 0 0 0 b65 a66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

aii := α2
(6−i,i−1)−α2

(5−i,i−1) + β 2
(6−i,i−1)−β 2

(6−i,i−2), 1 � i � 6,

bi+1i := β(6−i,i−1)α(5−i,i) −α(5−i,i−1)β(5−i,i−1), 1 � i � 5.

Let Q3 , Q4 be the orthogonal projections onto
∨{e(4,1),e(3,2)} and

∨{e(3,2),e(2,3)}
respectively. Then the matrix M8 := Q3M7Q3 is clearly positive, that is,

M8 =
[

α2
(4,1)−α2

(3,1) + β 2
(4,1)−β 2

(4,0) β(4,1)−bα(3,1)

β(4,1)−bα(3,1) 0

]
� 0.

Therefore, detM8 := −[β(4,1)−bα(3,1)]2 � 0, which implies

β(4,1) = bα(3,1). (3.2)

With the commuting property of T , we have

α(3,2)β(3,1) = α(3,1)β(4,1).

From (3.1), it follows that α(3,2)β(3,1) = b and b = α(3,1)β(4,1) . Hence,

α(3,1) = 1,β(4,1) = b. (3.3)

In the same way, we have

α(2,3) = 1, β(2,2) = b. (3.4)

Recall that M̃(n) =
∨{

e(k1,k2) : k1 +2k2 = n
}

and P̃n is the orthogonal projection onto
M̃(n) . Then M̃(n) is an invariant subspace of [(T 2

1 + T2)∗,(T 2
1 + T2)] . Since T =

(T1,T2) ∈ C0 is mono-weakly 2-hyponormal, we have

[(T 2
1 +T2)∗,(T 2

1 +T2)] � 0.
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Then M9 := P̃7[(T 2
1 + T2)∗,(T 2

1 + T2)]P̃7 is positive. From (2.4), with respect to the
ordered basis {e(7,0),e(5,1),e(3,2),e(1,3)}, M9 can be written as follows,

M9 =

⎡
⎢⎢⎣

a11 b21 0 0
b21 a22 b32 0
0 b32 a33 b43

0 0 b43 a44

⎤
⎥⎥⎦ ,

where

aii := α2
(10−2i,i−1)α

2
(9−2i,i−1)−α2

(8−2i,i−1)α
2
(7−2i,i−1) + β 2

(9−2i,i−1)−β 2
(9−2i,i−2), 1 � i � 4,

bi+1i := α(8−2i,i)α(7−2i,i)β(9−2i,i−1)−α(8−2i,i−1)α(7−2i,i−1)β(7−2i,i−1), 1 � i � 3.

Let Q5 , Q6 be the orthogonal projections onto
∨{e(3,2),e(1,3)} and

∨{e(5,1),e(3,2)}
respectively. Then the matrix M10 := Q5M9Q5 is clearly positive, that is,

M10 =
[

0 bα(1,3)−β(1,2)
bα(1,3)−β(1,2) a44

]
� 0,

Hence, detM10 := −[bα(1,3)−β(1,2)]2 � 0, which implies

β(1,2) = bα(1,3).

With the commuting property of T , we have

β(1,2)α(1,3)α(2,3) = α(1,2)α(2,2)β(3,2).

Combining the above equality with (3.1) and (3.4), we have b = β(1,2)α(1,3), which
shows that

α(1,3) = 1, β(1,2) = b. (3.5)

Then α(1,3) = α(2,3) = 1. Moreover, from the assumption, T1 is quadratically hyponor-
mal. Then by Proposition 1.3, we conclude that

α(k1,3) = 1, for all k1 � 1.

Since Q6M9Q6 � 0, the same reasoning imposes α(4,1) = 1 and β(5,1) = b .
From α(4,1) = α(3,1) and T1 is quadratically hyponormal, by Proposition 1.3 again,

it follows that
α(k1,1) = 1, for all k1 � 1.

With the commuting property of T , we get β(l1,1) = β(l1,2) = b for all l1 � 1. Since T2

is quadratically hyponormal, we have

β(l1,l2) = b, for all l1, l2 � 1.

With the commuting property of T , we obtain β(l1,l2) = b and α(k1,k2) = 1, for all
k1,k2, l1, l2 � 1.

Therefore, T = (T1,T2) ∈ C0 is flat. �
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LEMMA 3.2. Let T = (T1,T2) ∈ C0 be a mono-weakly 2-hyponormal weighted
shift. If α(k1,k2) = α(k1+1,k2) and β(l1,l2) = β(l1,l2+1) for some k1, l2 � 1 and k2, l1 � 2 ,
then T is flat.

Proof. From Lemma 3.1, we need only to show that if there exists a weighted shift
T = (T1,T2) ∈ C0 which is mono-weakly 2-hyponormal and

α(k1,2) = α(k1+1,2) = 1, β(2,l2) = β(2,l2+1) = b (b > 0), (3.6)

for some l2 � 1 and k1 � 1, then T is flat. On the contrary, we assume that T is not
flat, then we will show that it will lead to a contradiction.

Since T = (T1,T2) ∈ C0 is mono-weakly 2-hyponormal, we have

[(T1 +T2)∗,(T1 +T2)] � 0.

Restrict the operator [(T1 +T2)∗,(T1 +T2)] to the invariant subspace M(4), and by the
same reasoning as in Lemma 3.1, we conclude that

β(3,1) = β(1,2) = b,α(2,1) = α(1,3) = 1. (3.7)

Assume that α(2,3) = x0 , by the commuting property of T , we have bx0 = β(3,2).
From the hyponormality of T1 and (3.7), we have x0 � 1. Now we claim that x0 >
1. Otherwise, x0 = 1. Combining (3.7) with the commuting property of T, we get
α(1,3) = α(2,3) = 1 and β(3,1) = β(3,2) = b . By Lemma 3.1, we conclude that T is flat,
which is contradicting to the assumption. Thus, x0 > 1.

Let α(k1,3) = xk1−2 (k1 � 2) . We conclude that the sequence {xk1−2} is strictly
increasing as k1 is increasing. Otherwise, with the same reasoning as in the preced-
ing paragraph that leads to x0 > 1, we obtain T is flat, which is contradicting to the
assumption.

Therefore, with the commuting property of T , β(3,2) = bx0 , β(4,2) = bx0x1, · · · ,
β(k1,2) = bx0x1 · · ·xk1−3 and we get β(k1,2) > bxk1−3

0 . Thus, lim
k1→∞

β(k1,2) = ∞, which is

contradicting to the boundedness of T2.
This contradiction shows that T is flat, as desired. �

Now we can complete the proof of Theorem 1.6.

Proof of Theorem 1.6. Let α(k1,1) = α(k1+1,1) = 1 for some k1 � 1 and β(2,l2) =
β(2,l2+1) = b for some l2 � 1. Then by Proposition 1.3, we have α(k1,1) = 1 and β(2,l2) =
b for all k1 , l2 � 1. Since T = (T1,T2) ∈ C0 is mono-weakly 2-hyponormal, we get

[(T1T2)
∗,(T1T2)] = T ∗

2 T ∗
1 T1T2−T1T2T

∗
2 T ∗

1 � 0.

So

[(T1T2)
∗,(T1T2)]e(k1,k2) = (α2

(k1,k2+1)β
2
(k1,k2) −α2

(k1−1,k2)β
2
(k1−1,k2−1))e(k1,k2).

With the commuting property of T , we know that

α2
(k1,k2+1)β

2
(k1,k2)−α2

(k1−1,k2)β
2
(k1−1,k2−1) = α2

(k1,k2+1)β
2
(k1,k2)−α2

(k1−1,k2−1)β
2
(k1,k2−1).
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Therefore, from [(T1T2)
∗,(T1T2)] � 0, it follows that

α2
(2,3)β

2
(2,2)−α2

(1,2)β
2
(1,1) = α2

(2,3)b
2−b2 ·1 � 0,

which implies
α(2,3) � 1.

So α(3,3) � α(2,3) . If α(3,3) > 1, we let α(k1,3) = xk1 , β(k1,1) = zk1 , β(k1,2) = yk1 .
Clearly, yk1 � zk1 for each k1 � 2. With the commuting property of T , we know that

b2Πn−1
k1=2xk1 = ynzn.

Therefore, y2
n � b2Πn−1

k1=2xk1 . Since xk1 > 1, yn → +∞ . Clearly, it is contradicting to
the boundedness of T2. This shows that α(3,3) = 1. Then from Lemma 3.2, we know
that T is flat. �
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