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FREDHOLM WEIGHTED COMPOSITION OPERATORS

CHING-ON LO AND ANTHONY WAI-KEUNG LOH

(Communicated by S. McCullough)

Abstract. We show that Fredholm weighted composition operators on Lp -spaces with non-
atomic measures are precisely the invertible ones. We also characterize the classes of Fredholm
and invertible weighted composition operators on l p . Furthermore, the closedness of ranges and
Fredholmness of these operators on Hp -spaces of the unit disk are investigated.

Let B1 and B2 be Banach spaces over C . A linear operator T : B1 → B2 is
said to be Fredholm if ran(T ) is closed in B2 and the dimensions of ker(T ) and
B2/ ran(T ) are both finite, where ker(T ) and ran(T ) are the kernel and the range of
T respectively. In this case, the Fredholm index of T , written as indT , is defined by
indT := dimker(T )−dimB2/ ran(T ) .

In this paper, we study Fredholm weighted composition operators on Lebesgue
spaces with non-atomic measures, on sequence spaces and on Hardy spaces of the unit
disk. We also characterize those weighted composition operators on Hp with closed
ranges.

1. Fredholm weighted composition operators on Lp

1.1. Preliminaries

Let (X ,Σ,μ) and (Y,Γ,ν) be two σ -finite and complete measure spaces. The
Lebesgue space consisting of all (equivalence classes of) p -integrable, where 1 � p <
∞ , complex-valued Σ-measurable (resp. Γ-measurable) functions on X (resp. on Y )
is denoted by Lp(μ) (resp. by Lp(ν)). The functions in L∞(μ) and L∞(ν) are essen-
tially bounded. The norm of a function in Lp(μ) (resp. Lp(ν)) is written as ‖ · ‖Lp(μ)
(resp. ‖ · ‖Lp(ν) ).

If we take X = N , Σ = P(N) (the power set of N) and μ be the counting measure
on P(N) , then Lp(μ) is just the usual sequence space l p . A Schauder basis for l p

(1 � p < ∞) is given by {en}∞
n=1 , where en = {enk}∞

k=1 and enk = δnk is the Kronecker
delta.

Let u be a complex-valued Γ-measurable function and ϕ : Y → X be a point map-
ping such that ϕ−1(E) ∈ Γ for all E ∈ Σ . Assume that ϕ is also non-singular, which
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means the measure defined by νϕ−1(E) := ν(ϕ−1(E)) for E ∈ Σ , is absolutely con-
tinuous with respect to μ . We assume the corresponding Radon-Nikodym derivative h
is finite-valued μ -a.e. on X .

The functions u and ϕ induce the weighted composition operator uCϕ from
Lp(μ) (1 � p � ∞) into the linear space of all Γ-measurable functions on Y by

uCϕ( f )(y) := u(y) f (ϕ(y)) for every f ∈ Lp(μ) and y ∈ Y.

The non-singularity of ϕ guarantees that uCϕ is a well-defined mapping of equivalence
classes of functions. When u ≡ 1 (resp. (X ,Σ,μ) = (Y,Γ,ν) and ϕ(x) = x for all x ∈
X ), the corresponding operator, denoted by Cϕ (resp. by Mu ), is called a composition
operator (resp. a multiplication operator). Observe that uCϕ = Mu ◦Cϕ .

If uCϕ maps Lp(μ) into Lp(ν) , it follows from the closed graph theorem that
uCϕ is bounded. Moreover, we say uCϕ is an operator on Lp(μ) if it maps Lp(μ)
into itself. A main result of the next sub-section is that when (X ,Σ,μ) is non-atomic,
Fredholm weighted composition operators from Lp(μ) into Lp(ν) are precisely the
invertible ones.

We introduce another notation. Let ϕ−1Σ be the relative completion of the σ -
algebra generated by

{
ϕ−1(E) : E ∈ Σ

}
, i.e.

ϕ−1Σ :=
{

ϕ−1(E)ΔF : E ∈ Σ and ν(F) = 0
}

.

In fact, the finiteness of h ensures that the measure space
(
Y,ϕ−1Σ,ν

)
is σ -finite. To

see this, write X =
⋃∞

i=1 Ei , where Ei ∈ Σ and μ(Ei) < ∞ for each i ∈ N . For every
i, j ∈ N , define

Gj
i := {x ∈ Ei : h(x) � j}.

Then

νϕ−1
(
Gj

i

)
=
∫

Gj
i

hdμ � j μ
(
Gj

i

)
� j μ(Ei) < ∞.

Since

Y =

(
∞⋃

i=1

∞⋃
j=1

ϕ−1
(
Gj

i

))
∪ϕ−1({x ∈ X : h(x) = ∞})

and νϕ−1({x ∈ X : h(x) = ∞}) = 0, the assertion follows.
Let g be a non-negative Γ-measurable function on Y . The measure given by

S �→ ∫
S gdν for S ∈ ϕ−1Σ , is absolutely continuous with respect to ν . Thus, there

exists a unique (ν -a.e.) non-negative ϕ−1Σ-measurable function on Y , denoted by
E(g) , with ∫

S
gdν =

∫
S
E(g)dν for each S ∈ ϕ−1Σ.

The function E(g) , which is called the conditional expectation of g with respect to
ϕ−1Σ , plays a crucial role in proving Lemma 1.1.
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1.2. Main results

Assume that 1 � p < ∞ in this sub-section. We first establish a lemma on the
dimensions of keruCϕ and Lp(ν)/ran

(
uCϕ

)
, where ran

(
uCϕ

)
is the norm-closure of

ran
(
uCϕ

)
in Lp(ν) . Similar results for composition operators were obtained in [6].

LEMMA 1.1. Suppose (X ,Σ,μ) is non-atomic and let uCϕ be a weighted com-
position operator from Lp(μ) into Lp(ν) .

(a) The nullity of uCϕ (i.e. dimkeruCϕ ) is either zero or infinite.

(b) The codimension of ran
(
uCϕ

)
in Lp(ν) (i.e. dimLp(ν)/ran

(
uCϕ

)
) is either zero

or infinite.

Proof. We first prove (a). If uCϕ is injective, then dimkeruCϕ = 0. Otherwise,
there is a non-zero function f ∈ Lp(μ) such that uCϕ f = 0. As (X ,Σ,μ) is non-
atomic and the set E := {x ∈ X : | f (x)| > 0} is of positive μ -measure, we may choose
a sequence {En}∞

n=1 of pairwise disjoint Σ-measurable sets in E with 0 < μ(En) < ∞ .
Let fn := f χEn for n ∈ N . They are non-zero and linearly independent. Moreover,∥∥uCϕ fn

∥∥p
Lp(ν) =

∫
Y
|u|p | f χEn ◦ϕ |p dν =

∫
Y
|u|p| f |p ◦ϕχϕ−1(En) dν

=
∫

ϕ−1(En)
|u|p| f |p ◦ϕ dν �

∫
Y
|u|p| f |p ◦ϕ dν =

∥∥uCϕ f
∥∥p

Lp(ν) = 0,

so that fn ∈ keruCϕ for all n . Thus, we have dimkeruCϕ = ∞ .

For (b), suppose that dimLp(ν)/ran
(
uCϕ

) 	= 0. As

dimLp(ν)/ran
(
uCϕ

)
= dimkeruCϕ

∗,

there is a non-zero function g ∈ Lq(ν) , where q is the conjugate exponent of p , such
that ∫

Y

(
uCϕ f

)
gdν = 0 for all f ∈ Lp(μ).

When 1 < q < ∞ , we have ∫
Y

E(|g|q)dν =
∫
Y
|g|q dν > 0,

so that the ϕ−1Σ-measurable set F := {y ∈ Y : E(|g|q) � δ} has positive ν -measure
for some δ > 0. We may also assume ν(F) < ∞ . The definition of ϕ−1Σ ensures
that F = ϕ−1(E) for a Σ-measurable set E . Since (X ,Σ,μ) is non-atomic, it follows
from the lemma in [6] that there exists a sequence {En}∞

n=1 of pairwise disjoint Σ-
measurable sets in E such that 0 < νϕ−1(En) < ∞ . The functionals φn ∈ Lp(ν)∗
represented by gχϕ−1(En) , n ∈ N , are all non-zero because∫

Y
|gχϕ−1(En)|qdν =

∫
ϕ−1(En)

|g|q dν =
∫

ϕ−1(En)
E(|g|q)dν

� δνϕ−1(En) > 0.
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As the sets
{

ϕ−1(En)
}∞

n=1 are pairwise disjoint, these functionals are also linearly
independent. Moreover, we have

φn
(
uCϕ f

)
=
∫
Y

(
uCϕ f

)
gχϕ−1(En) dν =

∫
Y

(
uCϕ f χEn

)
gdν = 0

for every f ∈ Lp(μ) , i.e. φn ∈ keruCϕ
∗ (for the case q = ∞ , the preceding argument

also applies with minor modifications). Hence dimkeruCϕ
∗ = ∞ . �

It has been shown in [14, Theorem 2.6] that Fredholm and invertible composi-
tion operators on L2(μ) are equivalent. Takagi [15, Theorem 3] generalized this result
to weighted composition operators on Lp(μ) , by assuming boundedness of the cor-
responding multiplication operators. We prove that the same result is valid without
this assumption and obtain measure-theoretic characterizations for invertible weighted
composition operators from Lp(μ) onto Lp(ν) .

THEOREM 1.2. Suppose (X ,Σ,μ) is non-atomic and let uCϕ be a weighted com-
position operator from Lp(μ) into Lp(ν) . The following statements are equivalent:

(i) uCϕ is invertible.

(ii) uCϕ is Fredholm.

(iii) (1) There exists a constant δ > 0 such that
∫

ϕ−1(E) |u|pdν � δ μ(E) for every
set E ∈ Σ with μ(E) < ∞ , and

(2) For each set F ∈ Γ , there is a set G ∈ Σ such that ϕ−1(G) = F .

Proof. The implication (i) ⇒ (ii) is obvious. We first show that (ii) implies (iii).
To prove (iii)(1), assume uCϕ is Fredholm. It is injective by Lemma 1.1. Since

the range of uCϕ is closed, there exists a number c > 0 such that∥∥uCϕ f
∥∥

Lp(ν) � c‖ f‖Lp(μ) for all f ∈ Lp(μ).

In particular, by choosing f = χE , where E ∈ Σ and μ(E) < ∞ , we obtain
∫

ϕ−1(E)
|u|pdν =

∥∥uCϕ χE
∥∥p

Lp(ν) � cp‖χE‖p
Lp(μ) = cpμ(E).

Thus, (iii)(1) follows. By Lemma 1.1 again, we have dimLp(ν)/ ran(uCϕ) = 0 and
so uCϕ is indeed surjective. We claim that u 	= 0 ν -a.e. on Y . Otherwise, there is
a Γ-measurable set S such that 0 < ν(S) < ∞ and u = 0 on S . The surjectivity of
uCϕ yields a function f ∈ Lp(μ) with uCϕ f = χS . With the choice of S , however, this
equality is invalid. The claim is justified.

To prove (iii)(2), take any set F ∈ Γ with ν(F) < ∞ . Let g ∈ Lp(μ) be the
function such that uCϕg = χF , or Cϕg = 1

u χF . Let E := {ϕ−1(E) : E ∈ Σ} . As Cϕg
is E -measurable, so is 1

u χF . By writing Y =
⋃∞

i=1 Fi , where {Fi}∞
i=1 is an increasing

sequence of Γ-measurable sets with finite ν -measures, we have 1
u = limi→∞

1
u χFi on
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Y . It follows that 1
u is E -measurable. Hence χF is also E -measurable for each F ∈ Γ

satisfying ν(F) < ∞ .
It remains to show that (iii) implies (i). We may express (iii)(1) as∥∥uCϕ χE

∥∥p
Lp(ν) � δ ‖χE‖p

Lp(μ) for every E ∈ Σ with μ(E) < ∞ .

The operator uCϕ maps functions with disjoint cozero sets into functions with disjoint
cozero sets (the cozero set of a function f ∈ Lp(μ) is the set of all x ∈ X on which
f does not vanish). This, together with the fact that simple functions (with finite μ -
measure cozero sets) are dense in Lp(μ) , implies the above inequality holds for all
f ∈ Lp(μ) . Thus, uCϕ is injective and has closed range.

It remains to show that uCϕ
∗ is injective, which is equivalent to the surjectivity of

uCϕ . Let φ ∈ Lp(ν)∗ be a functional represented by the function h ∈ Lq(ν) , where q
is the conjugate exponent of p , such that∫

Y
h
(
uCϕ f

)
dν = 0 for all f ∈ Lp(μ).

If G ∈ Σ and μ(G) < ∞ , then
∫

ϕ−1(G) hudν = 0. By (iii)(2), we see that∫
F

hudν = 0 for every F ∈ Γ.

The injectivity of uCϕ
∗ follows immediately provided that u 	= 0 ν -a.e. on Y . To

justify the latter, assume the contrary that the set N := {y ∈ Y : u(y) = 0} has positive
ν -measure. From (iii)(2) and σ -finiteness of (X ,Σ,μ) , there exists a set M ∈ Σ such
that ϕ−1(M) ⊂ N and 0 < μ(M) < ∞ . Then,

0 =
∫

N
|u|pdν �

∫
ϕ−1(M)

|u|pdν � δ μ(M) > 0,

which is impossible. The proof of the theorem is now complete. �
In [7, Theorem 3.2], Jabbarzadeh claimed that when (X ,Σ,μ) is non-atomic, the

operator uCϕ is Fredholm on Lp(μ) if and only if J � δ μ -a.e. on X for some constant
δ > 0, where J can be shown to be the Radon-Nikodym derivative of the measure
E �→ ∫

ϕ−1(E) |u|pdμ (E ∈ Σ) with respect to μ [9, p.5]. The latter condition, however,
is not sufficient for the Fredholmness of uCϕ . The fallacy in the proof is that Mu is
not necessarily injective even if J is bounded away from zero. To illustrate this, let
X = [0,1] be equipped with the Lebesgue measure μ on the σ -algebra Σ of Borel sets
in X . With

u(x) = xχ[ 1
2 ,1](x) and ϕ(x) = 2xχ[0, 1

2 )(x)+ (2−2x)χ[ 1
2 ,1](x),

we have
1
2

(
x− x2

4

)
=
∫

ϕ−1([0,x))
|u|dμ =

∫
[0,x)

J dμ .

Hence J = 1
2

(
1− x

2

)
� 1

4 for every 0 < x � 1. The operator Mu is not injective, for
kerMu is non-trivial (for example, χ[0, 1

2 ) ∈ kerMu ). In fact, since keruCϕ
∗ is also

non-trivial (so that dimkeruCϕ
∗ = ∞ by Lemma 1.1), uCϕ is not Fredholm at all.
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EXAMPLE 1.1. The composition operator Cϕ on l2 induced by

ϕ(n) :=
{

1 if n = 1,2,
n−1 if n = 3,4, . . . ,

is Fredholm, since dimkerCϕ = 0 and dim l2/ ran(Cϕ ) = dimkerCϕ
∗ = 1. However, it

is not invertible. This example shows that when (X ,Σ,μ) contains atoms, a Fredholm
(weighted) composition operator on Lp(μ) is not necessarily invertible.

EXAMPLE 1.2. Let X = [1,∞) and Σ be the σ -algebra of Borel sets in X with
the Lebesgue measure μ . Define ϕ(x) =

√
x for all x ∈ X . By taking u1(x) = 1

1+x and

u2(x) = 1
1+

√
x , we have

∫
ϕ−1([1,x)) u1 dμ

μ ([1,x))
=

log
(

1+x2

2

)
x−1

→ 0 as x → ∞,

and ∫
ϕ−1([1,x)) u2 dμ

μ ([1,x))
=

∫ x2

1
1

1+
√

t
dt

x−1
� 1 for each x > 1.

From Theorem 1.2, u2Cϕ is a Fredholm (and invertible) operator on L1(μ) , whereas
u1Cϕ is not. Since ϕ−1Σ = Σ and u1 	= 0 on X , the range of u1Cϕ is dense in L1(μ) .

In light of Example 1.1, we now characterize the classes of Fredholm and invert-
ible weighted composition operators on l p by generalizing the methods in [5] and [13].
For every n ∈ N , define

Sn := ϕ−1({n})∩ cozu,

where cozu is the cozero set of u on N , i.e. cozu := {k ∈ N : u(k) 	= 0} . Observe that
Sn 	= /0 if n ∈ ϕ(cozu) .

The cardinality of a subset C of N is denoted by |C| . It is useful to compute the
dimensions of both dimkeruCϕ and dimkeruCϕ

∗ first.

LEMMA 1.3. Let uCϕ be a weighted composition operator on lp . Then

(a) dimkeruCϕ = |N\ϕ(cozu)| .
(b) dimkeruCϕ

∗ = |N\ cozu|+ ∑n∈ϕ(cozu) (|Sn|−1) .

Proof. We first prove (a). Let x = {xk}∞
k=1 be a sequence in l p such that uCϕx = 0,

the zero sequence. Then u(k)xϕ(k) = 0 for all k ∈ N . If k ∈ cozu , we have xϕ(k) = 0.
Thus,

keruCϕ = {{xk}∞
k=1 ∈ l p : xk = 0 if k ∈ ϕ(cozu)} .

A basis for keruCϕ is {en : n /∈ ϕ(cozu)} and so dimkeruCϕ = |N\ϕ(cozu)| .
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To prove (b), suppose that {wk}∞
k=1 is a sequence in lq , where q is the conjugate

exponent of p , for which

∞

∑
k=1

u(k)xϕ(k)wk = 0 for all x = {xk}∞
k=1 ∈ l p.

Then

0 = ∑
k∈cozu

u(k)xϕ(k)wk

= ∑
n∈ϕ(cozu)

∑
k∈Sn

u(k)xϕ(k)wk

= ∑
n∈ϕ(cozu)

(
∑

k∈Sn

u(k)wk

)
xn.

By taking x = en for each n ∈ ϕ(cozu) , we have

∑
k∈Sn

u(k)wk = 0.

Hence

keruCϕ
∗ =

{
{wk}∞

k=1 ∈ lq : ∑
k∈Sn

u(k)wk = 0 for every n ∈ ϕ(cozu)

}

(here we identify a linear functional in keruCϕ
∗ with the representing sequence in lq )

and dimkeruCϕ
∗ = |N\ cozu|+ ∑n∈ϕ(cozu) (|Sn|−1) . �

LEMMA 1.4. A weighted composition operator uCϕ on lp has closed range if
and only if there exists a constant δ > 0 such that

∑
k∈Sn

|u(k)|p � δ for each n ∈ ϕ(cozu). (1)

Proof. Let
l p
1 := {{xk}∞

k=1 ∈ l p : xk = 0 if k ∈ ϕ(cozu)}
and

l p
2 := {{xk}∞

k=1 ∈ l p : xk = 0 if k ∈ N\ϕ(cozu)}
be two closed subspaces of l p . Assume that (1) holds. If x = {xk}∞

k=1 ∈ l p
2 , then

∥∥uCϕx
∥∥p

lp = ∑
k∈cozu

|u(k)|p ∣∣xϕ(k)
∣∣p = ∑

n∈ϕ(cozu)

(
∑

k∈Sn

|u(k)|p
)
|xn|p

� δ ∑
n∈ϕ(cozu)

|xn|p = δ‖x‖p
lp .
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The above inequality, together with the facts that lp = l p
1 ⊕ l p

2 and keruCϕ = l p
1 , implies

uCϕ (l p) is closed in l p .
Conversely, suppose uCϕ (l p) is closed in l p . Since uCϕ is injective on l p

2 and
uCϕ

(
l p
2

)
is also closed in l p , it follows that there is a constant c > 0 for which

∥∥uCϕx
∥∥

l p � c‖x‖l p for all x ∈ l p
2 .

In particular, with x = en for every n ∈ ϕ(cozu) , we have

cp = cp ‖en‖p
lp �

∥∥uCϕen
∥∥p

lp = ∑
k∈Sn

|u(k)|p.

The proof of the lemma is now complete. �

THEOREM 1.5. A weighted composition operator uCϕ on lp is Fredholm if and
only if the following conditions are all satisfied:

(i) Both sets N\ cozu and N\ϕ(cozu) are finite.

(ii) ϕ is one-to-one on the complement of a finite subset of cozu.

(iii) There exists a constant δ > 0 such that ∑k∈Sn |u(k)|p � δ for every n∈ ϕ(cozu) .

Proof. By Lemma 1.4, the closedness of range of uCϕ is equivalent to (iii). It is
evident from Lemma 1.3 that the condition dimkeruCϕ < ∞ is just equivalent to the
finiteness of N\ϕ(cozu) . An appeal to Lemma 1.3 also shows that the other condition
dimkeruCϕ

∗ < ∞ can be expressed as the finiteness of N \ cozu and the existence of
the finite set E :=

⋃
n∈ϕ(cozu)
|Sn|>1

Sn for which ϕ is one-to-one on cozu \E . �

Both conditions in (iii) of Theorem 1.2 actually characterize invertible weighted
composition operators from Lp(μ) onto Lp(ν) for an arbitrary (σ -finite and complete)
measure space (X ,Σ,μ) , which is not necessarily non-atomic. When the Lp -spaces
are sequence spaces in particular, not only the characterizations for invertible weighted
maps are simpler, but also the invertibility of uCϕ and ϕ are related. Furthermore, the
inverse of uCϕ (provided that it exists) is a weighted composition operator. While the
first statement of the following result can be deduced from Theorem 1.2, it is also a
straightforward consequence of Lemmas 1.3 and 1.4.

THEOREM 1.6. A weighted composition operator uCϕ on lp is invertible if and

only if infk∈N |u(k)|> 0 and ϕ is invertible. In this case,
(
uCϕ

)−1 = 1
u◦ϕ−1Cϕ−1 , where(

uCϕ
)−1

and ϕ−1 are the inverses of uCϕ and ϕ respectively.
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Proof. We only prove the formula for
(
uCϕ

)−1
. Let T := 1

u◦ϕ−1Cϕ−1 . For every

x = {xk}∞
k=1 ∈ l p and n ∈ N ,

(
uCϕ ◦T

)
(x)(n) = uCϕ

({
xϕ−1(k)

u(ϕ−1(k))

}∞

k=1

)
(n) = u(n)

xϕ(ϕ−1(n))
u(ϕ (ϕ−1(n)))

= xn =
u
(
ϕ−1(n)

)
u(ϕ−1(n))

xϕ(ϕ−1(n))

= T
({

u(k)xϕ(k)
}∞

k=1

)
(n) =

(
T ◦ uCϕ

)
(x)(n).

Hence T =
(
uCϕ

)−1 . �
The invertibility of ϕ in general does not guarantee uCϕ is invertible on general

Lp -spaces, and vice versa. For example, the weighted operator u1Cϕ in Example 1.2
is not invertible on L1(μ) , whereas ϕ is invertible on [1,∞) . Another illustration is

given by [12, Example 2.1]. Let ϕ(n) :=
{

n if n is odd,
n−1 if n is even.

Then the operator Cϕ is

invertible on L2(N,Σ,μ) , where μ is the counting measure on Σ := {ϕ−1(E) : E ∈
P(N)} . However, ϕ is not onto.

2. Fredholm weighted composition operators on Hp

2.1. Preliminaries

Let D be the unit disk {z ∈ C : |z| < 1} in the complex plane C and T be the unit
circle {z ∈ C : |z| = 1} . The Hardy space Hp , where 1 � p < ∞ , of D consists of all
analytic functions f on D such that

sup
0�r<1

1
2π

∫ 2π

0
| f (reiθ )|pdθ < ∞.

We define H∞ to be the set of all functions f which are analytic and bounded on D .
Let m be the normalized Lebesgue measure on T , i.e. dm := dθ

2π , and write Lp =
Lp(m) in the sequel. Norms of Hp and Lp are both denoted by ‖ · ‖p . Given that
f ∈ Hp for 1 � p � ∞ , its radial limit

f̂ (eiθ ) := lim
r→1−

f (reiθ )

exists m-a.e. on T , and f̂ ∈ Lp with
∥∥ f̂
∥∥

p = ‖ f‖p . If, in addition, f 	≡ 0, then f̂ 	= 0

m-a.e. on T . Suppose that z = reit for 0 � r < 1 and 0 � t < 2π . The functions f and
f̂ are related by the equality

f (z) =
∫ 2π

0
Pr(t−θ ) f̂ (eiθ )dm,

where Pr is the Poisson kernel defined by Pr(θ ) := 1−r2

1−2rcosθ+r2
.
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We may consider the extension of f to D := {z ∈ C : |z|� 1} , also denoted by f ,
such that f |T = f̂ .

Fix an arbitrary point ω in D . The evaluation functional at z = ω , denoted by
δω , is given by

δω ( f ) := f (ω) for each f ∈ Hp.

It is bounded, and ‖δω‖ =
(

1
1−|ω|2

)1/p
if 1 � p < ∞ . Thus, if f ∈ Hp , then

| f (ω)| � ‖ f‖p

(1−|ω |2)1/p
.

It can also be shown that if f ∈Hp and {zn}∞
n=1 is a sequence in D such that |zn| → 1,

then
(
1−|zn|2

)1/p
f (zn) → 0.

Let u and ϕ be two analytic functions on D such that ϕ(D) ⊂ D . They induce
a weighted composition operator uCϕ from Hp into the linear space of all analytic
functions on D by

uCϕ( f )(z) := u(z) f (ϕ(z)) for every f ∈ Hp and z ∈ D.

When u ≡ 1 (resp. ϕ(z) = z for all z ∈ D), the corresponding operator, denoted by Cϕ
(resp. by Mu ), is known as a composition operator (resp. a multiplication operator).
To avoid triviality, we assume both u and ϕ are non-constant functions. All the three
operators Cϕ , Mu and uCϕ are then injective.

It is well-known that Cϕ is always bounded on Hp for 1 � p � ∞ . This is not
necessarily true for weighted composition operators. If uCϕ maps Hp into itself, an
appeal to the closed graph theorem yields its boundedness. We say uCϕ is a weighted
composition operator on Hp . Moreover,(

uCϕ
∗δω
)
( f ) = δω(uCϕ f ) = u(ω) f (ϕ(ω)) = u(ω)δϕ(ω)( f )

for all f ∈ Hp , i.e.
uCϕ

∗δω = u(ω)δϕ(ω).

Suppose 1 � p < ∞ . Then

|u(ω)|p‖δϕ(ω)‖p =
∥∥uCϕ

∗δω
∥∥p �

∥∥uCϕ
∗∥∥p ‖δω‖p ,

which gives

|u(ω)|p �
(

1−|ϕ(ω)|2
1−|ω |2

)∥∥uCϕ
∗∥∥p

. (2)

2.2. Main results

Assume that 1 � p < ∞ in this sub-section. We first characterize invertibleweighted
composition operators on Hp .

THEOREM 2.1. Let uCϕ be a weighted composition operator on Hp . Then it is
invertible if and only if both the following conditions hold:
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(i) ϕ is an automorphism of D.

(ii) There exists a constant δ > 0 such that |u| � δ on D.

Proof. Assume uCϕ is invertible on Hp . As 1 ∈ ran(uCϕ) , we have u 	= 0 on
D . To prove (i), it suffices to show that ϕ is univalent and surjective. If ϕ were not
univalent, then there exist distinct points a,b in D with ϕ(a) = ϕ(b) . Let

φ :=
1

u(a)
δa − 1

u(b)
δb,

where δa and δb are the evaluation functionals (on Hp ) at z = a and z = b respectively.
Note that φ 	≡ 0 for

φ(z−b) =
1

u(a)
δa(z−b)− 1

u(b)
δb(z−b) =

a−b
u(a)

	= 0.

However,

uCϕ
∗φ =

1
u(a)

uCϕ
∗δa − 1

u(b)
uCϕ

∗δb =
1

u(a)
·u(a)δϕ(a)−

1
u(b)

·u(b)δϕ(b) ≡ 0.

This contradicts the injectivity of uCϕ
∗ . Thus, ϕ is univalent.

Next we prove ϕ is also surjective. Assuming the contrary, i.e. ϕ(D) 	= D , one
may exhibit a point α in D\ϕ(D) and a sequence {zn}∞

n=1 in D such that this sequence
converges and ϕ(zn) → α . In fact, |zn| → 1. Define

φn :=
(
1−|zn|2

)1/p δzn

for n ∈ N . Then, ‖φn‖ = 1 and

∥∥uCϕ
∗φn
∥∥=

(
1−|zn|2

)1/p∥∥uCϕ
∗δzn

∥∥=
|u(zn)|

(
1−|zn|2

)1/p

(1−|ϕ(zn)|2)1/p
→ 0.

On the other hand, the surjectivity of uCϕ implies there is a constant c > 0 with∥∥uCϕ
∗φn
∥∥� c‖φn‖ = c for all n. (3)

This contradiction shows that ϕ maps D onto D .
It remains to prove (ii). Fix any ω ∈ D . With the constant c in (3), we have∥∥uCϕ

∗δω
∥∥� c‖δω‖ .

Thus,

|u(w)|p � 1−|ϕ(ω)|2
1−|ω |2 cp.
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In view of (i), we may write ϕ(ω) = ζ β−ω
1−βω

for some β ∈ D and ζ ∈ T . Then

1−|ϕ(ω)|2 =
(1−|β |2)(1−|ω |2)

|1−βω |2 .

It follows that

1−|ϕ(ω)|2
1−|ω |2 =

1−|β |2
|1−βω |2 � 1−|β |2

(1+ |β |)2 =
1−|β |
1+ |β | .

Therefore,

|u(ω)| � c

(
1−|β |
1+ |β |

)1/p

.

Conversely, suppose both (i) and (ii) are satisfied. It suffices to show uCϕ is sur-
jective. The first condition ensures the operator Cϕ is surjective. Choose any function
g ∈ Hp . Thanks to (ii), we also have g

u ∈ Hp . Then, there exists a function f ∈ Hp

with Cϕ f = g
u , or uCϕ f = g . The proof of the theorem is now complete. �

Gunatillake [4, Theorem 2.0.1] also obtained a similar characterization for invert-
ible weighted composition operators on H2 with a slightly different method. In [2,
Theorem 1], Cima et al. showed that a composition operator on H2 is Fredholm if
and only if it is invertible, i.e. it is induced by an automorphism. Bourdon [1] proved
the same result by characterizing finite co-dimensional invariant subspaces of Hp as
follows.

LEMMA 2.2. Let h ∈ H∞ . The following two statements are equivalent:

(i) h is univalent on D.

(ii) Every closed finite co-dimensional subspace of Hp that is invariant under Mh

has the form BHp , where B is a finite Blaschke product.

Applying this lemma and Theorem 2.1, we generalize the characterizations for
Fredholm weighted composition operators in [16, Theorems 1.1 and 1.2] to any Hp -
space. The Fredholm indices of these operators are also determined.

THEOREM 2.3. Let uCϕ be a weighted composition operator on Hp . Then it is
Fredholm if and only if both the following conditions hold:

(i) ϕ is an automorphism of D.

(ii) liminf
|z|→1−

|u(z)| > 0

In this case, the Fredholm index of uCϕ is −n, where n is the number of zeros of u on
D counting multiplicities.
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Proof. We first observe that since polynomials are dense in Hp and Cϕ(z f ) =
ϕCϕ f for all polynomials f , the norm-closure of ran(uCϕ) is an invariant subspace of
Hp under multiplication by ϕ . Suppose uCϕ is Fredholm. Then ϕ must be univalent
on D . Otherwise, there exist two distinct points a and b in D with ϕ(a) = ϕ(b) .
Following the argument of the lemma in [1], we choose some ε > 0 for which both sets
{z ∈ C : |z−a| � ε} and {z ∈ C : |z−b| � ε} are contained in D . Moreover, we may
extract two sequences {an}∞

n=1 , {bn}∞
n=1 in D such that ai 	= b j whenever i 	= j and

ϕ(an) = ϕ(bn) for all n .
The analyticity of u implies that u(an) = u(bn) = 0 for finitely many an ’s and

bn ’s only. Without loss of generality, we assume u(an),u(bn) 	= 0 for all n . Define

φn :=
1

u(an)
δan −

1
u(bn)

δbn for n ∈ N.

These φn ’s are linearly independent. As in the proof of Theorem 2.1, we have φn ∈
keruCϕ

∗ . This contradicts the assumption that dimHp/ ran
(
uCϕ

)
< ∞ .

By Lemma 2.2, there is a finite Blaschke product B such that ran(uCϕ) = BHp .
In particular, u = Bg for a function g ∈ Hp . Thus, ran(gCϕ) = Hp . If g is constant on
D , then both (i) and (ii) follow immediately. When g is non-constant, it follows from
Theorem 2.1 that ϕ is also surjective and there is a constant δ > 0 such that |g| � δ
on D . With lim|z|→1− |B(z)| = 1, we thus obtain liminf|z|→1− |u(z)| � δ > 0.

Conversely, assume both (i) and (ii) hold. By (ii), there exist constants c,r > 0
such that |u(z)| � c if r < |z| < 1. Moreover, the number of zeros of u on {z ∈ C :
|z| � r} is finite. We claim that

ran(uCϕ) = BHp,

where B is the finite Blaschke product associated with the zeros of u on D . To verify
this, we write u = Bh for some h ∈ Hp with h 	= 0 on D . Then ran(hCϕ) ⊂ Hp . As
h is continuous for |z| � r and |h| � c for r < |z| < 1, we see that h is bounded away
from zero on D . By Theorem 2.1, we conclude that ran(hCϕ) = Hp . The claim now
follows.

It remains to consider the codimension of BHp in Hp . Assume the zeros of u on
D , namely z1,z2, . . . ,zn , are all simple (in case u has multiple zeros, we may modify
the argument slightly by using a Hermite interpolating polynomial). The kernel and the
range of the linear map on Hp given by f �→∑n

i=1 f (zi)zi are BHp and the linear span of
z,z2, . . . ,zn respectively. Therefore, dimHp/BHp = dimspan

{
z,z2, . . . ,zn

}
= n . This,

together with the injectivity of uCϕ , yields induCϕ = −n . �

NOTE 2.1. Two simple necessary conditions for Fredholmness of uCϕ on Hp are

(a) u ∈ H∞ and

(b) the number of zeros of u on D is finite.

That (b) holds has been shown in the proof of Theorem 2.3. For (a), since ϕ is a disk
automorphism, an argument similar to the proof of Theorem 2.1 gives

1−|ϕ(ω)|2
1−|ω |2 � 1+ |ϕ(0)|

1−|ϕ(0)| .
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From the above inequality and that in (2), we have

‖u‖∞ �
(

1+ |ϕ(0)|
1−|ϕ(0)|

)1/p∥∥uCϕ
∗∥∥ .

In view of Theorems 2.1, 2.3 and the above note, the operator uCϕ is Fredholm
(resp. invertible) on Hp if and only if both Mu and Cϕ are Fredholm (resp. invertible)
on Hp . We also remark that a Fredholm weighted composition operator uCϕ on Hp is
not necessarily invertible (compare this with Theorem 1.2). The weight function u of
a Fredholm weighted composition operator is bounded away from zero near T , and it
may vanish on D ; while that of an invertible weighted map is to be bounded away from
zero on D .

Similar characterizations for Fredholm (resp. invertible)weighted composition op-
erators on H∞ have been obtained by Ohno et al. in [11, Theorems 2.3 and 2.4]. In
this paper, they also characterized weighted composition operators on H∞ with closed
ranges by applying the Banach algebra structure of H∞ . We now study the closedness
of ranges of weighted composition operators on Hp à la the method of Cima et al. [2,
Theorem 2], who characterized those composition operators on H2 with closed ranges.
To this end, define a measure mp on D by

mp(E) :=
∫

ϕ−1(E)∩T
|u|p dm

for every measurable subset E of D . By [3, Lemma 2.1],

∫
T
|u|p( f ◦ϕ)dm =

∫
D

f dmp,

where f is an arbitrary measurable positive function on D . If we restrict mp to all
the measurable subsets of T , then mp(E) =

∫
ϕ−1(E) |u|pdm for all such sets E . This

measure, denoted by mp as well, is absolutely continuous with respect to m :

PROPOSITION 2.4. Let uCϕ be a weighted composition operator on Hp . Then,

mp is absolutely continuous with respect to m and
[

dmp
dm

]
∈ L∞ , where

[
dmp
dm

]
is the

corresponding Radon-Nikodym derivative.

Proof. In view of [10, Lemma 1.3], it suffices to prove that there exists a constant
c > 0 such that

mp (Q(ζ ,r)) � cr

for all ζ ∈T and 0 < r < 1, where Q(ζ ,r) := {z∈T : |z−ζ |� r} . By the boundedness
of uCϕ , we have

∥∥uCϕ f
∥∥p

p �
∥∥uCϕ

∥∥p ‖ f‖p
p , i.e.

∫
D
| f |pdmp =

∫
T
|u|p| f |p ◦ϕ dm �

∥∥uCϕ
∥∥p ‖ f‖p

p for every f ∈ Hp. (4)
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With the above ζ and r , we let ω = (1− r)ζ . Consider the function g(z) := 1
(1−wz)4/p .

A direct computation gives

‖g‖p
p =

1+(1− r)2

r3(2− r)3 .

Since

|1−wz| = |1− (1− r)ζz| � |ζ ||z− ζ |+ |rζz| � 2r for z ∈ Q(ζ ,r),

we see that

|g|� 1

(2r)4/p
on Q(ζ ,r).

Now, it follows from (4) that

mp (Q(ζ ,r))
(2r)4 �

∫
Q(ζ ,r)

|g|pdmp �
∫

D
|g|pdmp

�
∥∥uCϕ

∥∥p ‖g‖p
p =

∥∥uCϕ
∥∥p · 1+(1− r)2

r3(2− r)3 .

Thus,

mp (Q(ζ ,r)) � 16
∥∥uCϕ

∥∥p · 1+(1− r)2

(2− r)3 r � 32
∥∥uCϕ

∥∥p
r. �

THEOREM 2.5. Let uCϕ be a weighted composition operator on Hp . The follow-
ing statements are equivalent:

(i) uCϕ has closed range.

(ii) There exists a constant δ > 0 such that
[

dmp
dm

]
� δ m-a.e. on T , where

[
dmp
dm

]
is defined in Proposition 2.4.

(iii) There exists a constant c > 0 such that
∫

ϕ−1(E) |u|pdm � cm(E) for all measur-
able sets E of T .

Proof. The equivalence of (ii) and (iii) is clear. Moreover, (i) follows from (ii)
because

∥∥uCϕ f
∥∥p

p =
∫

T
|u|p| f |p ◦ϕ dm �

∫
T
| f |pdmp =

∫
T

[
dmp

dm

]
| f |pdm � δ ‖ f‖p

p

for each f ∈ Hp .
It remains to show that (i) implies (ii). Assume (ii) does not hold. Then the sets

Ek :=
{

z ∈ T :

[
dmp

dm

]
(z) <

1
k

}
where k ∈ N,
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are of positive m-measures. We may also assume m(T \Ek) > 0 for each k . Let
fk : D → C be an outer function in Hp such that

| fk| =
{

1 on Ek,
1
2

on T \Ek.

Let n and k be positive integers with k fixed. Then

‖ f n
k ‖p

p = m(Ek)+
(

1
2

)np

m(T \Ek) → m(Ek) as n → ∞. (5)

Moreover,

∥∥uCϕ f n
k

∥∥p
p =

∫
Ek

| fk|np dmp +
∫
T\Ek

| fk|np dmp +
∫

D
| fk|np dmp

� mp(Ek)+
(

1
2

)np

mp(T \Ek)+
∫

D
| fk|np dmp.

Note that

| fk(z)| = exp

{
log

1
2

[∫
T\Ek

Pr(t−θ )dm

]}
,

where z = reit and Pr is the Poisson kernel. Since 0 <
∫
T\Ek

Pr(t−θ )dm < 1, we have
| fk(z)| < 1 on D . From the dominated convergence theorem,

∫
D
| fk|np dmp → 0 as n → ∞.

Thus,
limsup

n→∞

∥∥uCϕ f n
k

∥∥p
p � mp(Ek). (6)

In view of (5) and (6), we choose a sequence of positive integers n1 < n2 < · · · < nk <
· · · such that

∥∥ f nk
k

∥∥p
p >

1
2

m(Ek) and
∥∥uCϕ f nk

k

∥∥p
p < 2mp(Ek) for all k.

Hence ∥∥uCϕ f nk
k

∥∥p
p∥∥ f nk

k

∥∥p
p

<
4mp(Ek)
m(Ek)

=
4

m(Ek)

∫
Ek

[
dmp

dm

]
dm � 4

k
→ 0 as k → ∞.

This shows that the range of uCϕ is not closed. �
The above characterization of a weighted composition operator on Hp with closed

range involves the Radon-Nikodym derivative of the measure mp . It is desirable to
characterize its closedness of range more explicitly in terms of function-theoretic prop-
erties (for example, ranges) of the symbol functions u and ϕ . While this awaits further
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investigation, the corresponding problem for composition operators has been consid-
ered in [8, Theorem 5.1]. It was shown that a composition operator Cϕ on Hp has
closed range if and only if there exists a constant c > 0 such that if 0 < r < 1 and
ζ ∈ T , then

1
A(S(ζ ,r))

∫
S(ζ ,r)

Nϕ(z)dA(z) � cr,

where

(a) S(ζ ,r) := {z ∈ D : |z− ζ |� r} ;

(b) A is the normalized Lebesgue area measure on D , i.e. dA = 1
π rdrdθ ; and

(c) Nϕ is the Nevanlinna counting function given by

Nϕ (ω) :=

⎧⎨
⎩ ∑

z∈ϕ−1{ω}
log

1
|z| if ω ∈ ϕ(D)\{ϕ(0)},

0 if ω /∈ ϕ(D),

and ϕ−1{ω} denotes the sequence of ϕ -preimages of ω with each point occur-
ring as many times as its multiplicity.

For the case of composition operators, it is interesting to see the measure-theoretic
conditions (ii) and (iii) in Theorem 2.5 are equivalent to the above function-theoretic
conditions.
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