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EXTENSIONS OF HIAI-LIN TYPE EIGENVALUE INEQUALITY

JIAN SHI

(Communicated by F. Kittaneh)

Abstract. In this paper, we prove several extensions of Hiai-Lin type eigenvalue inequality which
extends the relative result before.

1. Introduction and main results

A capital letter, such as T, stands for an n X n matrix. 7 > 0 means that T is a
positive definite matrix. A;(7') is the ith largest eigenvalue of T if T is Hermitian.
Let A#;B stands for the weighted geometric mean. In other words,

AfB=AI(A"IBA 1)A}

if A,B>0and € [0,1]. Similarly, A;B =A2(A~2BA2)'A? if A,B>0 and ¢
[0,1].
n [1], F. Hiai and M. Lin proved the following eigenvalue inequality.

THEOREM 1.1. ([1]) If A,B > 0, then

k k

[1%:(AB) =[] 2:((A#B)(A$1B)), k=1,2,---,n (1.1)

i=1 i=1
holds for t € [0,1].
In this paper, we shall show extension of Theorem 1.1 as follows.
THEOREM 1.2. If A,B >0, then
k

iliki(AB)l>Hxi<(A" M e (A B)AT ) (A )

i—1 T—t+r
(1.2

holds for t € [0,4], e €[0,1) and 1 > —r>1—t> %, k=1.2,--,n, where l=
1-2¢t+r
T 1=t+r ro.
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THEOREM 1.3. If A,B > 0, then

k

i]f[ll,-(AB)l > H)L,-((Arl (A¥1Y e (Aﬁl_tB))A*r%) (AﬁmBD (1.3)

i=1

holds for t € [%71}, oac0,1]and 12 —-r>1—-1t>0, k=1,2,---,n, where | =

or?
1—t+r"

In order to prove the main result we list a famous operator inequality — Tanahashi
inequality here.

THEOREM 1.4. (Tanahashi inequality [2]) If A > B > 0 with A > 0, then

pl +27

AT > B AT (1.4)

holds for 0 < p’' <1, 0< ¢ <1 and —1 <2V <0 satisfying
-2/ (1-¢)<p' <q =2/ (1-¢) (1.5)
e “27(1-4q)—q _ ,_-2"'(1-¢) )
12 <p' < T2y (When ¢’ < 1/2). (1.6)
REMARK 1.1. If weput ¥ =r/2, p' =p,and ¢’ = P*’ in (1.4) and (1.5), then

we can obtain that A” > (A%BPA%)ﬁ ; If we put ¥ = r/2, P =p,and ¢ = 217’,’flr+r,

r r Itr
in (1.4) and (1.6), then we can obtain that A>?~!*" > (A2 BPA?) .o . Thus, we can
obtain the reformulations of Tanahashi inequality[2]: If A > B > 0 with A >0, r <0,
then the following inequalities hold.

{Case 1.A” > (A5 BPAS) 77, if

0 with p < %;
—1+4r . 1
Case 2. APP~147 > (AzBI’Az) Tt 5

1> p=
1>2—-r>p>
2. Proofs of main results

In this section, we shall prove Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. By the well-known antisymmetric tensor power technique,
we may need to prove that B < A~! ensures that
. - -1
A r— 1(A2r+1h |24 (Aﬁl IB))A r— l (Aﬁ—(1—2t+r)aB)

TI=itr

(2.1)

B<A lis equivalent to A_%BA_% <AZ,
Let p=1—1¢ and apply A"2BA™? < A7? to Tanahashi inequality(Case 2), we
have
2t+4r

A-2(1-2t4r) > (A_’(A_%BA_%)l_tA_r) = . (2.2)
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Because —(1—2¢+7) € [0,1] and A~ 2BA~2 < A2
(Af%BAf%)lf2l+ > A (l 2t+r) (23)
holds by Léwner-Heinz inequality.
Continuing applying Lowner-Heinz inequality for o € [0, 1] to (2.2) and (2.3), we
have .
—2t+r)o
(A"1BA~2)(1=2400 5 (A=r(A=3BA= 1)1 A—T) T (2.4)
Notice that

A r— 1(A2r+lh e (Aﬁl tB))A r—1

T It r t+r

AT A AT AT (AT BA ) At A I At AL (29)

(1-21+ra 1

—ATF(ATT(ATEBAT ) A R A

and

(Aﬁ7(172t+r)aB)
:(A5(A’%BA’%)*(I’z’Jr’)O‘A%)_l (2.6)
1

—A"3(ATIBAT)(I-AHap 3
Together with (2.4), (2.5) and (2.6), (2.1) holds obviously. [J

Proof of Theorem 1.3. We only need to prove that B < A~! ensures that

-1

A1 (Azrﬂh#’“ (Aﬁl_tB))A7r71 < (At_arB) (2.7)

Notice that B<A™! <= A"2BA"2 <A~2. Let p=1— andapply A"ZBA~7 <A~2
to Tanahashi inequality(Case 1), we have

A > (ATT(ATTBAT ) AT (2.8)
Because —r € [0,1] and A"IBA"1 < A2, then
(A"IBA 2) > A~ (2.9)

holds by Léwner-Heinz inequality.
Continuing applying Lowner-Heinz inequality for o € [0, 1] to (2.8) and (2.9), we
have 1 1 1 1 ar
(A"2BA™2)% > (A"(A"2BA™2)' A" i (2.10)
Notice that
A—r 1(A2I’+lh Dt (Aﬁl [B))A_r 1

:A*V*IA”f(A*r*zAf(AﬁBA*i)1*fA%A*r*%)%A’+%A*’*1 (2.11)
1

A3 (A—’(A—ZBA—% )TAT) AT
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and

(2.12)

Together with (2.10), (2.11) and (2.12), (2.7) holds obviously. [l

3. Some corollaries of main results

In this section, we show some corollaries of main results.
By computing,

ili%’((f\_’ HAP Y (s (A1 B)) AT 1) (Aﬁ—(1—2t+r)aB>)

T—t+r

:det((A_r 1(AZH_IITJ (1-24r)a (Afi— zB))A_r 1) (Aﬁ—(1—2t+r)aB>>

T—t+r

—det(A U AT s (A B))ATT 1) -det(Aﬁ,(1,2,+,)aB)

T—t+r

—detA ™" - det(A7 G 1 aina (At ,B))-detA"_l-det<Aﬁ_ 1_2t+,)aB>

lft+r

(I-2t4r)a

=detd 22 deta DI ~det(Af-B) Rl det( i (1—2z+r)aB>

(1-2147)a (1=2t4r)at (1=2t4r)a(1-1)

—detd T 2NN detd T detB T
-detd! T(1-2+Na  gerp=(1-2+n)a

1-2t+r
—detA™ l H»r T .detB™ l e T

1-2t+r

—det(AB)” 17 T HA(AB)’W'”",

we have the following corollary.

COROLLARY 3.1. If A,B >0, then

1 1 3 o g
() - (At-01-2naB) " (A (A s (A1B)A )

=

X (Aﬁ7(1—2t+r)aB>

holds for t € [0,3], a € [0,1] and 1 > —r>1—1> %, where | = —1112[Tr’~roc.

Similarly, we can obtain the following corollary.
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COROLLARY 3.2. If A,B >0, then

Nl—
Nl—

abad) - (at-am)! (A7 (0 0ty 9)A) (4 00)

holds for t € [5,1], a € [0,1] and 1 > —r>1—1 >0, where | = —lf‘trir.
Next, we show some simple corollaries directly from main results.
COROLLARY 3.3. If A,B >0, then

()

i=1

holds for t €[0,3] and 1> —r>1—1> 3, where k=1,2,---,n.

Proof. Notice that 1=2= € [0,1]. Put & = {=%% in Theorem 1.2. [0

COROLLARY 3.4. If A,B >0, then
k k
TTAsas) " > TTw( (4 tma ) (a5-0-08)
i=1 i=1
holds for t € [5,1] and 1> —r>1—1>0, where k=1,2,---,n.
Proof. Notice that 1=~ € [0,1]. Put o = 1= in Theorem 1.3. [
REMARK 3.1. If we put » = —1 in Corollary 3.3 and Corollary 3.4, they are just
Theorem 1.1.
REMARK 3.2. Together with Corollary 3.3 and Corollary 3.4, it is obvious that
k k
[Tx(aB) " >~ <<A_, YAt B)AT ) (A8 B))
i=1 i=1
holdsfor 1 > —r>1—¢t >0, where A,B>0, k=1,2,---,n.
COROLLARY 3.5. If A,B >0, then
k k
H ( ) H (( 1h2a Aﬁl tB)> (Aﬁsz>>
i=1

i=1

holds for t € [0,%} and o € [0,1], where k=1,2,---,n
Proof. Put r = —1 in Theorem 1.2. [J
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COROLLARY 3.6. If A,B >0, then

k k

[Iw8) " = T (45 as1-8)) (4208) )

i=1 i=1
holds for t € [%,1] and o € [0,1], where k=1,2,--- n.
Proof. Put r = —1 in Theorem 1.3. [J

REMARK 3.3. If we put @ = 1/2 in Corollary 3.5 and o =t in Corollary 3.6,
they are just Theorem 1.1.
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