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ON SOME p–ALMOST HADAMARD MATRICES

MANIL T. MOHAN

Abstract. Let M(n,R) be the space of all real valued n× n matrices and O(n,R) be the or-
thogonal group. A square matrix Hn ∈ M(n,R) is called “almost Hadamard” if Un := Hn/

√
n

is orthogonal, and locally maximizes the 1-norm on O(n,R) . The matrix Hn is “ p -almost
Hadamard” if it maximizes the p -norm on O(n,R) for p∈ [1,2) and minimizes the p -norm on
O(n,R) for p ∈ (2,∞] . In this work, we consider the Conjecture 4.4 stated in [8] and discuss its
truth content. For n ∈ N\{2} , we show that the matrix

Kn :=
1√
n

⎛
⎜⎜⎜⎝

2−n 2 · · · 2
2 2−n · · · 2
...

...
. . .

...
2 2 · · · 2−n

⎞
⎟⎟⎟⎠

is p -almost Hadamard, for any p ∈ (2,∞) such that

(p−1)
[
(n−2)2p +(n−2)22p−2 +22(n−2)p−2] > (n−2)p +2p(n−1).

We also establish that for any p ∈ [1,2) and n ∈ N\{2} , Kn is p -almost Hadamard and hence
the Conjecture is valid for this case. Finally, we give some particular examples of p -almost
Hadamard matrices of different orders, incorporating conference and weighing matrices.
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