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Abstract. For a scalar sequence (θn)n∈N
, let C be the matrix defined by ck

n = θn−k+1 if n � k ,
ck
n = 0 if n < k. The map between Köthe spaces λ(A) and λ(B) is called a Cauchy Product

map if it is determined by the triangular matrix C . In this note we introduced some necessary
and sufficient conditions for a Cauchy Product map on a nuclear Köthe space λ(A) to nuclear
G1 -space λ(B) to be linear and continuous. Its transpose is also considered.

1. Introduction

We refer the reader to [3], [4] and [5] for the terminology used but not defined
here. Let A = (ak

n)n,k∈N be a matrix of real numbers such that 0 � ak
n � ak+1

n for all
n,k and sup

k
ak

n > 0. The �1 - Köthe space λ (A) defined by the matrix A is the space

of all sequences of scalars x = (xn) such that

‖x‖k = ∑
n
|xn|ak

n < ∞, ∀k ∈ N.

With the topology generated by the system of seminorms {‖.‖k ,k ∈ N} , it is a Fréchet
space.

The topological dual of λ (A) is isomorphic to the space of all sequences u for
which |un| � Cak

n for some k and C > 0.
It is well known that a Köthe space λ (A) associated with the matrix A is nuclear

if and only if for each k there exists m such that

∑
n

ak
n

am
n

< +∞
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and in this case the fundamental system of norms ‖x‖k = ∑
n
|xn|ak

n can be replaced by

the equivalent system of norms

‖x‖k = sup
n
|xn|ak

n, k ∈ N.

The infinite and finite type power series spaces are well known examples of Köthe
spaces given by the matrices (ekαn) respectively (e−

αn
k ) where (αn) is a monotonically

increasing sequence going to infinity. The space A(C) of all entire functions on C and
the space A(D) of all holomorphic functions on the unit disc can be represented as an
infinite respectively finite type power series spaces.

Smooth sequence spaces were introduced in [6] as a generalization of power series
spaces. A Köthe set A =

{
(ak

n)
}

is called a G∞ -set and the corresponding Köthe space
λ (A) a G∞ -space if A satisfies the followings:

(1) a1
n = 1, ak

n � ak
n+1 for each k and n;

(2) ∀k ∃ j with (ak
n)

2 = O(a j
n) .

A Köthe set B =
{
(bk

n)
}

is called a G1 -set and the corresponding Köthe space
λ (B) a G1 -space if B satisfies the followings:

(1) 0 < bk
n+1 � bk

n < 1 for each k and n ;

(2) ∀k ∃ j with bk
n = O((b j

n)2) .

We need the following result [1].

LEMMA 1. Let λ (A) and λ (B) be Köthe spaces. A map T : λ (A) −→ λ (B) is
continuous linear map if and only if for each k there exists m such that

sup
n

‖Ten‖k

‖en‖m
< +∞.

If (an) , (bn) are two sequences of scalars, then the Cauchy product (cn) = (an)∗ (bn)

of (an) and (bn) is defined by cn =
n

∑
k=1

an+1−kbk .

Now let θ = (θn) be a fixed sequence of scalars and let λ (A) , λ (B) be two
nuclear �1 -Köthe spaces. We define the Cauchy Product mapping Tθ from λ (A) into
λ (B) by Tθ x = θ ∗ x, x = (xn) ∈ λ (A). So, Tθ : λ (A) −→ λ (B) can be determined
by the lower triangular matrix

C =

⎛
⎜⎜⎜⎝

θ1 0 0 0 · · ·
θ2 θ1 0 0 · · ·
θ3 θ2 θ1 0 · · ·
...

. . .

⎞
⎟⎟⎟⎠ .
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2. Cauchy product map on Köthe spaces

In this section we introduce some necessary and sufficient conditions for the map
Tθ to be linear and continuous.

THEOREM 1. Let λ (A) be a nuclear Köthe space, λ (B) be a nuclear G1 -space.
Then the Cauchy product map Tθ : λ (A)−→ λ (B) is linear continuous operator if and
only if the following hold:

i) θ ∈ λ (B);

ii) λ (A) ⊂ λ (B) .

Proof. Let Tθ : λ (A) −→ λ (B) be a continuous linear operator.
Note that ‖Tθ en‖k = ‖(0,0, ...,0,θ1,θ2, · · ·)‖k = sup

j�n
|θ j−n+1|bk

j, for n ∈ N. Clearly

‖en‖m = am
n . So, by Lemma 1 ∀k , ∃m , ∃ρ > 0 such that

sup
j�n

|θ j−n+1|bk
j � ρam

n , ∀n ∈ N.

Choose j = n . Then ∀k , ∃m , ∃C > 0 such that

bk
n � Cam

n ,

i.e. λ (A) ⊂ λ (B) . Since Tθ e1 ∈ λ (B), it follows that θ ∈ λ (B) .
Conversely, since B is a G1 -set and by ii) and i) we have for a given k, there are

m1(k) and m2(m1) such that

‖Tθen‖k = sup
j�n

|θ j−n+1|bk
j � C1 sup

j�n
|θ j−n+1|(bm1

j )2 � C1 sup
j�n

(|θ j−n+1|bm1
j )(bm1

n )

� C2 sup
j�n

(|θ j−n+1|bm1
j )(am2

n ) � C2 sup
j�n

(|θ j−n+1|bm1
j−n+1)(a

m2
n ) � Cam2

n .

Therefore, ∀k , ∃m2 such that

sup
n

‖Tθ en‖k

‖en‖m2

< ∞,

that is, Tθ is continuous. �
We consider the map Tθ

′ : λ (A) −→ λ (B) which is determined by the matrix Ct

(the transpose of C) and try to find necessary and sufficient conditions for the continuity
of Tθ

′ .

THEOREM 2. Let λ (A) be a nuclear G∞ -space, λ (B) be a nuclear Köthe space.
Then, Tθ

′ : λ (A) −→ λ (B) which is given above is linear continuous operator if and
only if the following hold:

i) θ ∈ λ (A)′ ;
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ii) λ (A) ⊂ λ (B) .

Proof. The matrix Ct of the operator Tθ
′ : λ (A) −→ λ (B) is the following upper

triangular matrix:

Ct =

⎛
⎜⎜⎜⎝

θ1 θ2 θ3 θ4 · · ·
0 θ1 θ2 θ3 · · ·
0 0 θ1 θ2 · · ·
...

. . .

⎞
⎟⎟⎟⎠ .

Let Tθ
′ : λ (A) −→ λ (B) be a continuous linear operator.

Note that ‖Tθ
′en‖k = ‖(θn,θn−1, · · · ,θ1,0,0, · · ·)‖k = sup

1�i�n
|θn+1−i|bk

i , for n ∈ N. So,

by Lemma 1 ∀k , ∃m , ∃μ > 0 such that

sup
1�i�n

|θn+1−i|bk
i � μam

n , ∀n ∈ N.

Let i = 1. Hence ∃m , ∃C = μ
bk
1

> 0 such that

|θn| � Cam
n , ∀n,

i.e. θ ∈ λ (A)′ .
Let i = n . Then ∀k , ∃m such that

bk
n � μ

|θ1|a
m
n ,

i.e.
λ (A) ⊂ λ (B).

On the other hand, since A is a G∞ -set and by i) and ii) for a given k , there are m1

and m2(k) and m = max{m1,m2} such that

‖Tθ
′en‖k = sup

1�i�n
|θn−i+1|bk

i � C1 sup
1�i�n

am1
n−i+1b

k
i � C1 sup

1�i�n
am1

n−i+1a
m2
i � C1a

m1
n am2

n

� C2(am
n )2.

Since λ (A) is G∞ - space, for this m , ∃ j such that

sup
n

(am
n )2

a j
n

< ∞.

Therefore, ∀k , ∃ j such that

sup
n

‖Tθ
′en‖k

‖en‖ j
< ∞,

that is, Tθ
′ is continuous. �

It is known that S is a normal sequence space if whenever |xi| < |yi| and y =
(yi) ∈ S , then x = (xi) ∈ S [2].
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REMARK 1. Now we write θ ∈ S when the Cauchy product map Tθ : λ (A)−→
λ (B) above is continuous. If θ ,η ∈ S , λ ∈ K , then clearly Tθ+η and Tλ θ will be
continuous since Tθ and Tη are continuous. Hence S is a vector space.

Now, let |θi| < |ηi| ,∀i , η ∈ S . Since Tη is continuous, for all k we find m so
that

sup
n

{
sup
j�n

∣∣θ j−n+1
∣∣ bk

j

am
n

}
� sup

n

{
sup
j�n

∣∣η j−n+1
∣∣ bk

j

am
n

}
< ∞,

i.e. Tθ is continuous.
Therefore θ ∈ S . Hence we obtain that S is a normal sequence space.
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