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SPECTRAL MAPPING THEOREMS FOR WEYL

SPECTRUM AND ISOLATED SPECTRAL POINTS

JIANGTAO YUAN AND CAIHONG WANG

Abstract. Spectral mapping theorems for Weyl spectrum and isolated spectral points were dis-
cussed by Gramsch, Lay and Oberai, etc. In this paper, L (X ) means the space of all bounded
linear operator on an infinite-dimensional complex Banach space X , f ∈ H (σ(T )) means
f is holomorphic on an open set U containing the spectrum σ(T ) , and f ∈ Hlnc(σ(T ))
means f is holomorphic and locally nonconstant. Firstly, it is shown that, if T ∈ L (X ) and
f ∈ H (σ(T )) , then (1) σuw( f (T )) ⊆ f (σuw(T )) where σuw(T ) means the upper semi-Weyl
spectrum; (2) σuw( f (T ))⊇ f (σuw(T )) is equivalent to the assertion that T is of stable sign index
on ρu f (T ) where ρu f (T ) means the upper semi-Fredholm resolvent. Secondly, let T ∈L (X ) ,
(1) if f ∈ Hlnc(σ(T )) or T is polaroid, then σ( f (T ))\π00( f (T )) ⊆ f (σ(T )\π00(T )); (2) if
T is isoloid, then σ( f (T ))\π00( f (T )) ⊇ f (σ(T )\π00(T )) . Some two-out-of-three results on
spectral mapping theorems and Weyl type theorems are also given. At the end, an example
is provided which implies that the conditions “ f ∈ Hlnc(σ(T ))”, “T is polaroid” and “T is
isoloid” are crucial and inevitable.
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