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Abstract. Spectral mapping theorems for Weyl spectrum and isolated spectral points were dis-
cussed by Gramsch, Lay and Oberai, etc. In this paper, L (X ) means the space of all bounded
linear operator on an infinite-dimensional complex Banach space X , f ∈ H (σ(T )) means
f is holomorphic on an open set U containing the spectrum σ(T ) , and f ∈ Hlnc(σ(T ))
means f is holomorphic and locally nonconstant. Firstly, it is shown that, if T ∈ L (X ) and
f ∈ H (σ(T )) , then (1) σuw( f (T )) ⊆ f (σuw(T )) where σuw(T ) means the upper semi-Weyl
spectrum; (2) σuw( f (T ))⊇ f (σuw(T )) is equivalent to the assertion that T is of stable sign index
on ρu f (T ) where ρu f (T ) means the upper semi-Fredholm resolvent. Secondly, let T ∈L (X ) ,
(1) if f ∈ Hlnc(σ(T )) or T is polaroid, then σ( f (T ))\π00( f (T )) ⊆ f (σ(T )\π00(T )); (2) if
T is isoloid, then σ( f (T ))\π00( f (T )) ⊇ f (σ(T )\π00(T )) . Some two-out-of-three results on
spectral mapping theorems and Weyl type theorems are also given. At the end, an example
is provided which implies that the conditions “ f ∈ Hlnc(σ(T ))”, “T is polaroid” and “T is
isoloid” are crucial and inevitable.

1. Introduction

In this paper, L (X ) means the space of all bounded linear operator on an infinite-
dimensional complex Banach space X , f ∈ H (σ(T )) means f is holomorphic on
an open set U containing the spectrum σ(T ) , and f ∈ Hlnc(σ(T )) means f is holo-
morphic and locally nonconstant on an open set U containing σ(T ) .

Let σp(T ) , σ f (T ) , σw(T ) and π00(T ) mean the point spectrum, Fredholm spec-
trum, Weyl spectrum and the set of all isolated eigenvalues of finite multiplicity of an
operator T respectively.

In 1971, Gramsch and Lay [13, Theorem 2] discussed the spectral mapping theo-
rem for Weyl spectrum via F -semigroup.

THEOREM 1.1. ([13]) Let T ∈ L (X ) and f ∈ H (σ(T )) , then

σw( f (T )) ⊆ f (σw(T )).
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In general, equality does not hold in Theorem 1.1 [13, page 23].
Let iso σ(T ) be the set of all isolated point of σ(T ) . An operator T ∈ L (X ) is

said to be isoloid if iso σ(T ) ⊆ σp(T ) . In 1977, Oberai [15] proved some results on
spectral mapping theorems for isolated spectral points and Weyl theorem.

THEOREM 1.2. ([15]) Let T ∈ L (X ) and p(t) a polynomial. Then

(1) σ(p(T ))\π00(T ) ⊆ p(σ(T )\π00(T ));

(2) If T is isoloid, then σ(p(T ))\π00(T ) ⊇ p(σ(T )\π00(T )).

In general, Theorem 1.2 (2) may fail if T is not assumed to be isoloid [15, Example
1]. An operator T ∈ (W ) means Weyl theorem holds for T , that is,

σ(T )\σw(T ) = π00(T ).

THEOREM 1.3. ([15]) Let T ∈ (W ) and p(t) a polynomial. If T is isoloid, then
σw(p(T )) = p(σw(T )) if and only if p(T ) ∈ (W ) .

Let σa(T ) , σu f (T ) , σb f (T ) , σub f (T ) , σuw(T ) , σbw(T ) and σubw(T ) mean the
approximate point spectrum, upper semi-Fredholm spectrum, B-Fredholm spectrum,
upper semi-B-Fredholm spectrum, upper semi-Weyl spectrum, B-Weyl spectrum and
upper semi-B-Weyl spectrum of an operator T respectively (see [4]).

DEFINITION 1.1. Let T ∈ L (X ) .

(1) T is said to be of stable sign index on ρ f (T ) := C\σ f (T ) if for each λ , μ ∈
ρ f (T ) , ind(T −λ ) and ind(T − μ) have the same sign.

(2) T is said to be of stable sign index on ρu f (T ) := C\σu f (T ) if for each λ , μ ∈
ρu f (T ) , ind(T −λ ) and ind(T − μ) have the same sign.

(3) T is said to be of stable sign index on ρb f (T ) := C\σb f (T ) if for each λ , μ ∈
ρb f (T ) , ind(T −λ ) and ind(T − μ) have the same sign.

(4) T is said to be of stable sign index on ρub f (T ) := C\σub f (T ) if for each λ ,
μ ∈ ρub f (T ) , ind(T −λ ) and ind(T − μ) have the same sign.

Let σb(T ) , σub(T ) , σbb(T ) and σubb(T ) mean the Browder spectrum, upper
semi-Browder spectrum, B-Browder spectrum and upper semi-B-Browder spectrum
of an operator T respectively (see [4]). Denote P(T ) := σ(T )\σbb(T ) the poles of
the resolvent of T , P0(T ) := σ(T )\σb(T ) the poles of the resolvent of T with fi-
nite rank, acc σ(T ) := σ(T )\iso σ(T ) , and π0(T ) := σp(T )∩ iso σ(T ) . An operator
T ∈ L (X ) is said to be polaroid if iso σ(T ) ⊆ P(T ) .

Theorem 1.1-1.3 are extended to Theorem 1.4-1.6 respectively.

THEOREM 1.4. ([16]) Let T ∈ L (X ) and f ∈ H (σ(T )) , the following asser-
tions are equivalent:
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(1) T is of stable sign index on ρ f (T ) .

(2) σw( f (T )) = f (σw(T )).

(3) σw(p(T )) = p(σw(T )) for each polynomial p.

THEOREM 1.5. ([14, 16]) Let T ∈ L (X ) be isoloid. If f ∈ H (σ(T )) , then

σ( f (T ))\π00( f (T )) = f (σ(T )\π00(T )).

It should be pointed out that Theorem1.5 may fail when f ∈H (σ(T ))\Hlnc(σ(T )) .
See Example 5.1 (3) for details.

THEOREM 1.6. ([12]) Let T be polaroid and f ∈ H (σ(T )) . If T ∈ (W ) , then
T is of stable sign index on ρ f (T ) ( i.e., σw( f (T )) = f (σw(T )) ) if and only if f (T ) ∈
(W ) .

In this work, the authors will give extensions of Theorem 1.4-1.6. In Section 2,
the spectral mapping theorems for Weyl type spectrums, such as upper semi-Weyl spec-
trum, B-Weyl spectrum and upper semi-B-Weyl spectrum, are considered (see Theorem
2.1, Theorem 2.2, Theorem 2.3). Moreover, the spectral mapping theorems for B-Weyl
spectrum and upper semi-B-Weyl spectrum may fail if f �∈ Hlnc(σ(T )) (see Example
5.1 (1)-(2)).

In Section 3, the spectral mapping theorems for isolated spectral points are dis-
cussed (see Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4). Especially, Exam-
ple 5.1 (3)-(10) are provided which illustrate the results may fail without the condition
“ f ∈ Hlnc(σ(T ))” or “T is polaroid”.

Weyl type theorems have been studied extensively in the last two decades (see
[1, 5, 17]). Theorems 1.3 and 1.6 say that there is a close relation between spectral
mapping theorems and Weyl type theorems.

In Section 4, we prove some two-out-of-three results on spectral mapping theo-
rems for Weyl type spectrums, isolated spectral points and Weyl type theorems.

Lastly, we show an example which implies that the conditions “T is isoloid”, “T
is polaroid” or “ f ∈ Hlnc(σ(T ))” are crucial and inevitable.

2. Spectral mapping theorems for Weyl type spectrums

For every n ∈ Z , let us define Ωn := {μ ∈ σ(T ) : ind(μ −T ) = n} .

THEOREM 2.1. Let T ∈ L (X ) and f ∈ H (σ(T )) .

(1) σuw( f (T )) ⊆ f (σuw(T )).

(2) The following assertions are equivalent:

(a) T is of stable sign index on ρu f (T ) .

(b) σuw( f (T )) ⊇ f (σuw(T )).
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(c) σuw(p(T )) ⊇ p(σuw(T )) for each polynomial p.

Theorem 2.1 says that Theorem 1.4 holds for upper semi-Weyl spectrum. Since
the assertion “T or T ∗ has SVEP” ensures “T is of stable sign index on ρu f (T )” (see
[1, Theorem 3.36]), Theorem 2.1 is an extenstion of [2, Corollary 2.6].

Proof. (1) Suppose that f ∈ Hlnc(σ(T )) and λ ∈ σuw( f (T )) . Then

f (T )−λ = Πn
i=1(T − μi)kih(T ) (2.1)

where μ1 , · · · , μn are different spectral points of T and h(T ) is invertible. Thus, there
exists μ0 ∈ {μi, i = 1, · · · ,n} with μ0 ∈ σuw(T ) ([1, Remark 1.54]). So λ = f (μ0) ∈
f (σuw(T )) .

Suppose that f ∈H (σ(T ))\Hlnc(σ(T )) and λ ∈ σuw( f (T )) . Let g(z) = f (z)−
λ , then g is defined on an open set U = U1 ∪U2 with U1 , U2 open, U1 ∩U2 = φ ,
σ1 := σ(T )∩U1 �= φ , σ2 := σ(T )∩U2 �= φ , g|U1 ≡ 0 and g ∈ Hlnc(σ2) . Let E =
E(σ2) be the Riesz idempotent corresponding to σ2 , T1 = T |ker(E) , T2 = T |E(X ) . Then
X = ker(E)⊕E(X ) , σ(Ti) = σi (i = 1,2) .

Assume to the contrary that λ �∈ f (σuw(T )) ⊇ f (σu f (T )) = σu f ( f (T )) , thus λ ∈
ρu f ( f (T )) . By [1, Lemma 3.62] or [13, Theorem 1],

ind(g(T )) = Σn �=0nαn

where αn is the number of zeros of g on Ωn . Since σuw(T ) = σu f (T )∪(∪n>0Ωn) and
λ �∈ f (σuw(T )) , we have

ind(g(T )) = Σn<0nαn � 0.

So λ �∈ σuw( f (T )) . This is a contradiction.
(2) (a)⇒(b) Suppose that f ∈Hlnc(σ(T )) and λ �∈ σuw( f (T ))⊇σu f ( f (T )) , thus

λ ∈ ρu f ( f (T )) . By (2.1),

0 � ind( f (T )−λ ) = Σn
i=1kiind(T − μi).

Hence ind(T − μi) � 0 and μi �∈ σuw(T ) for i = 1, · · · ,n . So λ �∈ f (σuw(T )) .
Suppose that f ∈H (σ(T ))\Hlnc(σ(T )) and λ �∈ σuw( f (T )) . Let g(z) = f (z)−

λ as in the proof of (1), then g(T ) = g(T1)⊕g(T2) = 0⊕g(T2) . Since λ �∈ σu f ( f (T )) ,
we have 0 �∈ σu f (g(T1)) with ind(g(T1)) = 0 and 0 �∈ σu f (g(T2)) . Hence dim(X1) <
∞ and σ(T1) = σ1 ⊆ P0(T ) . On the other hand, 0 � ind(g(T )) = ind(g(T2)) and
g ∈ Hlnc(σ2) deduce that the zeros of g on σ(T2) do not belong to σuw(T2) . Since
σ1∩σ2 = φ , the zeros of g on σ(T2) do not belong to σuw(T ) . So that λ �∈ f (σuw(T )) .

(b)⇒(c) Clear.
Proof of (c)⇒(a) is similar to [16, Theorem 2]: Assume to the contrary that T

is not of stable sign index on ρu f (T ) . Then there are λ1 , λ2 ∈ ρu f (T ) with ind(T −
λ1) > 0 and ind(T −λ2) < 0. Let k = ind(T −λ1) , m = −ind(T −λ2) , p(z) = (z−
λ1)m(z−λ2)k . Then p(T ) is an upper semi-Fredholm operator ([1, Remark 1.54]) and
ind(p(T )) = km+ k(−m) = 0, that is, 0 �∈ σuw(p(T )) . Meanwhile, λ1 ∈ σuw(T ) and
0 = p(λ1) ∈ p(σuw(T )) . This is a contradiction. �

The following Theorem 2.2 says that Theorem 1.4 holds for B-Weyl spectrum and
f ∈ Hlnc(σ(T )) .
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THEOREM 2.2. Let T ∈ L (X ) and f ∈ H (σ(T )) .

(1) σbw( f (T )) ⊆ f (σbw(T )).

(2) The following assertions are equivalent:

(a) T is of stable sign index on ρb f (T ) .

(b) σbw( f (T )) ⊇ f (σbw(T )) for each f ∈ Hlnc(σ(T )) .

(c) σbw(p(T )) ⊇ p(σbw(T )) for each nonconstant polynomial p.

Theorem 2.2 is a generalization of [9, Theorem 2.4], [18, Theorem 2.1] and [11,
Corollary 2.8]. Theorem 2.2 (2) may fail without the condition “ f ∈ Hlnc(σ(T ))”, see
(1) of Example 5.1.

Proof. (1) The case that f is constant is obvious, and it is sufficient to prove
the case f ∈ H (σ(T ))\Hlnc(σ(T )) since [9, Theorem 2.4] proved the case f ∈
Hlnc(σ(T )) .

Suppose that f ∈H (σ(T ))\Hlnc(σ(T )) and λ ∈ σbw( f (T )) . Let g(z) = f (z)−
λ as in the proof of Theorem 2.1 (1). Since λ ∈ σbw( f (T )) , g(T ) = g(T1)⊕g(T2) and
g|U1 ≡ 0, then g(T2) is not a B-Weyl operator. By g ∈Hlnc(σ2) = Hlnc(σ(T2)) , there
exists μ ∈ σbw(T2) ⊆ σbw(T ) such that λ = f (μ) .

(2) (a)⇒(b) See [9, Theorem 2.4]. (b)⇒(c) Clear.
(c)⇒(a) Assume to the contrary that T is not of stable sign index on ρb f (T ) .

Then there are λ1 , λ2 ∈ ρb f (T ) with ind(T − λ1) > 0 and ind(T − λ2) < 0. Let
k = ind(T − λ1) , m = −ind(T − λ2) , p(z) = (z− λ1)m(z− λ2)k . Then p(T ) is a
B-Fredholm operator ([7, Theorem 3.6], [6, Corollary 3.3]) and ind(p(T )) = km +
k(−m) = 0 ([8, Theorem 3.2]), that is, 0 �∈ σbw(p(T )) . Meanwhile, λ1 , λ2 ∈ σbw(T )
and 0 = p(λ1) = p(λ2) ∈ p(σbw(T )) . This is a contradiction. �

THEOREM 2.3. Let T ∈ L (X ) and f ∈ H (σ(T )) .

(1) σubw( f (T )) ⊆ f (σubw(T )).

(2) The following assertions are equivalent:

(a) T is of stable sign index on ρub f (T ) .

(b) σubw( f (T )) ⊇ f (σubw(T )) for each f ∈ Hlnc(σ(T )) .

(c) σubw(p(T )) ⊇ p(σubw(T )) for each nonconstant polynomial p.

Theorem 2.3 is an extension of [18, Theorem 2.3], and Example 5.1 (2) below
illustrates the condition “ f ∈ Hlnc(σ(T ))” is crucial.

Proof. (1) The case that f is constant is obvious, and it is sufficient to prove
the case f ∈ H (σ(T ))\Hlnc(σ(T )) since [18, Theorem 2.3] proved the case f ∈
Hlnc(σ(T )) .

Suppose that f ∈H (σ(T ))\Hlnc(σ(T )) and λ ∈σubw( f (T )) . Let g(z) = f (z)−
λ as in the proof of Theorem 2.2 (1). Since λ ∈ σubw( f (T )) and g(T ) = g(T1)⊕
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g(T2)= 0⊕g(T2) , then g(T2) is not an upper semi-B-Weyl operator. By g∈Hlnc(σ(T2))
and σ1∩σ2 = φ , there exists μ ∈ σubw(T2) ⊆ σubw(T ) such that λ = f (μ) .

(2) (a)⇒(b) See [18, Theorem 2.3]. (b)⇒(c) Clear.
(c)⇒(a) Assume to the contrary that T is not of stable sign index on ρub f (T ) .

Then there are λ1 , λ2 ∈ ρub f (T ) with ind(T − λ1) > 0 and ind(T − λ2) < 0. Let
k = ind(T −λ1) , m =−ind(T −λ2) , p(z) = (z−λ1)m(z−λ2)k . Then p(T ) is an upper
semi-B-Fredholm operator ([10, Corollary 4.4] or [7, Theorem 3.6]) and ind(p(T )) =
km+k(−m)= 0 ([8, Theorem3.2]), that is, 0 �∈σubw(p(T )) . Meanwhile, λ1 ∈σubw(T )
and 0 = p(λ1) ∈ p(σubw(T )) . This is a contradiction. �

3. Spectral mapping theorems for isolated spectral points

THEOREM 3.1. Let T ∈ L (X ) and f ∈ H (σ(T )) .

(1) If f ∈ Hlnc(σ(T )) , then σ( f (T ))\π00( f (T )) ⊆ f (σ(T )\π00(T )).

(2) If T is polaroid, then σ( f (T ))\π00( f (T )) ⊆ f (σ(T )\π00(T )).

(3) If T is isoloid, then σ( f (T ))\π00( f (T )) ⊇ f (σ(T )\π00(T )) .

Theorem 3.1 is an extension of Theorems 1.2 and 1.5, and Example 5.1 (3)-(4)
illustrate the conditions “ f ∈ Hlnc(σ(T ))”, “T is polaroid” and “T is isoloid” are
inevitable.

Proof. (1) The proof is similar to [15, Lemma 1]: Let λ ∈ σ( f (T ))\π00( f (T )) .
If λ ∈ acc σ( f (T )) , it is easy to see that there exists μ ∈ acc σ(T )⊆σ(T )\π00(T )

such that λ = f (μ) .
If λ ∈ iso σ( f (T )) and λ �∈ σp( f (T )) , by σp( f (T )) ⊇ f (σp(T )) , there exists

μ ∈ σ(T )\σp(T ) such that λ = f (μ) . So λ ∈ f (σ(T )\π00(T )) .
If λ ∈ iso σ( f (T )) and λ ∈ σp( f (T )) , then dim(ker( f (T )−λ )) = ∞ . By f ∈

Hlnc(σ(T )) , (2.1) and [1, Lemma 1.76], there exists μ0 ∈ {μi, i = 1, · · · ,n} such that
dim(ker(T − μ0)) = ∞ . So λ = f (μ0) ∈ f (σ(T )\π00(T )) .

(2) By the proof of (1), it is sufficient to prove the case that λ ∈ iso σ( f (T )) ,
dim(ker( f (T )−λ )) = ∞ and f ∈ H (σ(T ))\Hlnc(σ(T )) .

Let g(z) = f (z)−λ as in the proof of Theorem 2.2 (1), then g(T ) = 0⊕g(T2) and
g ∈ Hlnc(σ(T2) . By the proof of (1), we assume that dim(kerg(T1)) = ∞ .

If σ(T1) is a finite set, there exists μ0 ∈ σ(T1) such that dim(E({μ0})X ) = ∞ .
Since T is polaroid, there exists an integer p such that

E({μ0})X = ker(T1− μ0)p = ker(T − μ0)p.

So dim(ker(T − μ0)) = ∞ and λ = f (μ0) ∈ f (σ(T )\π00(T )) .
If σ(T1) is not a finite set, then it is easy to see that there exists μ0 ∈ acc σ(T1) .

So λ = f (μ0) ∈ f (σ(T )\π00(T )) .
(3) It is sufficient to prove that λ ∈ π00( f (T )) implies λ �∈ f (σ(T )\π00(T )) .
Suppose that f ∈Hlnc(σ(T )) , λ ∈ π00( f (T )) and M := {μ ∈ σ(T ) : f (μ)−λ =

0} . Then M ⊆ iso σ(T ) and it is a finite set. By (2.1), [1, Lemma 1.76] and T is
isoloid, we have M ⊆ π00(T ) . So λ �∈ f (σ(T )\π00(T )) .
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Suppose that f ∈ H (σ(T ))\Hlnc(σ(T )) , λ ∈ π00( f (T )) and M = {μ ∈ σ(T ) :
f (μ)−λ = 0} . Let g(z) = f (z)−λ as in the proof of Theorem 2.2 (1), then M =
σ(T1)∪M2 where M2 := {μ ∈ σ(T2) : f (μ)−λ = 0} .

Since g ∈ Hlnc(σ(T2)) and σ(T1)∩σ(T2) = φ , M2 ⊆ π00(T2) ⊆ π00(T ) follows.
Meanwhile, λ ∈ π00( f (T )) ensures dim(X1) < ∞ . Thus σ(T1) is a finite set and

dim(E({μ})X ) < ∞ for every μ ∈ σ(T1) . It is clear that σ(T1) ⊆ π00(T ) . Therefore
M ⊆ π00(T ) and λ �∈ f (σ(T )\π00(T )) . �

Denote πa
00(T ) := {λ ∈ iso σa(T ) : 0 < dimker(T −λ ) < ∞} , Pa

0 (T ) :=
σa(T )\σub(T ) the set of all left poles of the resolvent with finite rank.

An operator T ∈ L (X ) is said to be a -isoloid if iso σa(T ) ⊆ σp(T ) .
An operator T ∈ L (X ) is said to be a -polaroid if iso σa(T ) ⊆ P(T ) .

THEOREM 3.2. Let T ∈ L (X ) and f ∈ H (σ(T )) .

(1) If f ∈ Hlnc(σa(T )) , then σa( f (T ))\πa
00( f (T )) ⊆ f (σa(T )\πa

00(T )).

(2) If T is a-polaroid, then σa( f (T ))\πa
00( f (T )) ⊆ f (σa(T )\πa

00(T )).

(3) If T is a-isoloid, then σa( f (T ))\πa
00( f (T )) ⊇ f (σa(T )\πa

00(T )) .

The conditions “ f ∈ Hlnc(σa(T ))”, “T is a -polaroid” and “T is a -isoloid” are
crucial (see Example 5.1 (5)-(6)).

Proof. (1) Let σa( f (T ))\πa
00( f (T )) . If λ ∈ acc σa( f (T )) , by σa( f (T )) =

f (σa(T )) , it is easy to see that there exists μ ∈ acc σa(T ) ⊆ σa(T )\πa
00(T ) such that

λ = f (μ) .
If λ ∈ iso σa( f (T )) and λ �∈ σp( f (T )) , by σp( f (T )) ⊇ f (σp(T )) , there exists

μ ∈ σa(T )\σp(T ) such that λ = f (μ) . So λ ∈ f (σa(T )\πa
00(T )) .

If λ ∈ iso σa( f (T )) and λ ∈ σp( f (T )) , then dim(ker( f (T )−λ )) = ∞ . Since
f ∈ Hlnc(σa(T )) , we have

f (T )−λ = Πn
i=1(T − μi)kih(T ) (3.1)

where μ1 , · · · , μn are different elements of σa(T ) and 0 �∈ σa(h(T )) . By (3.1) and [1,
Lemma 1.76], there exists μ0 ∈ {μi, i = 1, · · · ,n} such that dim(ker(T − μ0)) = ∞ . So
λ = f (μ0) ∈ f (σa(T )\πa

00(T )) .
(2) By the proof of (1), it is sufficient to prove the case that λ ∈ iso σ( f (T )) ,

dim(ker( f (T )−λ )) = ∞ and f ∈ H (σ(T ))\Hlnc(σa(T )) .
Obviously, f ∈ H (σ(T ))\Hlnc(σ(T )) . Let g(z) = f (z)−λ as in the proof of

Theorem 2.2 (1), then g(T ) = 0⊕g(T2) and g ∈ Hlnc(σ(T2)) ⊆ Hlnc(σa(T2)) . By the
proof of (1), we assume that dim(kerg(T1)) = ∞ .

If σa(T1) is a finite set, then σ(T1) = σa(T1) for ∂σ(T1) ⊆ σa(T1) . Thus there
exists μ0 ∈σa(T1) such that dim(E({μ0})X ) = ∞ . Since T is a -polaroid, there exists
an integer p such that

E({μ0})X = ker(T1− μ0)p = ker(T − μ0)p.

So dim(ker(T − μ0)) = ∞ and λ = f (μ0) ∈ f (σa(T )\πa
00(T )) .
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If σa(T1) is not a finite set, then it is easy to see that there exists μ0 ∈ acc σa(T1) .
So λ = f (μ0) ∈ f (σa(T )\πa

00(T )) .
(3) It is sufficient to prove that λ ∈ πa

00( f (T )) implies λ �∈ f (σa(T )\πa
00(T )) .

Suppose that f ∈ Hlnc(σa(T )) , λ ∈ πa
00( f (T )) and Ma := {μ ∈ σa(T ) : f (μ)−

λ = 0} . Then Ma ⊆ iso σa(T ) and it is a finite set. By (3.1), [1, Lemma 1.76] and T
is a -isoloid, Ma ⊆ πa

00(T ) follows. So λ �∈ f (σa(T )\πa
00(T )) .

Suppose that f ∈ H (σ(T ))\Hlnc(σa(T )) ⊆ H (σ(T ))\Hlnc(σ(T )) and λ ∈
πa

00( f (T )) . Let g(z) = f (z) − λ as in the proof of Theorem 2.2 (1), then Ma =
σa(T1)∪Ma

2 where Ma
2 := {μ ∈ σa(T2) : f (μ)−λ = 0} .

Since g ∈Hlnc(σ(T2))⊆ Hlnc(σa(T2)) and σ(T1)∩σ(T2) = φ , Ma
2 ⊆ πa

00(T2) ⊆
πa

00(T ) follows.
Meanwhile, λ ∈ πa

00( f (T )) ensures dim(X1) < ∞ . Thus σ(T1) is a finite set,
σ(T1) = σa(T1) . So dim(E({μ})X ) < ∞ for every μ ∈ σa(T1) . Since T is a -isoloid,
we have σa(T1) ⊆ πa

00(T ) . Therefore Ma ⊆ πa
00(T ) and λ �∈ f (σa(T )\πa

00(T )) . �

THEOREM 3.3. Let T ∈ L (X ) and f ∈ H (σ(T )) .

(1) σ( f (T ))\π0( f (T )) ⊆ f (σ(T )\π0(T )).

(2) If f ∈ Hlnc(σ(T )) and T is isoloid, then

σ( f (T ))\π0( f (T )) ⊇ f (σ(T )\π0(T )).

Example 5.1 (7)-(8) imply that the conditions “ f ∈Hlnc(σ(T ))” and “T is isoloid”
are inevitable in (2) of Theorem 3.3, and [9, Lemma 2.9] and [11, Lemma 3.3] may fail
without the condition “ f ∈ Hlnc(σ(T ))”.

Proof. (1) [9] and [11] proved the case f ∈ Hlnc(σ(T )) of (1), now we show a
proof of the general case. Let λ ∈ σ( f (T ))\π0( f (T )) . If λ ∈ acc σ( f (T )) , it is easy
to see that there exists μ ∈ acc σ(T ) ⊆ σ(T )\π0(T ) such that λ = f (μ) .

If λ ∈ iso σ( f (T )) and λ �∈ σp( f (T )) , by σp( f (T )) ⊇ f (σp(T )) , there exists
μ ∈ σ(T )\σp(T ) such that λ = f (μ) . So λ ∈ f (σ(T )\π0(T )) .

(2) See [9, Lemma 2.9] or [11, Lemma 3.3] for the proof. �
Denote πa

0 (T ) := {λ ∈ iso σa(T ) : 0 < dimker(T −λ )} , Pa(T ) := σa(T )\σubb(T )
the set of all left poles of the resolvent.

THEOREM 3.4. Let T ∈ L (X ) and f ∈ H (σ(T )) .

(1) σa( f (T ))\πa
0 ( f (T )) ⊆ f (σa(T )\πa

0 (T )).

(2) If f ∈ Hlnc(σa(T )) and T is a-isoloid, then

σa( f (T ))\πa
0 ( f (T )) ⊇ f (σa(T )\πa

0 (T )).

The conditions “ f ∈ Hlnc(σa(T ))” and “T is a -isoloid” are inevitable (see Ex-
ample 5.1 (9)-(10)).
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Proof. (1) Let σa( f (T ))\πa
0 ( f (T )) . If λ ∈ acc σa( f (T )) , by σa( f (T ))= f (σa(T )) ,

it is easy to see that there exists μ ∈ acc σa(T ) ⊆ σa(T )\πa
0 (T ) such that λ = f (μ) .

If λ ∈ iso σa( f (T )) and λ �∈ σp( f (T )) , by σp( f (T )) ⊇ f (σp(T )) , there exists
μ ∈ σa(T )\σp(T ) such that λ = f (μ) . So λ ∈ f (σa(T )\πa

0 (T )) .
(2) It is sufficient to prove that λ ∈ πa

0 ( f (T )) implies λ �∈ f (σa(T )\πa
0(T )) .

Suppose that f ∈ Hlnc(σa(T )) , λ ∈ πa
0 ( f (T )) and Ma := {μ ∈ σa(T ) : f (μ)−

λ = 0} . Then Ma ⊆ iso σa(T ) and it is a finite set. By [1, Lemma 1.76] and T is
a -isoloid, we have Ma ⊆ πa

0 (T ) . So λ �∈ f (σa(T )\πa
0 (T )) . �

4. Some two-out-of-three results on Weyl type spectrums

We prove some two-out-of-three results on spectral mapping theorems for Weyl
type spectrum, isolated spectral points and Weyl type theorems.

T ∈ (aW ) means a -Weyl theorem holds for T , that is,

σa(T )\σuw(T ) = πa
00(T ).

T ∈ (gW ) means generalized Weyl theorem holds for T , that is,

σ(T )\σbw(T ) = π0(T ).

T ∈ (gaW) means generalized a -Weyl theorem holds for T , that is,

σa(T )\σubw(T ) = πa
0 (T ).

THEOREM 4.1. Let T ∈ L (X ) and f ∈ H (σ(T )) . If T ∈ (W ) , then any two
of the following three assertions imply the third one.

(1) σw( f (T )) = f (σw(T )).

(2) σ( f (T ))\π00( f (T )) = f (σ(T )\π00(T )).

(3) f (T ) ∈ (W ) .

Proof. (1) and (2)⇒(3): Let T ∈ (W ) , then

σ( f (T ))\π00( f (T )) = f (σ(T )\π00(T )) = f (σw(T )) = σw( f (T )).

So (3) holds.
(2) and (3)⇒(1): Let T ∈ (W ) , then

σw( f (T )) = σ( f (T ))\π00( f (T )) = f (σ(T )\π00(T )) = f (σw(T )).

So (1) holds.
(3) and (1)⇒(2): Let T ∈ (W ) , then

σ( f (T ))\π00( f (T )) = σw( f (T )) = f (σw(T )) = f (σ(T )\π00(T )).

So (2) holds. �
Since T is polaroid ensures T is isoloid, Theorem 4.1 and Theorem 3.1 deduce

the following result.
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COROLLARY 4.1. Let T ∈ (W ) and f ∈ H (σ(T )) . If (i) T is isoloid and f ∈
Hlnc(σ(T )) or (ii) T is polaroid, then the following two assertions are equivalent to
each other.

(1) σw( f (T )) = f (σw(T )).

(2) f (T ) ∈ (W ) .

Corollary 4.1 is a generalization of Theorem 1.6. Corollary 4.1 together with
Theorem 1.4 and Theorem 3.1 implies that [4, Theorem 3.14 (ii)] holds for all f ∈
H (σ(T )) .

Theorems 4.2-4.4 hold in a similar manner to Theorem 4.1, so we write down them
without proofs.

THEOREM 4.2. Let T ∈ L (X ) and f ∈ H (σ(T )) . If T ∈ (aW ) , then any two
of the following three assertions imply the third one.

(1) σuw( f (T )) = f (σuw(T )).

(2) σa( f (T ))\πa
00( f (T )) = f (σa(T )\πa

00(T )).

(3) f (T ) ∈ (aW ) .

Theorem 4.2 and Theorem 3.2 deduce the result below.

COROLLARY 4.2. Let T ∈ (aW ) and f ∈H (σ(T )) . If (i) T is a-polaroid or (ii)
T is a-isoloid and f ∈ Hlnc(σa(T )) , then the following two assertions are equivalent
to each other.

(1) σuw( f (T )) = f (σuw(T )).

(2) f (T ) ∈ (aW ) .

By [2, Theorem 3.6], Corollary 4.2 implies that [4, Theorem 3.12 (i)] holds for all
f ∈ H (σ(T )) .

THEOREM 4.3. Let T ∈ L (X ) and f ∈ H (σ(T )) . If T ∈ (gW ) , then any two
of the following three assertions imply the third one.

(1) σbw( f (T )) = f (σbw(T )).

(2) σ( f (T ))\π0( f (T )) = f (σ(T )\π0(T )).

(3) f (T ) ∈ (gW ) .

Theorem 4.3 and Theorem 3.3 deduce the following result.

COROLLARY 4.3. Let T ∈ (gW ) and f ∈ H (σ(T )) . If T is isoloid and f ∈
Hlnc(σ(T )) , then the following two assertions are equivalent to each other.
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(1) σbw( f (T )) = f (σbw(T )).

(2) f (T ) ∈ (gW ) .

Example 5.1 (11) implies that the condition f ∈ Hlnc(σ(T )) in Corollary 4.3 is
inevitable, and, for f �∈ Hlnc(σ(T )) , Corollary 4.3 may fail even if T is polaroid.

Example 5.1 (11) also implies that [9, Theorem 2.10] and [11, Theorem 3.4] may
fail if f �∈ Hlnc(σ(T )) .

THEOREM 4.4. Let T ∈L (X ) and f ∈H (σ(T )) . If T ∈ (gaW ) , then any two
of the following three assertions imply the third one.

(1) σubw( f (T )) = f (σubw(T )).

(2) σa( f (T ))\πa
0 ( f (T )) = f (σa(T )\πa

0 (T )).

(3) f (T ) ∈ (gaW) .

Theorem 4.4 and Theorem 3.4 deduce the following result.

COROLLARY 4.4. Let T ∈ (gaW) and f ∈ H (σ(T )) . If T is a-isoloid and
f ∈ Hlnc(σa(T )) , then the following two assertions are equivalent to each other.

(1) σubw( f (T )) = f (σubw(T )).

(2) f (T ) ∈ (gaW) .

Example 5.1 (12) implies that the condition f ∈ Hlnc(σa(T )) is crucial, and, for
f �∈ Hlnc(σa(T )) , Corollary 4.4 may fail even if T is a -polaroid.

5. An example

EXAMPLE 5.1. Let U be the unilateral right shift operator on the Hilbert space
l2(N) defined by U(x0,x1,x2, · · ·) = (0,x0,x1,x2, · · ·) , S the weighted unilateral right
shift operator on the Hilbert space l2(N) defined by U(x0,x1,x2, · · ·) =
(0,x0,

1
2x1,

1
3x2, · · ·) , D := {z : |z| � 1} and ∂D := {z : |z| = 1} .

(1) If T :=U and f ≡ 0 �∈Hlnc(σ(T )) , then σbw( f (T )) �⊇ f (σbw(T )) . In fact, T is
hyponormal and of stable sign index on ρb f , σ(T ) = σbw(T ) = D , σ( f (T )) =
{0} , σbw( f (T )) = φ and f (σbw(T )) = {0} .

(2) If T := U∗ and f ≡ 0 �∈ Hlnc(σ(T )) , then σubw( f (T )) �⊇ f (σubw(T )) . In fact,
T is co-hyponormal and of stable sign index on ρub f (T ) , σ(T ) = σbw(T ) =
σubw(T )= D , σ( f (T ))= {0} , σubw( f (T ))⊆σbw( f (T ))= φ and f (σubw(T ))=
{0} .

(3) If T := S∗ and f ≡ 0, then T is not polaroid and σ( f (T ))\π00( f (T )) = {0} �⊆
f (σ(T )\π00(T )) . In fact, σ(T ) = σw(T ) = π00(T ) = {0} , σ( f (T )) = {0} ,
π00( f (T )) = φ .
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(4) If T := I⊕ 1
2U ⊕ (S− I) on H = C ⊕ l2(N)⊕ l2(N) and f (z) = z2 . Then T is

not isoloid, and σ( f (T ))\π00( f (T )) = {z : |z|� 1
4} �⊇ f (σ(T )\π00(T )) . In fact,

σ(T ) = {1}∪{z : |z| � 1
2}∪{−1} , π00(T ) = {1} , π00( f (T )) = {1} .

(5) If T := S∗ and f ≡ 0, then T is not a -polaroid and

σa( f (T ))\πa
00( f (T )) �⊆ f (σa(T )\πa

00(T )).

In fact, σ(T ) = σa(T ) = πa
00(T ) = {0} , σa( f (T )) = {0} , πa

00( f (T )) = φ .

(6) If T := I⊕ 1
2U ⊕ (S− I) on H = C ⊕ l2(N)⊕ l2(N) and f (z) = z2 . Then T is

not a -isoloid, and σa( f (T ))\πa
00( f (T )) = {z : |z| = 1

4} �⊇ f (σa(T )\πa
00(T )) . In

fact, σa(T ) = {1}∪{z : |z| = 1
2}∪{−1} , πa

00(T ) = {1} , πa
00( f (T )) = {1} .

(7) If T := U and f ≡ 0. Then σ(T ) = D , σp(T ) = φ , σ( f (T )) = {0} and
π0( f (T )) = {0} . So T is isoloid and polaroid, but σ( f (T ))\π0( f (T )) �⊇
f (σ(T )\π0(T )).

(8) If T := I⊕ 1
2S1⊕ (S2− I) on H = l2(N)⊕ l2(N)⊕ l2(N) and f (z) = z2 .

Then σ(T ) = {1}∪{z : |z| � 1
2}∪{−1} , π0(T ) = {1} , σ( f (T )) = {1}∪{z :

|z| � 1
4} , π0( f (T )) = {1} . So T is not isoloid, and

σ( f (T ))\π0( f (T )) = {z : |z| � 1
4
} �⊇ f (σ(T )\π0(T )).

(9) If T :=U and and f ≡ 0. Then σ(T )= D , σa(T )= ∂D , πa
0 (T )= φ , σa( f (T ))=

πa
0 ( f (T )) = {0} . So T is a -isoloid and a -polaroid, but σa( f (T ))\πa

0 ( f (T )) �⊇
f (σa(T )\πa

0 (T )) .

(10) If T := I⊕ 1
2S1 ⊕ (S2− I) on H = l2(N)⊕ l2(N)⊕ l2(N) and f (z) = z2 . Then

σa(T ) = {1}∪{z : |z| = 1
2}∪{−1} , πa

0 (T ) = {1} , σa( f (T )) = {1}∪{z : |z| =
1
4} , πa

0 ( f (T )) = {1} . So T is not a -isoloid, and σa( f (T ))\πa
0 ( f (T )) = {z :

|z| = 1
4} �⊇ f (σa(T )\πa

0 (T )) .

(11) If T := U and f ≡ 0. Then σ(T ) = σbw(T ) = D , and σbw( f (T )) = φ . So T is
isoloid and polaroid, σbw( f (T )) �= f (σbw(T )) = {0} and f (T ) = 0 ∈ (gW ) .

(12) If T := U and f ≡ 0. Then σa(T ) = σubw(T ) = ∂D , and σubw( f (T )) = φ . So
T is a -isoloid and a -polaroid, σubw( f (T )) �= f (σubw(T )) = {0} and f (T ) =
0 ∈ (gaW) .
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