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ON THE MATRIX WHICH IS THE SUM OF A
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Abstract. We investigate Hirano polar matrices over a local ring, and completely determine when
a 2×2 matrix over a local ring is the sum of a tripotent and a quasinilpotent matrix.

1. Introduction

Let R be an associative ring with an identity. The commutant of a ∈ R is de-
fined by comm(a) = {x ∈ R | xa = ax} . The double commutant of a ∈ R is defined by
comm2(a) = {x∈ R | xy = yx for all y∈ comm(a)} . An element a∈ R is quasinilpotent
if 1−ax∈U(R) for any x ∈ comm(a) . We use Rqnil to denote the set of all quasinilpo-
tents in R . That is, Rqnil = {a ∈ R | 1− ax ∈U(R) for every x ∈ comm(a)} . Clearly,
every nilpotent and element in the Jacobson radical of a ring is quasinilpotent. Follow-
ing Wang, an element a in a ring R has s-Drazin inverse if there exists b ∈ comm2(a)
such that b = b2a,a− ab ∈ N(R) (see [13]). As is well known, an element a ∈ R has
s-Drazin inverse if and only if it is strongly nil-clean, i.e., it is the sum of an idempotent
and a nilpotent that commute (see [1, 11]). Replace N(R) of nilpotents by Rqnil the
set of quasinilpotents, Gurgun introduced gs-Drazin inverse of an element in a ring.
It was proved that an element a ∈ R has gs-Drazin inverse if and only if there exists
e2 = e ∈ comm2(a) such that a− e∈ Rqnil (see [8, Theorem 3.2]).

An element p in a ring R is a tripotent if p3 = p . It is readily seen that idempotents
and negative of idempotents are tripotents and among units only the order 2 units (also
called square roots of 1) are tripotents. In [2], the authors investigated the structure of
rings in which every element is the sum of a tripotent and a nilpotent that commute.
The motivation of this paper is to determine when a 2×2 matrix over a local ring is the
sum of a tripotent and a quasinilpotent matrix that commutate. An element a in a ring
R is quasipolar if there exists an idempotent e ∈ comm2(a) such that a+e ∈U(R) and
ae ∈ Rqnil . Quasipolar elements in a ring were studied by many authors from different
view of points, e.g., [4, 5] and [6]. We call an element a ∈ R is Hirano polar if there
exists a tripotent p ∈ comm2(a) such that a− p ∈ Rqnil . In Section 2 we investigate
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Hirano polar elements in a ring and prove that every Hirano polar element in a ring is
quasipolar.

Let a ∈ R . la : R → R and ra : R → R denote, respectively, the abelian group
endomorphisms given by la(r) = ar and ra(r) = ra for all r ∈ R . Thus, la − rb is an
abelian group endomorphism such that (la− rb)(r) = ar− rb for any r ∈ R . In Section
3, we are concerned on Hirano polar matrices over local rings. Let R be a local ring,
and let A ∈ M2(R) . We prove that A is Hirano polar if and only if A ∈ M2(R)qnil , or

A =U +W,U ∈ comm2(A),U2 = I2,W ∈M2(R)qnil , or A is similar to

(
α 0
0 β

)
, where

lα − rβ , lβ − rα are injective and α ∈ ±1+ J(R),β ∈ J(R) .
A ring R is bleached provided that for any a ∈U(R),b ∈ J(R) , la− rb and lb− ra

are both surjective. A ring R is cobleached provided that for any a ∈ J(R),b ∈U(R) ,
la − rb and rb − ra are both injective. For instance, every commutative local ring is
cobleached. Finally, in the last section, we further characterize Hirano J-polar 2×
2 matrices over a cobleached local ring in terms of solvability of their characteristic
equations. Let R be a cobleached local ring, and let A ∈ M2(R) . We prove that A
is Hirano polar if and only if A ∈ M2(R)qnil , or A = U +W,U ∈ comm2(A),U2 =

I2,W ∈M2(R)qnil , or A is similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) , the equation

x2− xμ −λ = 0 has a root in ±1+ J(R) and a root in J(R) .
Throughout the paper, all rings are associative with an identity. We use J(R),N(R)

and U(R) to denote the Jacobson radical and the set of nilpotents of R and units in R ,
respectively. GL2(R) denotes the sets of all 2×2 invertible matrices over R . N stands
for the set of all natural numbers.

2. Hirano polar elements

Following Cui and Chen, an element a ∈ R is J-quasipolar if there exists an idem-
potent e ∈ comm2(a) such that a+ e∈ J(R) (see [5]). We begin with

EXAMPLE 2.1. Every J-quasipolar element in a ring is Hirano polar.

Proof. Let a ∈ R be a J-quasipolar, then there exists some idempotent e ∈ R
such that a+ e ∈ J(R) . It is obvious that −e ∈ R is tripotent and a− (−e) ∈ J(R) ⊆
Rqnil . �

EXAMPLE 2.2. Let A =
(−1 0

1 0

)
∈ M2(Z3) . Then A is Hirano polar, but it is

not J-quasipolar.

Proof. Clearly, A3 = A , and so A is Hirano polar. Since A−A2 =
(

1 0
−1 0

)
�∈

J(M2(Z3)) . Therefore A is not J-quasipolar. �

LEMMA 2.3. Let a ∈ Rqnil and e2 = e ∈ comm2(a) . Then ae ∈ Rqnil .
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Proof. Let x ∈ comm(ae) . Then xae = aex , and so (exe)a = ex(ae) = eaex =
aex = a(exe) , i.e., exe∈ comm(a) . Hence, 1−a(exe)∈U(R) , and so 1−(ae)x∈U(R)
which implies that ae ∈ Rqnil . �

THEOREM 2.4. Every Hirano polar element in a ring is quasipolar.

Proof. Let a ∈ R , then there there exists p3 = p ∈ comm2(a) such that a− p ∈
Rqnil . It is clear that (1− p2)2 = 1− p2 . Let a− p = w so a+1− p2 = w+1− p2+ p ,
as (1+ p2− p)2 = 1, we can write 1− p2 + p+w = (1− p2 + p)(1+(1− p2+ p)w) ∈
U(R) , since w∈ Rqnil . Then a+(1− p2)∈U(R) . As a− p= w,a(1− p2) = w(1− p2)
that is in Rqnil by applying Lemma 2.4, because w ∈ Rqnil and p ∈ comm2(a) also
1− p2 is an idempotent. �

EXAMPLE 2.5. Let A =
(

1 1
1 0

)
∈ M2(Z2) . Then A is quasipolar, but it is not

Hirano polar.

Proof. As M2(Z2) is a finite ring so it is strongly π -regular and then quasipolar.
Now let A is a Hirano polar ring, then there exists a triptent E such that A = E +W for
some W ∈Rqnil , clearly W 2 = 0 as M2(Z2) is of bounded index 2 and so (A−A3)2 = 0
that is a contradiction as (A−A3)2 = A �= 0. �

THEOREM 2.6. Let R be a ring, and let a ∈ R. If 1
2 ∈ R, then the following are

equivalent:

(1) a is Hirano polar.

(2) There exist two idempotents e, f ∈ comm2(a) and a w ∈ Rqnil such that a =
e− f +w.

Proof. (1) ⇒ (2) Let a ∈ R , then there exists some tripotent p ∈ R such that
a− p∈ Rqnil . Let e = 1

2 (p2− p) and f = 1
2(p2 + p) . By computing e2− e and f 2− f

it is obvious that e2 = e and f 2 = f , also p = f − e . Then a− e+ f ∈ Rqnil .
(2)⇒ (1) By hypothesis there exist two idempotents e, f ∈ R and some w ∈ Rqnil

such that a = e− f + w . Let p = e− f , it is obvious that p3 = p and a− p = w ∈
Rqnil . �

COROLLARY 2.7. Let A be a Banach algebra, and let a ∈ A. Then the following
are equivalent:

(1) a is Hirano polar.

(2) There exist two idempotents e, f ∈ comm2(a) such that

lim
n→∞

|| (a− (e− f ))n || 1
n = 0.
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Proof. ⇒ Let a ∈ A be a Hirano polar element, as 2 ∈ A is invertible, then by
Theorem 2.6, there exist two idempotents e, f such that a = f − e+w for some w ∈
Aqnil , which implies that a− (e− f )∈ Aqnil , in view of [9, page 251] we deduce that

lim
n→∞

|| (a− (e− f ))n || 1
n = 0.

⇐ Let a ∈ A and there exist two idempotents e, f ∈ comm2(a) such that

lim
n→∞

|| (a− (e− f ))n || 1
n = 0.

In view of [9, page 251] a− (e− f )∈ Aqnil and so a is Hirano polar. �

3. Hirano polar matrices

The goal of this section is to characterize when a 2×2 matrix over local rings is
Hirao polar in terms of diagonal reduction. The following lemma is crucial.

LEMMA 3.1. Let R be a ring, and let a∈ R and u∈U(R) . Then a∈ R is Hirano
polar if and only if u−1au ∈ R is Hirano polar.

Proof. =⇒ By hypothesis, there exists p3 = p ∈ comm2(a) such that w := a+
p ∈ Rqnil. Then u−1pu = (u−1pu)3,u−1au+u−1pu = u−1wu. Let x ∈ comm(u−1au) .
Then u−1aux = xu−1au ; hence, auxu−1 = uxu−1a . Then uxu−1 ∈ comm(a) , and so
uxu−1p = puxu−1 . This shows xu−1pu = u−1pux , and therefore u−1pu ∈
comm2(u−1au) . Let y∈ comm(u−1wu) . Then uyu−1 ∈ comm(w) ; hence, 1−w(uyu−1)
∈ U(R) . By using Jacobson’s Lemma, 1− (u−1wu)y ∈ U(R) . Therefore u−1wu ∈
Rqnil , as needed.

⇐= This is symmetric. �

LEMMA 3.2. ( [7, Lemma 3.3]) Let R be a local ring, and let A ∈ M2(R) . Then

(1) A ∈ GL2(R); or

(2) A2 ∈ M2(J(R)); or

(3) A is similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) .

We come now to the demonstration for which this section has been developed.

THEOREM 3.3. Let R be a local ring, and let A ∈ M2(R) . Then A is Hirano
polar if and only if

(1) A ∈ M2(R)qnil , or A = U +W,U ∈ comm2(A),U2 = I2,W ∈ M2(R)qnil , or

(2) A is similar to

(
α 0
0 β

)
, where lα − rβ , lβ − rα are injective and α ∈ ±1 +

J(R),β ∈ J(R) .
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Proof. =⇒ In view of Theorem 2.4, A is pseudopolar. By virtue of [7, Theorem
3.5], we have three cases.

Case 1. A ∈ GL2(R) . Since A is Hirano polar, there exists V 3 = V ∈ comm2(A)
such that Z := A+V with Z ∈ M2(R)qnil . Then V = Z−A ∈ GL2(R) ; hence, V 2 = I2 .
Set U = −V . Then A = U +Z,U ∈ comm2(A) and U2 = I2 .

Case 2. A2 ∈ M2(J(R)) . For any X ∈ comm(A) , we see that I2−A2X2 ∈ GL2(R) ,
and so I1−AX ∈ GL2(R) . This shows that A ∈ M2(R)qnil .

Case 3. A is similar to

(
α 0
0 β

)
, where lα − rβ , lβ − rα are injective and α ∈

U(R),β ∈ J(R) . Since A is Hirano polar, we easily check that B :=
(

α 0
0 β

)
is Hi-

rano polar. Then we can find some E3 = E ∈ comm2(B) such that W = B + E,W ∈
M2(R)qnil . Set E = (ei j) . Then

(
α 0
0 β

)(
e11 e12

e21 e22

)
=

(
e11 e12

e21 e22

)(
α 0
0 β

)
;

hence, we have
αe12− e12β = 0,βe21− e21α = 0.

This implies that e12 = e21 = 0. Hence, E =
(

e11 0
0 e22

)
. Set W = (wi j) . Then w12 =

w21 = 0,w2
11,w

2
22 ∈ J(R) . Since R is local, w11,w22 ∈ J(R) .

Clearly, e11 ∈ U(R) , we see that e2
11 = 1, and so (e11 − 1)(e11 + 1) = 0. Since

every element in R is invertible or in J(R) , we have e11 ∈ ±1+ J(R) . Hence, α ∈
±1+J(R) . Also we see that e22 ∈ J(R) and e3

22 = e22 , and so e22(1−e2
22) = 0. Hence

e22 = 0; hence, β ∈ J(R) , as desired.
⇐= Case 1. A ∈ M2(R)qnil . Then A+0 = A with A ∈ M2(R)qnil .
Case 2. A = U +W,U ∈ comm2(A),U2 = I2,N ∈ N(M2(R)), W ∈ M2(R)qnil . Set

V = −U . Then A+U = W where U3 = U,U ∈ comm2(A),W ∈ M2(R)qnil .

Case 3. It will suffice to check

(
α 0
0 β

)
is Hirano polar, where lα − rβ , lβ − rα

are injective and α ∈ ±1+ J(R),β ∈ J(R) . We observe that
(

α 0
0 β

)
±

(
1 0
0 0

)
=

(
α ±1 0

0 β

)
.

Let X = (xi j) ∈ comm

(
α 0
0 β

)
. Then

αx12 = x12β ,βx21 = x21α.

As lα − rβ , lβ − rα are injective, we get x12 = x21 = 0. Hence X ∈ comm(
(

1 0
0 0

)
) ,

and so (
1 0
0 0

)
∈ comm2

(
α 0
0 β

)
.
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Therefore

(
α 0
0 β

)
is Hirano polar, as required. �

COROLLARY 3.4. Let R be a cobleached local ring, and let A ∈ M2(R) . Then A
is Hirano polar if and only if

(1) A ∈ M2(R)qnil , or A = U +W,U ∈ comm2(A),U2 = I2,W ∈ M2(R)qnil , or

(2) There exists E2 = E ∈ comm(A) such that A±E ∈ M2(J(R)) .

Proof. =⇒ By Theorem 3.3, we may assume that A is isomorphic to

(
α 0
0 β

)
,

where lα − rβ , lβ − rα are injective and α ∈ ±1+ J(R),β ∈ J(R) . As in the proof of
Theorem 3.3, we see that

(
α 0
0 β

)
±

(
1 0
0 0

)
∈ M2(J(R))

with

(
1 0
0 0

)
∈ comm2

(
α 0
0 β

)
. Clearly,

(
1 0
0 0

)
∈ M2(R) is an idempotent, as re-

quired.
⇐= We may assume that A±E ∈ M2(J(R)) with E2 = E ∈ comm(A) . By virtue

of [6, Lemma 2.3], E ∼= 0, I2 or E is similar to

(
1 0
0 0

)
.

Clearly, 0, I2 ∈ comm2(A) . We may assume that

U−1EU =
(

1 0
0 0

)
.

Hence,
U−1AU ±U−1EU = U−1WU ∈ M2(J(R)).

Since E ∈ comm(A) , we see that

U−1AU ∈ comm

(
1 0
0 0

)
.

Write U−1AU =
(

x y
s t

)
. Then

(
x y
s t

)(
1 0
0 0

)
=

(
1 0
0 0

)(
x y
s t

)
,

and so y = s = 0.
Clearly, (

1+ x 0
0 t

)
=

(
x y
s t

)
+

(
1 0
0 0

)
∈ M2(J(R)).
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Then 1+ x, t ∈ J(R) .

For any

(
a b
c d

)
∈ comm

(
x 0
0 t

)
, we have

xb−bt = 0,tc− cx = 0.

Since R is cobleached, b = c = 0; hence,(
a b
c d

)
∈ comm

(
1 0
0 0

)
.

Thus, (
1 0
0 0

)
∈ comm2

(
x y
s t

)
,

and so U−1EU ∈ comm2(U−1AU) . Therefore E ∈ comm2(A) , as desired. �

COROLLARY 3.5. Let R be a commutative local ring, and let A ∈ M2(R) . Then
A is Hirano polar if and only if

(1) A = N +W , or A = I2 +N +W where N2 = 0,W ∈ M2(J(R)) , or

(2) there exists E2 = E ∈ comm(A) such that A±E ∈ M2(J(R)) .

Proof. Since R is commutative, we obtain the result by Corollary 3.4 and [7,
Lemma 3.2]. �

It is convenient at this stage to characterize Hirano polar matrices over a division
ring.

THEOREM 3.6. Let D be a division ring, and let A ∈ M2(D) . Then the following
are equivalent:

(1) A is Hirano polar.

(2) A = E −F +N , where E2 = E,F2 = F ∈ comm2(A) and N2 = 0 .

(3) A−A3 is nilpotent.

Proof. (1) ⇒ (2) In light of Theorem 3.3, A ∈ M2(D)qnil , or A = U +W,U ∈
comm2(A),U2 = I2,W ∈M2(D)qnil , or A is similar to

(
α 0
0 β

)
, where lα − rβ , lβ − rα

are injective and α ∈ ±1+ J(D),β ∈ J(D) .
Let X ∈ M2(D)qnil . Then X �∈ GL2(R) . Since there exists V ∈ GL2(D) such that

V−1XV =
(

x11 x12

0 x22

)
, we may assume that x22 = 0. If x12 = 0, then x11 = 0. If

x12 �= 0 and x11 �= 0, then

(
x−1
11 0
0 x−1

12 x−1
11 x12

)
∈ comm(V−1XV ) . Hence,

I2−
(

x11 x12

0 0

)(
x−1
11 0
0 x−1

12 x−1
11 x12

)
∈ GL2(D),
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an absurd. Therefore x11 = 0, and so X2 = 0. This implies that M2(D)qnil = {X ∈
M2(D) | X2 = 0} , and so we have three cases.

Case 1. A ∈ M2(D)qnil . Then A2 = 0.
Case 2. A = U +W , U ∈ comm2(A) , U2 = I2 and W 2 = 0. If 2 �= 0, then

A = I2+U
2 − I2−U

2 +W . One easily checks that

(
I2 +U

2
)2 =

I2 +U
2

,(
I2 −U

2
)2 =

I2−U
2

.

If 2 = 0, then A = I2+(U−I2)+W , where (U−I2)2 = 0, and so (U−I2)+W ∈M2(R)
is nilpotent.

Case 3. As J(D) = 0, we see that α = ±1 and β = 0. Then A is similar to(±1 0
0 0

)
. Therefore A or −A is an idempotent, as desired.

(2)⇒ (3) Since E,F ∈ comm2(A) , we see that EF = FE and (E−F)N = N(E−
F) , and so (E −F)3 = E −F . Moreover, A−A3 = (E −F)+N − (E −F)3 −3(E −
F)2N = (I2 −3(E−F)2)N ∈ M2(R) is nilpotent, as desired.

(3) ⇒ (1) Case 1. 2 �= 0. Then 2 ∈ U(D) . Let B = A2+A
2 ,C = A2−A

2 . Then
A = B−C . We easily check that

B2−B =
(A−A3)(A+2I2)

4
,C2 −C =

(A−A3)(A−2I2)
4

.

Hence B2 − B,C2 −C ∈ N(M2(R)). In light of [15, Lemma 3.5], there exists idem-
potents E,F ∈ Z[A] such that B− E,C− F ∈ N(M2(D)) . Therefore A = E − F +
(B−E)− (C−F) , where (E −F)3 = E−F ∈ Z[A]⊆ comm2(A),(B−E)− (C−F) ∈
N(M2(D)) .

Case 2. 2 = 0. Since A2 −A4 ∈ M2(D) is nilpotent, we can find an idempotent
E ∈ Z[A2] such that W := A2−E ∈M2(D) is nilpotent. Hence, A = E +(A−A2)+W .
But (A−A2)2 = A2−A4 , and so A−A2 is nilpotent. As (A−A2)W = W (A−A2) , we
see that (A−A2)+W ∈ M2(R) is nilpotent.

Therefore A is Hirano polar, as asserted. �

COROLLARY 3.7. Let D be a division ring, and let A ∈ M2(D) . Then the follow-
ing are equivalent:

(1) A is Hirano polar.

(2) A is the sum of a tripotent and a nilpotent that commute.

(3) A2 +A6 = 2A4 .

Proof. (1) ⇒ (2) This is obvious, as M2(D)qnil = {X ∈ M2(D) | X2 = 0} .
(2) ⇒ (3) Write A = E +W,E3 = E ∈ comm(A) and W ∈ N(M2(D)) . Then

A−A3 ∈M2(D) is nilpotent. As M2(D) is of bounded index 2, we have (A−A3)2 = 0.
Therefore A2 +A6 = 2A4 , as desired.

(3)⇒ (1) Clearly, (A−A3)2 = 0. This completes the proof, by Theorem 3.6. �
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4. Solvability of quadratic equations

We now investigate Hirano polar matrices over a cobleached local ring by means
of the solvability of quadratic equations.

THEOREM 4.1. Let R be a cobleached local ring, and let A ∈ M2(R) . Then A is
Hirano polar if and only if

(1) A ∈ M2(R)qnil , or A = U +W,U ∈ comm2(A),U2 = I2,W ∈ M2(R)qnil , or

(2) A is similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) , the equation x2−xμ −λ =

0 has a root in ±1+ J(R) and a root in J(R) .

Proof. =⇒ As in the proof of Theorem 3.3, we may assume

U−1
(

0 λ
1 μ

)
U =

(
α 0
0 β

)

for some U ∈ GL2(R) . Write U−1 =
(

x y
s t

)
. Then we have

y = αx;

xλ + yμ = αy;

t = β s;

sλ + μ = β t.

Thus we see that t ∈ J(R),y,s,x ∈U(R) .
Let δ = y−1αy and γ = t−1β t−1t . Then δ ∈ ±1 + J(R),γ ∈ J(R) . We easily

check that δ 2 − δ μ = λ ; whence, δ 2 − δ μ −λ = 0. Similarly, we have γ2− γμ = λ .
Therefore the equation x2−μx−λ = 0 has a root δ ∈±1+J(R) and a root γ ∈ J(R) ,
as desired.

⇐= Suppose that the equation x2 − xμ −λ = 0 has a root α ∈ ±1+ J(R) and a
root β ∈ J(R) . Then α2 = αμ + λ ;β 2 = β μ + λ . Hence,

(
1 α
1 β

)(
0 λ
1 μ

)
=

(
α 0
0 β

)(
1 α
1 β

)
,

where (
1 α
1 β

)
=

(
1 0
1 β −α

)(
1 α
0 1

)
∈ GL2(R).

Therefore

(
0 λ
1 μ

)
is similar to

(
α 0
0 β

)
, where α ∈ ±1+ J(R) and β ∈ J(R) . By

virtue of Theorem 3.3, we complete the proof. �

COROLLARY 4.2. Let R be a commutative local ring, and let A ∈ M2(R) . Then
A is Hirano polar if and only if
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(1) A = N +W , or A = U + N +W,U ∈ comm2(A),U2 = I2,N2 = 0 and W ∈
M2(J(R)) , or

(2) x2− tr(A)x+det(A) has a root α ∈ ±1+ J(R) and a root β ∈ J(R) .

Proof. =⇒ By virtue of Theorem 4.1, we may assume that A is isomorphic to(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) and the equation x2 − μx−λ = 0 has a root in

±1+ J(R) and a root in J(R) . Hence λ = −det(A) and μ = tr(A) , as desired.
⇐= Case 1. A is Hirano polar.
Case 2. Since det(A) = αβ ∈ J(R) , we see that A �∈GL2(R) . As tr(A) = α +β ∈

1+ J(R) , we have det(I2−A) = 1− tr(A)+det(A) ∈ J(R) ; hence, I2 −A �∈ GL2(R) .

In view of [12, Lemma 2.4], A is similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈ U(R) .

Thus λ = −det(A) and tr(A) = u , and so the equation x2 − μx−λ = 0 has a root in
±1+ J(R) and a root in J(R) . Therefore A is Hirano polar by Theorem 4.1. �

We note that ±1+ J(R) can not be replaced by U(R) in the preceding corollary,
as the following shows.

EXAMPLE 4.3. Let R = { f
g | f ,g∈Z2[t],g �= 0} . Then R is a field with J(R)= 0.

Let A =
(

1 1+ t
1 1+ t

)
∈ M2(R) . Then det(A) = 0 and tr(A) = t ∈U(R) . Hence, x2 −

tr(A)x+det(A) has a root tr(A) ∈U(R) and a root 0 ∈ J(R) . But tr(A) �∈ ±1+ J(R) .
If A2 ∈M2(J(R)) , then A is nilpotent, an absurd. If A =U +W,U ∈ comm2(A),U2

= I2,W 2 ∈ M2(J(R)) , then (I2 −A2)2 = 0. But I2 −A2 =
(

1+ t t + t2

t 1+ t + t2

)
, an ab-

surd. Therefore A is not Hirano polar, by Corollary 4.2.

Let R be a commutative local ring, and let A ∈ M2(R) . If A is Hirano polar, it
follows from [6, Lemma 4.1] that (A−A3)2 ∈ M2(J(R)) . But we have

EXAMPLE 4.4. Let A =
(

1 2
3 4

)
∈ M2(Z(2)) . Then A is not Hirano polar, but

(A−A3)2 ∈ M2(J(R)) .

Proof. Clearly, J(Z(2))= 2Z(2),A
2 =

(
7 10
15 22

)
,(I2−A2)2 =

( −6 −10
−15 −21

)
. Thus

the condition (1) in Corollary 4.2 does not satisfied. Moreover, tr(A)= 5 and det(A)=
−2. Since p(x) = x2−5x−2 is irreducible in Q[x] , we see that x2− tr(A)x+det(A)=
0 is no solvable in Z(2) , and so the condition (2) is Corollary 4.2 does not satisfied.

Therefore A is not Hirano polar. But A− A3 =
(−36 −52
−78 −114

)
∈ M2(J(R)) , as re-

quired. �
Evidently, Hirano polar matrices over a cobleached local ring R can be character-

ized by left roots of a polynomial over R . But a left root of polynomials in a ring need
not be a right root. We now derive
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THEOREM 4.5. Let R be a cobleached local ring, and let A ∈ M2(R) . Then A is
Hirano polar if and only if

(1) A ∈ M2(R)qnil , or A = U +W,U ∈ comm2(A),U2 = I2,W ∈ M2(R)qnil , or

(2) A is similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) , the equation x2−μx−λ =

0 has a root in ±1+ J(R) and a root in J(R) .

Proof. =⇒ In view of Lemma 3.2, we have three cases. Case 1. A = U +W
where U2 = I2,U ∈ comm2(A),W 2 ∈ M2(J(R)) . Case 2. A2 ∈ M2(J(R)) . Case 3, A is

similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) . It suffices to consider Case 3. In view

of Theorem 3.3, there exists U ∈ GL2(R) such that

U−1
(

0 λ
1 μ

)
U =

(
α 0
0 β

)
,

where α ∈ ±1 + J(R),β ∈ J(R) . Let δ = sαs−1 and γ = tβ t−1 Then δ ∈ ±1 +
J(R),γ ∈ J(R) . We easily check that δ 2−μδ = λ hence, δ 2−μδ −λ = 0. Likewise,
γ2 − μγ −λ = 0. Therefore the equation x2 − μx−λ = 0 has a root δ ∈ ±1+ J(R)
and a root γ ∈ J(R) , as desired.

⇐= Suppose that the equation x2 − μx− λ = 0 has a root α ∈ ±1 + J(R) and

a root β ∈ J(R) . As in the proof of Theorem 4.1, we prove that

(
0 λ
1 μ

)
is similar

to

(
α 0
0 β

)
, where α ∈ ±1+ J(R) and a root β ∈ J(R) . In light of Theorem 3.3, we

complete the proof. �
With this information we can now extend the main results in [5] to a general local

ring which may be not commutative (see [5, Theorem 4.9]).

COROLLARY 4.6. Let R be a cobleached local ring, and let A ∈ M2(R) . Then A
is J-quasipolar if and only if

(1) A ∈ M2(J(R)) , or I2 +A ∈ M2(J(R)) , or

(2) A is similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) , the equation x2−xμ −λ =

0 has a root in −1+ J(R) and a root in J(R) .

Proof. =⇒ By hypothesis, there exists E2 = E ∈ comm2(A) such that A+E ∈
M2(J(R)) . In view of Example 2.1, A is Hirano polar. By virtue of Theorem 4.5, we
have three cases.

Case I. A ∈ M2(R)qnil . Then (A+ I2)− (I2−E) ∈ M2(J(R)) , and so I2−E = I2 .
Hence E = 0, and so A ∈ M2(J(R)) .

Case II. A = U +W,U ∈ comm2(A),U2 = I2,W ∈ M2(R)qnil . Then A ∈ GL2(R) ,
and so E = I2 . This shows that I2 +A ∈ M2(J(R)) .
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Case III. A is similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) , the equation x2 −

xμ − λ = 0 has a root in ±1+ J(R) and a root in J(R) . If x2 − xμ − λ = 0 has a
root in α ∈ 1+ J(R) and a root in β ∈ J(R) . As in the proof of Theorem 3.3, we see

that

(
α 0
0 β

)
is J-quasipolar. Hence,

(
α 0
0 β

)
+

(
1 0
0 0

)
∈M2(J(R)) , and so 2∈ J(R) .

This implies that α ∈−1+ J(R) , as desired.

⇐= If A ∈M2(J(R)) , or I2 +A∈M2(J(R)) , then A is J-quasipolar. Suppose that

A is similar to

(
0 λ
1 μ

)
, where λ ∈ J(R),μ ∈U(R) , the equation x2− xμ −λ = 0 has

a root in −1+ J(R) and a root in J(R) Analogously to Theorem 3.3, we check that A
is J-quasipolar, as asserted. �
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