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ON THE MATRIX WHICH IS THE SUM OF A
TRIPOTENT AND A QUASINILPOTENT MATRICES

HUANYIN CHEN AND MARJAN SHEIBANI ABDOLYOUSEFI *

(Communicated by H. Radjavi)

Abstract. We investigate Hirano polar matrices over a local ring, and completely determine when
a 2 x 2 matrix over a local ring is the sum of a tripotent and a quasinilpotent matrix.

1. Introduction

Let R be an associative ring with an identity. The commutant of a € R is de-
fined by comm(a) = {x € R | xa = ax}. The double commutant of a € R is defined by
comm?(a) = {x € R | xy = yx for all y € comm(a)}. An element a € R is quasinilpotent
if 1 —ax € U(R) for any x € comm(a). We use R?"! to denote the set of all quasinilpo-
tents in R. That is, R"! = {a € R | | —ax € U(R) for every x € comm(a)}. Clearly,
every nilpotent and element in the Jacobson radical of a ring is quasinilpotent. Follow-
ing Wang, an element « in a ring R has s-Drazin inverse if there exists b € comm?(a)
such that b = b?a,a —ab € N(R) (see [13]). As is well known, an element a € R has
s-Drazin inverse if and only if it is strongly nil-clean, i.e., it is the sum of an idempotent
and a nilpotent that commute (see [1, 11]). Replace N(R) of nilpotents by R the
set of quasinilpotents, Gurgun introduced gs-Drazin inverse of an element in a ring.
It was proved that an element a € R has gs-Drazin inverse if and only if there exists
e = e € comm?(a) such that a —e € R (see [8, Theorem 3.2]).

Anelement p inaring R is a tripotent if p3 = p. Itis readily seen that idempotents
and negative of idempotents are tripotents and among units only the order 2 units (also
called square roots of 1) are tripotents. In [2], the authors investigated the structure of
rings in which every element is the sum of a tripotent and a nilpotent that commute.
The motivation of this paper is to determine when a 2 x 2 matrix over a local ring is the
sum of a tripotent and a quasinilpotent matrix that commutate. An element a in a ring
R is quasipolar if there exists an idempotent e € comm?(a) such that a+e € U(R) and
ae € R, Quasipolar elements in a ring were studied by many authors from different
view of points, e.g., [4, 5] and [6]. We call an element a € R is Hirano polar if there
exists a tripotent p € comm?(a) such that a — p € R™! . In Section 2 we investigate
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Hirano polar elements in a ring and prove that every Hirano polar element in a ring is
quasipolar.

Let aeR. l,:R— R and r, : R — R denote, respectively, the abelian group
endomorphisms given by I,(r) = ar and r,(r) = ra for all r € R. Thus, I, —r, is an
abelian group endomorphism such that (I, —r,)(r) = ar — rb for any r € R. In Section
3, we are concerned on Hirano polar matrices over local rings. Let R be a local ring,
and let A € M,(R). We prove that A is Hirano polar if and only if A € M,(R)?, or

A=U+W,U € comm?(A),U*? =1L,,W € My(R)™", or A is similar to <g g) , where

lg —rg,lg —ro are injective and @ € £1+J(R), B € J(R).

Aring R is bleached provided that for any a € U(R),b € J(R), lo—1p and I, — 1,4
are both surjective. A ring R is cobleached provided that for any a € J(R),b € U(R),
ly —rp and rp, —r, are both injective. For instance, every commutative local ring is
cobleached. Finally, in the last section, we further characterize Hirano J-polar 2 X
2 matrices over a cobleached local ring in terms of solvability of their characteristic
equations. Let R be a cobleached local ring, and let A € M,(R). We prove that A
is Hirano polar if and only if A € My(R)™!, or A =U +W,U € comm*(A),U? =
L,W € My(R)™! or A is similar to <(1) ﬁ) , where A € J(R),u € U(R), the equation
x? —xpt—A =0 hasarootin £1+J(R) and a rootin J(R).

Throughout the paper, all rings are associative with an identity. We use J(R),N(R)
and U(R) to denote the Jacobson radical and the set of nilpotents of R and units in R,
respectively. GL,(R) denotes the sets of all 2 x 2 invertible matrices over R. N stands
for the set of all natural numbers.

2. Hirano polar elements

Following Cui and Chen, an element a € R is J-quasipolar if there exists an idem-
potent e € comm?(a) such that a+e € J(R) (see [5]). We begin with

EXAMPLE 2.1. Every J-quasipolar element in a ring is Hirano polar.

Proof. Let a € R be a J-quasipolar, then there exists some idempotent ¢ € R
such that a+e € J(R). It is obvious that —e € R is tripotent and a — (—e) € J(R) C
anil O

—-10

EXAMPLE 2.2. Let A = ( 10

) € M,(Z3). Then A is Hirano polar, but it is

not J-quasipolar.

Proof. Clearly, A3 =A, and so A is Hirano polar. Since A —A? = (_11 8) o4
J(M>(Z3)). Therefore A is not J-quasipolar. [

LEMMA 2.3. Let a € R"! and e = e € comm?(a). Then ae € R,
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Proof. Let x € comm(ae). Then xae = aex, and so (exe)a = ex(ae) = eaex =
aex =a(exe), i.e., exe € comm(a). Hence, 1 —a(exe) € U(R), and so 1 —(ae)x € U(R)
which implies that ae € R, [0

THEOREM 2.4. Every Hirano polar element in a ring is quasipolar:

Proof. Let a € R, then there there exists p> = p € comm?(a) such that a — p €
R Ttis clear that (1—p?)2 =1—p>.Leta—p=wsoa+1—p>=w+1—-p?>+p,
as (14+p?—p)?> =1, wecanwrite | —p*+p+w=(1—p?>+p)(14+(1—p*+p)w) €
U(R), since w € R™! Then a+ (1 —p?) €U(R). As a—p=w,a(1 —p*) =w(l —p?)
that is in R by applying Lemma 2.4, because w € R and p € comm?(a) also
1 — p? is an idempotent. [

11

EXAMPLE 2.5. Let A = (1 0

) € My(Z,). Then A is quasipolar, but it is not

Hirano polar.

Proof. As M;(7Z;) is a finite ring so it is strongly 7-regular and then quasipolar.
Now let A is a Hirano polar ring, then there exists a triptent £ such that A= E + W for
some W € R | clearly W? = 0 as M(Z,) is of bounded index 2 and so (A —A%)? =0
that is a contradiction as (A —A%)?=A#0. O

THEOREM 2.6. Let R be a ring, and let a € R. If % € R, then the following are
equivalent:

(1) a is Hirano polar.

(2) There exist two idempotents e, f € commz(a) and a w € R"! such that a =
e—f+w.

Proof. (1) = (2) Let a € R, then there exists some tripotent p € R such that
a—p€eRM Lete=%(p?—p)and f=1(p*+p). By computing ¢ — e and f>— f
it is obvious that ¢> = ¢ and f> = f, also p= f —e. Then a — e+ f € RI"!,

(2) = (1) By hypothesis there exist two idempotents e, f € R and some w € R#"!
such that a = e — f+w. Let p=e— f, itis obvious that p> =p and a—p=w €
Rl O

COROLLARY 2.7. Let A be a Banach algebra, and let a € A. Then the following
are equivalent:

(1) a is Hirano polar.

(2) There exist two idempotents e, f € comm®(a) such that

lim || (a— (e~ f))"[[7=0.

n—oo
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Proof. = Let a € A be a Hirano polar element, as 2 € A is invertible, then by
Theorem 2.6, there exist two idempotents e, f such that a = f — e+ w for some w &
A9 which implies that a — (e — f) € A7 in view of [9, page 251] we deduce that

lim || (a— (e~ f))"||7

n—o0

0.

< Let a € A and there exist two idempotents e, f € comm?(a) such that

lim || (a— (e~ f))"||7

n—oo

0.

In view of [9, page 251] a — (e — f) € A" and so a is Hirano polar. [

3. Hirano polar matrices

The goal of this section is to characterize when a 2 X 2 matrix over local rings is
Hirao polar in terms of diagonal reduction. The following lemma is crucial.

LEMMA 3.1. Let R be aring, andlet a € R and u € U(R). Then a € R is Hirano
polar if and only if u"'au € R is Hirano polar.

Proof. == By hypothesis, there exists p*> = p € comm?(a) such that w := a +
p € R™M Then u™'pu= (u'pu)®,u=tau+u "' pu=u"'wu. Let x € comm(u'au).
Then u~'aux = xu'au; hence, auxu™' = uxu='a. Then uxu=' € comm(a), and so
uxu~'p = puxu='. This shows xu~'pu = u='pux, and therefore u~'pu €
comm?(u~'au). Let y € comm(u~'wu). Then uyu=' € comm(w); hence, 1 —w(uyu")
€ U(R). By using Jacobson’s Lemma, 1 — (u~'wu)y € U(R). Therefore u'wu €
R as needed.

<= This is symmetric. [

LEMMA 3.2. ( [7, Lemma 3.3]) Let R be a local ring, and let A € My(R). Then
(1) A€ GLy(R); or
(2) A>cM(J(R)); or

(3) A is similar to (? ﬁ) , where L € J(R),u € U(R).

We come now to the demonstration for which this section has been developed.

THEOREM 3.3. Let R be a local ring, and let A € M(R). Then A is Hirano
polar if and only if

(1) A€ My(R)™!, or A=U+W,U € comm*(A),U? = ,W € My(R)™", or

(2) A is similar to (g g) , Where loq —rg,lg —ro are injective and o € £1+
J(R),B € J(R).
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Proof. = In view of Theorem 2.4, A is pseudopolar. By virtue of [7, Theorem
3.5], we have three cases.

Case 1. A € GLy(R). Since A is Hirano polar, there exists V> =V € comm?(A)
such that Z:= A +V with Z € My(R)%"". Then V =Z —A € GL,(R); hence, V> = L,.
Set U=—V.Then A=U +Z,U € comm*(A) and U? = I,.

Case 2. A> € My(J(R)). For any X € comm(A), we see that I, — A’X? € GL,(R),
and so I; — AX € GLy(R). This shows that A € My(R)4"! .

Case 3. A is similar to (g g) , Where lo —rg,lg —rq are injective and o €

U(R),B € J(R). Since A is Hirano polar, we easily check that B := <g g) is Hi-

rano polar. Then we can find some E3 = E € comm?(B) such that W = B+ E,W €
My(R)™!. Set E = (e;;). Then

(58)(en)=(ae)(55)
0B ) \exuen e exn 0B)’

aey —enff =0,Bex — ey =0.

hence, we have

el 0
0 €22
way = 0,w?,, w3, € J(R). Since R is local, wij,wx € J(R).

Clearly, e;; € U(R), we see that 3, = 1, and so (e1; — 1)(e;; + 1) = 0. Since
every element in R is invertible or in J(R), we have e;; € £1+J(R). Hence, a €
+1+J(R). Also we see that e € J(R) and €3, = €22, and 50 e22(1 —e3,) = 0. Hence
e =0; hence, B € J(R), as desired.

<= Case 1. A € M>(R)™"_ Then A+0=A with A € M,(R)™".

Case 2. A=U+W,U € comm*(A),U? =1I,N € N(Ma(R)), W € Ma(R)?" . Set
V =—U.Then A+U =W where U> =U,U € comm?(A),W € My(R)™".

This implies that e; = ¢3; = 0. Hence, E = ( ) . Set W = (wj;). Then wi, =

Case 3. It will suffice to check <g g) is Hirano polar, where [y — r/;,l/; —rg
are injective and o € £1+J(R), € J(R). We observe that

@0\, (10)_(a+l0
0B oo/~ o B
o0
Let X = (x;;) € comm ( 0 [3) . Then
oxpy = x123, Bxar = xz1 0.
. 10
As lo —rg,lg — 1o are injective, we get x;p = x31 = 0. Hence X € comm( ),

00
10 c > o0
00 comm Oﬁ .

and so
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Therefore (g g ) is Hirano polar, as required. [

COROLLARY 3.4. Let R be a cobleached local ring, and let A € M>(R). Then A
is Hirano polar if and only if

(1) Ac My(R)! or A=U+W,U € comm*(A),U* = L,W € My(R)™", or

(2) There exists E*> = E € comm(A) such that A+ E € My (J(R)).

Proof. => By Theorem 3.3, we may assume that A is isomorphic to (g g ) i
where lo —rg,lg — 1o are injective and & € +1 +J(R),B € J(R). As in the proof of

Theorem 3.3, we see that
a0 10
(55)=(00) eret@)

(10 (a0 10 .
with (O 0) € comm ( 0 ﬂ) . Clearly, ( 0 O) € M,(R) is an idempotent, as re-
quired.
<= We may assume that A+ E € M>(J(R)) with E> = E € comm(A). By virtue
of [6, Lemma 2.3], E = 0,1, or E is similar to <(1) 8) .
Clearly, 0,1, € comm?*(A). We may assume that

i (10
U EU-(OO).

UT'AU+U'EU =U'WU € My (J(R)).

Hence,

Since E € comm(A), we see that

10
—1
U AUEcomm<00).

Write U—AU = (;C f) . Then

(22 (00) = (o0) (32)
(1577~ (32) (op) csecrmn

andso y=s5=0.
Clearly,
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Then 1 +x,7 € J(R).

For any (ZZ) € comm (J(; ?),wehave

xb—bt=0,tc—cx=0.

Since R is cobleached, b = ¢ = 0; hence,

ab c 10
cd comm| o )
10 2 xy
(00) € comm (st)’

and so U"'EU € comm?(U~'AU). Therefore E € comm?(A), as desired. [

Thus,

COROLLARY 3.5. Let R be a commutative local ring, and let A € My(R). Then
A is Hirano polar if and only if

(1) A=N+W, or A=L+N+W where N> =0,W € M>(J(R)), or
(2) there exists E> = E € comm(A) such that A+ E € My(J(R)).
Proof. Since R is commutative, we obtain the result by Corollary 3.4 and [7,
Lemma 3.2]. O

It is convenient at this stage to characterize Hirano polar matrices over a division
ring.

THEOREM 3.6. Let D be a division ring, and let A € My (D). Then the following
are equivalent:
(1) A is Hirano polar.
(2) A=E—F+N, where E*> = E,F?> =F € comm*(A) and N* = 0.
(3) A—A3 isnilpotent.

Proof. (1) = (2) In light of Theorem 3.3, A € My(D)%!, or A=U +W,U €
comm*(A),U? = L,,W € My(D)?", or A is similar to (g g ) , Where Iy —rg,lg —rq

are injective and o € £1+J(D),B € J(D).
Let X € My(D)%". Then X & GL,(R). Since there exists V € GL,(D) such that

v-lxy = (x(l)l ilz), we may assume that xpp = 0. If xjp =0, then x;; =0. If
22

—1
11 X 01
0 xppxpx12

1
X1 X2\ [ x 0
I — 11 GL,(D
? (0 0 )( 0 x121x111x12) € GLaAD),

x12 # 0 and x1; # 0, then ( ) € comm(V~'XV). Hence,
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an absurd. Therefore x;; = 0, and so X? = 0. This implies that My (D)7 = {X €
M>(D) | X?> =0}, and so we have three cases.
Case 1. A € My(D)4"! . Then A% = 0.
Case 2. A U+W, U € comm*A), U> =1L and W? =0. If 2 # 0, then

A= IZ;U 12 Y 4 W. One easily checks that

L+U
2

L+U
2

L-U
2

L-U

(F5or= P=25

If2=0,then A=5L+(U—L)+W,where (U—15L)?>=0,andso (U—L)+W € M>(R)
is nilpotent.

Case 3. As J(D) =0, we see that @ = +1 and B =0. Then A is similar to
(iol 8) . Therefore A or —A is an idempotent, as desired.

(2) = (3) Since E,F € comm*(A), we see that EF = FE and (E—F)N =N(E —
F),andso (E—F)3=E —F. Moreover, A—A3= (E~F)+N — (E—F)*> - 3(E —
F)2N = (I, — 3(E — F)*)N € M>(R) is nilpotent, as desired.

(3) = (1) Case 1. 2#0. Then 2 € U(D). Let B= 434 ¢ — &4 Thep
A =B —C. We easily check that

’(

gl A=ANAT) o (A-A)A-2n)
4 4

Hence B> — B,C?> —C € N(M(R)). In light of [15, Lemma 3.5], there exists idem-
potents E,F € Z[A] such that B— E,C—F € N(M,(D)). Therefore A =E —F +
(B—E)—(C—F), where (E—F)}=E—F € Z[A] C comm*(A),(B—E)—(C—F) €
N(M(D)).

Case 2. 2=0. Since A>—A* € My(D) is nilpotent, we can find an idempotent
E € Z]A?] such that W := A2 — E € M, (D) is nilpotent. Hence, A = E + (A —A%)+W.
But (A —A?)? =A% — A% and so A —A? is nilpotent. As (A —A%)W =W (A —A?), we
see that (A —A2) +W € M,(R) is nilpotent.

Therefore A is Hirano polar, as asserted. [

COROLLARY 3.7. Let D be a division ring, and let A € My(D). Then the follow-
ing are equivalent:

(1) A is Hirano polar.

(2) A is the sum of a tripotent and a nilpotent that commute.

(3) A2+ A° =24%

Proof. (1) = (2) This is obvious, as M(D)¥"! = {X € My(D) | X> =0}.

(2) = (3) Write A = E+W,E? = E € comm(A) and W € N(My(D)). Then
A—A3 € My (D) is nilpotent. As M, (D) is of bounded index 2, we have (A —A%)>=0.

Therefore A2+ A% = 2A4*, as desired.
(3) = (1) Clearly, (A —A%)? =0. This completes the proof, by Theorem 3.6. [J
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4. Solvability of quadratic equations

We now investigate Hirano polar matrices over a cobleached local ring by means
of the solvability of quadratic equations.

THEOREM 4.1. Let R be a cobleached local ring, and let A € My(R). Then A is
Hirano polar if and only if

(1) Ac My(R)! or A=U+W,U € comm*(A),U* = L,W € My(R)™"", or

(2) A is similar to )L) , where A € J(R), 1 € U(R), the equation x* —xp — A =

0

1
0 has a root in +1+J(R) and a root in J(R).

Proof. = As in the proof of Theorem 3.3, we may assume

o (3= ()

for some U € GL,(R). Write U~! = (E );) . Then we have

y=ow;
XA +yU = oy
t =Bs;

sA +u = Pr.

Thus we see that 1 € J(R),y,s,x € U(R).

Let § =y 'ay and y=t"'Bt~!t. Then § € +£1+J(R),y € J(R). We easily
check that 6% — §u = A ; whence, 6% — S — A = 0. Similarly, we have y? — yu = A.
Therefore the equation x> — ux — A = 0 has aroot § € +1+J(R) and a root y € J(R),
as desired.

<= Suppose that the equation x> —xu — A =0 has aroot & € +1+J(R) and a
root B € J(R). Then o® = otu + A; B2 = Bu + A. Hence,

G5 ()= () 05)
(15)=(1p2a) (o) conm.

Therefore <(1) ﬁ) is similar to (g g), where oo € £1+J(R) and B € J(R). By

virtue of Theorem 3.3, we complete the proof. [J

where

COROLLARY 4.2. Let R be a commutative local ring, and let A € M>(R). Then
A is Hirano polar if and only if
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(1) A=N+W, or A=U+N+W,U € comm?(A),U?> = L,N> =0 and W €
M>(J(R)), or

(2) x*—tr(A)x+det(A) has a root o € +1+J(R) and a root B € J(R).

Proof. = By virtue of Theorem 4.1, we may assume that A is isomorphic to
(? z) , where A € J(R),u € U(R) and the equation x> — ux — A = 0 has a root in
+1+4J(R) and arootin J(R). Hence A = —det(A) and u =1r(A), as desired.

<= Case 1. A is Hirano polar.

Case 2. Since det(A) = aff € J(R), we see that AZ GLy(R). As tr(A)=a+ €
1+ J(R), we have det(l, —A) =1 —1tr(A) +det(A) € J(R); hence, L — A & GL>(R).
?2) where A € J(R),1u € U(R).
Thus A = —det(A) and 1r(A) = u, and so the equation x> — yx — A = 0 has a root in
+1+J(R) and arootin J(R). Therefore A is Hirano polar by Theorem 4.1. [J

We note that =1+ J(R) can not be replaced by U(R) in the preceding corollary,
as the following shows.

In view of [12, Lemma 2.4], A is similar to

EXAMPLE 4.3. Let R={L| f,g € Zs[t],g #0}. Then R is a field with J(R) =0.

Let A = G ii;) € My(R). Then det(A) =0 and tr(A) =t € U(R). Hence, x> —
tr(A)x+det(A) has aroot rr(A) € U(R) and aroot 0 € J(R). But tr(A) & £1+ J(R).
If A% € My(J(R)), then A is nilpotent, an absurd. If A = U +W, U € comm?*(A),U?
L+t t+1£2
_ 2 _A2)2 _ A2 — -
=L,W*eM(J(R)), then (L —A*)*=0. But L, —A ( ; 1_H_Hz),anab
surd. Therefore A is not Hirano polar, by Corollary 4.2.

Let R be a commutative local ring, and let A € M,(R). If A is Hirano polar, it
follows from [6, Lemma 4.1] that (A —A3)? € M,(J(R)). But we have

1

EXAMPLE 4.4. Let A = <3

i) € My(Z)). Then A is not Hirano polar, but
(A—A*? e My(J(R)).

7 10 -6 —10
s 22) (- A7) = (-15 —21) - Thus
the condition (1) in Corollary 4.2 does not satisfied. Moreover, tr(A) =5 and det(A) =
—2. Since p(x) = x> —5x—2 is irreducible in Q[x], we see that x> —r(A)x+det(A) =
0 is no solvable in Z), and so the condition (2) is Corollary 4.2 does not satisfied.
—-36 —52
—78 —114

Proof. Clearly, J(Z)) = 2Z ), A*

Therefore A is not Hirano polar. But A — A% = ( ) € M(J(R)), as re-

quired. O

Evidently, Hirano polar matrices over a cobleached local ring R can be character-
ized by left roots of a polynomial over R. But a left root of polynomials in a ring need
not be a right root. We now derive
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THEOREM 4.5. Let R be a cobleached local ring, and let A € My(R). Then A is
Hirano polar if and only if

(1) Ac My(R)!, or A=U+W,U € comm*(A),U* = L,W € My(R)™", or

(2) A is similar to A) , where A € J(R),u € U(R), the equation x> — ux—A =

0
1y
0 has a root in +1+J(R) and a root in J(R).

Proof. =—> In view of Lemma 3.2, we have three cases. Case 1. A=U+W
where U? = I, U € comm?(A),W? € M>(J(R)). Case 2. A?> € My(J(R)). Case 3, A is

1
of Theorem 3.3, there exists U € GLy(R) such that

1 (0 A a0
o (1)e= ()
where o € +1+J(R),B € J(R). Let § =sas™! and y=¢Bt~! Then & € £1 +
J(R),y € J(R). We easily check that 6> — u§ = A hence, 6> —ud — A = 0. Likewise,
y> — uy—A = 0. Therefore the equation x> — yx — A = 0 has a root § € =1+ J(R)
and a root v € J(R), as desired.
<= Suppose that the equation x*> — x —A = 0 has a root o € +1+J(R) and

aroot B € J(R). As in the proof of Theorem 4.1, we prove that <(1) ﬁ) is similar

similar to (O A ) , where A € J(R),u € U(R). It suffices to consider Case 3. In view

to (g g ) , where o € £1+J(R) and aroot B € J(R). In light of Theorem 3.3, we

complete the proof. [
With this information we can now extend the main results in [5] to a general local
ring which may be not commutative (see [5, Theorem 4.9]).

COROLLARY 4.6. Let R be a cobleached local ring, and let A € M»(R). Then A
is J-quasipolar if and only if

(1) A€ My(J(R)), or b +A € My(J(R)), or

(2) A is similar to A) , where A € J(R),u € U(R), the equation x> —xyt — A =

0
1 u
0 has a root in —1 +J(R) and a root in J(R).

Proof. = By hypothesis, there exists E> = E € comm?*(A) such that A+ E €
M>(J(R)). In view of Example 2.1, A is Hirano polar. By virtue of Theorem 4.5, we
have three cases.

Case I. A € My(R)™!. Then (A+ L) — (L —E) € My(J(R)),and so b, —E = I,.
Hence E =0, and so A € M(J(R)).

Case II. A= U +W,U € comm*(A),U? = L,W € M>(R)?. Then A € GL,(R),
and so E = I,. This shows that L, +A € M,(J(R)).
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Case III. A is similar to <(1) ﬁ) , where A € J(R),u € U(R), the equation x> —

xt —A =0 has a root in £1+J(R) and a root in J(R). If x> —xu —A =0 has a
rootin oo € 1 +J(R) and arootin B € J(R). As in the proof of Theorem 3.3, we see

a0 . . a0 10
that <0 B) is J-quasipolar. Hence, ( 0 B ) + (0 O) €M,(J(R)),andso 2 € J(R).
This implies that oo € —1 +J(R), as desired.

< IfAeM(J(R)),or L+A € M(J(R)), then A is J-quasipolar. Suppose that

A is similar to (0 A
g

arootin —1+J(R) and a root in J(R) Analogously to Theorem 3.3, we check that A
is J-quasipolar, as asserted. [J

) , where A € J(R), 1t € U(R), the equation x> —xgt — A = 0 has
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