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SMOOTH POINTS IN OPERATOR SPACES AND SOME
BISHOP-PHELPS-BOLLOBAS TYPE THEOREMS IN BANACH SPACES

DEBMALYA SAIN

(Communicated by G. Misra)

Abstract. We introduce the notion of approximate norm attainment set of a bounded linear oper-
ator between Banach spaces and use it to obtain a complete characterization of smooth points in
the space of compact linear operators, provided the domain space is reflexive and Kadets-Klee.
We also apply the concept to characterize strong BPB property (sBPBp) of a pair of Banach
spaces. We further introduce uniform €—BPB approximation of a bounded linear operator and
uniform strong BPB property (uniform sBPBp) with respect to a given family of norm one lin-
ear operators and explore some of the relevant properties to illustrate its connection with earlier
studies on Bishop-Phelps-Bollobds type theorems in Banach spaces. It is evident that our study
has deep connections with the study of smooth points in operator spaces. We obtain a complete
characterization of uniform sBPBp for a pair of Banach spaces, with respect to a given family of
norm one bounded linear operators between them. As the final result of this paper, we prove that
if X is a reflexive Kadets-Klee Banach space and Y is any Banach space, then the pair (X,Y)
has sBPBp for compact operators. Our results extend, complement and improve some of the
earlier results in this context.

1. Introduction

Bishop-Phelps theorem [2], unarguably one of the cornerstones of functional anal-
ysis, ensures that norm attaining functionals are dense in the dual of any Banach space,
real or complex. The possibility of generalization of this profound result to the vector
valued case has been studied by several mathematicians [1, 5, 6]. The primary pur-
pose of the present paper is to further explore the geometry of the space of bounded
linear operators between Banach spaces with the same motivation. We illustrate that
our study has natural connections with the study of smooth operators between Banach
spaces. Before proceeding any further, let us fix the notations and the terminologies to
be used throughout the paper.

Let X, Y be Banach spaces. We work with only real Banach spaces of dimension
greater than 1. Let Bx = {x € X: x| < 1} and Sx = {x € X : ||x]| = 1} be the unit
ball and the unit sphere of X respectively. Given any x € X and any r > 0, let B(x,r)
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denote the open ball with centre at x and radius r. Let L(X|Y) (K(X,Y)) denote the
Banach space of all bounded (compact) linear operators from X to Y, endowed with the
usual operator norm. Let X* denote the dual space of X. Given T € L(X,Y), let My
denote the norm attainment set of 7, i.e., My = {x € Sx : ||Tx|| = ||T||}. The structure
of Mr plays an important role in the geometry of operator spaces [8, 9]. In particular,
the smoothness of a compact linear operator on a reflexive smooth Banach space is
completely determined by the corresponding norm attainment set [9]. An element 0 #
x € X is said to be a smooth point if there exists a unique linear functional f € X*
such that ||f]| =1 and f(x) = ||x|]|]. We make use of the notion of Birkhoff-James
orthogonality in Banach spaces, towards obtaining results in the spirit of Bishop-Phelps
theorem (or, to justify the impossibility of the existence of such results), for bounded
linear operators instead of bounded linear functionals. Given any two elements x, y €
X, we say that x is Birkhoff-James orthogonal to y, written as x Lp y, if ||x+ Ay|| >
||x|| for all scalars A. Let us observe that the concepts of smoothness and Birkhoff-
James orthogonality are applicable to bounded linear operators by treating them as
elements of the corresponding Banach space of all bounded linear operators (between
the same pair of Banach spaces). We say that X is strictly convex if every point of
Sx is an extreme point of Bx. Furthermore, X is said to be locally uniformly rotund
(LUR) if for all x, x, € Sx satisfying lim, .. ||x, +x|| = 2, we have that lim,—.c. ||x, —
x|| = 0. LUR property is evidently stronger than strict convexity, only in the infinite-
dimensional case. We also recall that X is said to be Kadets-Klee space if whenever
{x,} is a sequence in X and x € X is such that x, — x and lim, . ||x,|| = ||x||, then
im0 [|x, — x|| = 0.

While studying the numerical range of a bounded linear operator, Bollobds pre-
sented a quantitative version of the Bishop-Phelps theorem by proving the following
result [3]:

Let € > 0 be arbitrary. If x € Bx and x* € Sx» are such that |1 —x*(x)| < %,
then there are elements y € Sx and y* € Sx», such that y*(y) =1, ||y —x|| < &, and
Iy =]l <e.

Motivated by this novel idea, Acosta et al. introduced the following definition in
their seminal paper [1]:

DEFINITION 1.1. Let X and Y be real or complex Banach spaces. We say that
the couple (X,Y) satisfies the Bishop-Phelps-Bollobés property (BPBp in abbreviated
form) for operators if given € > 0, there are 1(€) >0 and B (&) > 0 with lim,_o 3 (¢) =
0 such that for all T € Sy,xy), if xo € Sx is such that ||Txo|| > 1—n(g), then there
exist a point ug € Sx and an operator S € Sy,x y) that satisfy the following conditions:

ISuoll = 1. o —xo| < B(e), and [|S—T] < e.

They also proved in the same paper that for finite-dimensional Banach spaces, a
uniform version of the Bishop-Phelps-Bollobas theorem holds for operators. In view
of their result, it seems natural to introduce the following definition in the study of
Bishop-Phelps-Bollobds type theorems for bounded linear operators between Banach
spaces:
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DEFINITION 1.2. Let X and Y be Banach spaces and T € Sy, ). Let € >0 be
fixed. We say that A € Sy,x y) is a uniform €é—BPB approximation of 7" if there exists
6(g) > 0 such that if xy € Sx is such that ||Txp| > 1 — 6(¢), then there exist a point
uy € Sx satisfying the following conditions:

|Auol| = 1, |juo — xo|| < €, and ||A —T|| < €.

We would like to remark that in the above definition, A is a uniform €—BPB ap-
proximation of T in the sense that § is independent of xy and for a given T € SL(X,Y)>
0 depends only on €. Following this definition, Proposition 2.4 of [1] can be reformu-
lated in the following way:

Let X and Y be finite-dimensional Banach spaces and T € Sy,xy). Then for ev-
ery € >0, T has a uniform €— BPB approximation.

Several authors have further studied Bishop-Phelps-Bollobds type theorems for
bounded linear operators, with additional restrictions. Dantas introduced the following
two definitions in [5] and obtained some interesting Bishop-Phelps-Bollobds type the-
orems (or counterexamples) for bounded (compact) linear operators in various special
cases.

DEFINITION 1.3. Let X and Y be Banach spaces. We say that the pair (X,Y) has
property 1 (also called strong BPB property, or, SBPBp in abbreviated form), if given
€>0and T € Sy xy), there exists 11(€,T) > 0 such that whenever xy € Sx satisfies
| Txo| > 1—mn(e,T), there exists x; € Sx such that ||Tx;|| =1 and |jx; — x| < e&. If
this property is satisfied for every norm one compact operator, then we say that the pair
(X,Y) has sBPBp for compact operators.

DEFINITION 1.4. Let X and Y be Banach spaces. We say that the pair (X,Y) has
property 2 (also called uniform strong BPB property, or, uniform sBPBp in abbreviated
form), if given € > 0, there exists 17(€) > 0 such that whenever T € Sy,x y) and xo €
Sx are such that ||Txo|| > 1 —n(e), there exists x; € Sx such that ||Tx;|| =1 and
[|lx1 —x0|| < e.

In [5], Dantas proved that if X is a reflexive Banach space which is locally uni-
formly rotund (LUR) then the pair (X,Y) has sBPBp for compact operators. On the
other hand, Dantas posed the following question in [4]:

Is it possible to give a characterization for the pair (X,Y) to have sBPBp?
As regards to uniform sBPBp, very recently Dantas et al. proved in [6] that the pair
(X,Y) may have uniform sBPBp only if one of the spaces X and Y is one-dimensional.

In view of this powerful result, it seems natural to introduce the following definition:

DEFINITION 1.5. Let X and Y be Banach spaces. Let .# be a family of norm
one linear operators in IL(X,Y). We say that the pair (X,Y) has uniform sBPBp with
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respect to .# if given € > 0, there exists 711(g) > 0 such that whenever T € .% and
Xo € Sx are such that ||Txo|| > 1 —n(g), there exists x; € Sx such that ||7x;|| =1 and
[|lx1 —x0|| < &.

In this paper, we study BPBp and its variants, from the point of view of operator
norm attainment. As it turns out, a natural generalization of the norm attainment set of
a bounded linear operator seems necessary to proceed in this direction. This motivates
us to introduce the concept of approximate norm attainment set of a bounded linear
operator, in the following natural way:

DEFINITION 1.6. Let X and Y be Banach spaces and T € L(X,Y) be nonzero.
Let 0 < 6 < ||T||. The &-approximate norm attainment set of T, M7 (0) is defined as
Mz (8) = {x € Sx : [|Txl| > ||T|| - &}

We first obtain a characterization of the smoothness of a bounded linear operator
in terms of the approximate norm attainment set of the operator, provided the domain
space is reflexive and Kadets-Klee. We observe that it is also possible to answer the
above mentioned question raised by Dantas in [4], by using the notion of approxi-
mate norm attainment set. We next focus on the uniform €—BPB approximation of
a bounded linear operator and obtain several interesting results, involving the norm
attainment set of the operator. First, we extend Proposition 2.4 of [1] to compact op-
erators on a reflexive Kadets-Klee Banach space. As a consequence of our study, we
obtain a complete characterization of smooth operators in the finite-dimensional case,
in terms of the existence of nontrivial uniform €—BPB approximations which are also
smooth. We also prove a result in the opposite direction by establishing that given any
isometry in L(lf77 lf,), it is the only uniform €—BPB approximation of itself, for suffi-
ciently small € > 0. We further study uniform sBPBp for a pair of Banach spaces, with
respect to a fixed family of norm one linear operators between them. We prove that
if X is a strictly convex and smooth Banach space then counterexamples to uniform
sBPBp can already be found in the class of all norm one smooth operators. In other
words, we prove that if X is a strictly convex and smooth Banach space then the pair
(X,X) does not have uniform sBPBp with respect to the family of norm one smooth
operators in L(X,X). We would like to remark that this result complements the deep
result obtained by Dantas et al. in [6], regarding the impossibility of uniform sBPBp
between any pair of Banach spaces, if both of them have dimension greater than 1. We
obtain a complete characterization of uniform sBPBp for a pair of Banach spaces, with
respect to a given family of norm one bounded linear operators between them. As the
final result of this paper, we prove that if X is a reflexive Kadets-Klee Banach space
and Y is any Banach space, then the pair (X,Y) has sBPBp for compact operators.
We would like to remark that Dantas proved a similar result in [5], assuming that X
is reflexive and LUR, instead of the Kadets-Klee property. Since it is well-known that
every LUR space is necessarily Kadets-Klee, our result evidently covers the analogous
result proved by Dantas. We end this paper by a remark that the converse is not true
and therefore, our result is a proper refinement of the corresponding result by Dantas in

[5].
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2. Main results

Let us begin with some basic properties of the approximate norm attainment set of
a bounded linear operator.

PROPOSITION 2.1. Let X, Y be Banach spaces and T € L(X,Y) be nonzero.
Let 0 < 0,01,08, <||T||. Then the following are true:

(i) My (0) is nonempty.

(ii) 61 < & = Mr(61) C My (8,). Moreover, if T is not a scalar multiple of an
isometry, then there exists 0 < 8; < &y such that My (8;) C M7(6,).

(i) Mr =No<s<|r|Mr(5).

(iv) If X is finite-dimensional then T is injective if and only if for some 0 < § <
|T||, we have that, Mr(8) = Sx. This is not necessarily true if X is infinite-
dimensional.

Proof. Every statement in Proposition 2.1 is trivial, except perhaps the last one.
We note that since X is finite-dimensional, we have that, Sx is compact. Therefore,
every bounded linear operator in IL(X,Y) attains its minimum norm (say, kr) on Sx,
i.e., there exists xo € Sx such that || Tx|| = kr = inf {||Tz|| : z € Sx}. It is easy to
observe that T € L(X,Y) is injective if and only if k7 > 0. Now, if we choose 0 < 6 <
| T to be such that || T'|| — & < kr, then it is easy to observe that M7 (6) = Sx. On the
other hand, if 0 < § < ||T| is such that My (0) = Sx then it follows immediately that
kr > 0. This establishes the first part of (iv).

To see that the last part of (iv) also holds true, consider T : ¢, — ¢, defined
by T(an) = (Lay). Itis easy to observe that T is linear and ||T|| = 1. Moreover, T
is injective. However, a quick glance at the action of 7 on the canonical basis of ¢,
ensures that there does not exist any 8 € (0, 1) such that M7(8) =Sx. O

We now obtain a complete characterization of the smooth points in K(X,Y),
where X is a reflexive Kadets-Klee Banach space and Y is a smooth Banach space,
in terms of the approximate norm attainment set. We will use the following result, that
follows from Theorem 4.1 and Theorem 4.2 of [9]:

THEOREM 2.2. Let X be a reflexive Banach space and Y be a smooth Banach
space. Then T € K(X,Y) is a smooth point if and only if My = {£xo}, for some
X0 € Sx. Moreover, for the “only if” part, smoothness of Y is not required.

An easy application of the above theorem yields the following result:

THEOREM 2.3. Let X be a reflexive Kadets-Klee Banach space and Y be a
smooth Banach space. Then T € K(X,Y) is a smooth point if and only if there exists
Xo € Sx such that given any € > 0, there exists 6 = 8(&) > 0, satisfying the following:

forany 0 <6 < 8(¢g), Mr(8) C B(xp,€) UB(—x0,€).

Moreover, in the “if” part of theorem, we do not require X to be Kadets-Klee.
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Proof. Let us first prove the “if” part of the theorem. We observe that since X is
reflexive and T is compact, M7 is nonempty. Let +xo € M7. We claim that M7y =
{#£x0}. If possible, suppose that there exists wy € Mr such that wy # +xp. Let us
choose & > 0 such that &y < fmin{||xo—wol|, [|xo+wol|}. Now, we argue that it is
impossible to find some §(gy) > 0 and some zo € Sx such that forany 0 < & < 6(&),
My (8) € B(z0,&) UB(—z0,&). Indeed, for this to hold, we must have, either of the
following is true:

(i) xo and wq belongs to a ball centered at zg (or —z¢) and radius &,
(il)) —xp and wy belongs to a ball centered at zg (or —z¢) and radius &.

In the first case, ||xo —wo|| < 2&p, whereas, in the second case, ||xo+wol| < 2&. Inboth
cases, we arrive at a contradiction to our initial choice of &. This completes the proof
of our claim. Let us now observe that since Y is smooth, the “if” part of the theorem
follows directly from Theorem 2.2. We would like to further note that the Kadets-Klee
property of X is not required to complete the proof of this part of the theorem.

Let us now prove the “only if” part. Since X is reflexive and T is smooth,
Mr = {£xo}, for some xy € Sx. Clearly, T is nonzero. Let € > 0 be given arbitrarily.
We claim that there exists & > 0 such that for any y € Sx \ (B(xo,€) UB(—xo,€)), we
have, || Ty|| < ||T|| — 8. If this does not hold true then there exists a sequence {y,} in
Sx \ (B(x0,€)UB(—xp,€)) such that ||Ty,|| — ||T|| as n — oo. Since X is reflexive, Bx
is weakly compact. Therefore, without loss of generality, we may and do assume that
Yn — yo € Bx (say). Since T is compact and norm is a continuous function, we can eas-
ily deduce that ||Ty,|| — ||Tyo||- Since we have already assumed that || Ty,| — ||T]|, it
follows that ||Tyo|| = ||T||. Atthis point of the proof, we recall that yo € Bx. Therefore,
| Tyo|| = ||T|| implies that yo € Sx. Since My = {£xo}, we must have, yop = +x. On
the other hand, we note that y, - yo and ||y,|| = ||yo|| = 1, for every natural number
n. Since X is Kadets-Klee, this implies that y, — yo in norm. However, this clearly
leads to a contradiction, since each y,, being an element of Sx \ (B(xo,€) UB(—xp,€)),
is at a distance of at least € from either of +x(. This contradiction completes the proof
of our claim. Now, let us choose J(€) = &. It is clear from our construction that if
7 € Sx is such that ||Tz|| > ||T|| — 6(¢), then we must have, z € B(xg,€) UB(—xg,€).
The proof of the “only if”” part now follows from the Statement (ii) of Proposition 2.1.
This establishes the theorem. [

REMARK 2.1. We would like to note that in the “only if”” part of the above theo-
rem, smoothness of Y is not required. However, in order to obtain a complete charac-
terization of smooth operators, we do require the additional assumption of smoothness.
It is also worth mentioning that for the above theorem to be true, it suffices to assume
that Txg is a smooth pointin Y, instead of the global smoothness of Y. Let us observe
that since 7' cannot be the zero operator, Tx( is nonzero, and therefore, smoothness of
Y at the point T'xy makes sense.

It is quite straightforward to observe that using the concept of approximate norm
attainment set of a bounded linear operator, it is possible to rephrase the strong BPB
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property for a pair of Banach spaces. This answers the question regarding a complete
characterization of sSBPBp, raised by Dantas in [4].

THEOREM 2.4. Let X, Y be Banach spaces. Then the pair (X,Y) has sBPBp if
and only if given any € >0, and any T € L(X,Y), there exists 6 = 6(&,T) > 0 such
that

Mz (8) € | (B(x,)NSx).

xeEMr

Proof. The proof follows quite trivially from the very definitions of sBPBp and
My (8). Towards proving either the “if” part or the “only if”” part, it suffices to choose
n(e,T)=46(e,T). O

Let us now focus on the uniform €— BPB approximation of a bounded linear op-
erator between Banach spaces. As mentioned in the introduction, our starting point in
this aspect is Proposition 2.4 of [1]. We would like to extend this result for compact
operators defined on a reflexive Banach space with Kadets-Klee property. To do this,
we prove that every compact operator defined on a reflexive Kadets-Klee Banach space
is a uniform €—BPB approximation of itself for any given € > 0.

THEOREM 2.5. Let X be a reflexive Kadets-Klee Banach space and Y be any
Banach spaces. Let T € K(X,Y) be of norm one and € > 0 be fixed. Then T is a uni-
form €— BPB approximation of itself. In particular, if X and Y are finite-dimensional
Banach spaces, then every T € L(X,Y) has a uniform €—BPB approximation, for
every € > 0.

Proof. Since X is reflexive and T is compact, we have that, My # 0. Let € > 0
be arbitrary. Let us consider the following open set: O = U,ep, B(x,€). Following
the same line of arguments, as given in the proof of the “only if” part of Theorem
2.3, we can show that there exists &y > O such that for any y € Sx \ O, we have,
ITy|| < ||T|| — . We would like to note that in this part of the proof, we require
that X is Kadets-Klee. Let us choose d(€) = &. Therefore, if xo € Sx is such that
| Txol| > ||T|| — &(¢), then xo € Uyeps, B(x,€). In other words, there exists ug € Sx,
such that || Tup|| = ||T|| and |jup —xo|| < €. Since ||T —T|| =0 < &, it follows that 7 is
a uniform €— BPB approximation of itself. This completes the proof of the first part of
the theorem. We note that if X is a finite-dimensional Banach space, then L(X,Y) =
K(X,Y) and moreover, X is a reflexive Kadets-Klee Banach space. Therefore, the
second part of the theorem follows immediately. This establishes the theorem. []

In view of the above theorem, it seems natural to investigate when does an operator
have a nontrivial uniform €—BPB approximation, for every € > 0. It turns out that this
question has a natural connection with the study of smooth operators between Banach
spaces. First, we obtain a necessary condition for smoothness of a compact operator
between a reflexive Kadets-Klee Banach space and an arbitrary Banach space.

THEOREM 2.6. Let X be a reflexive Kadets-Klee Banach space and Y be any
Banach space. Let T € K(X,Y) be a norm one smooth operator in K(X,Y). Then T
admits a nontrivial uniform €— BPB approximation in L(X,Y), for each € > 0.
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Proof. Since X is reflexive and T € K(X,Y) is smooth, we have, My = {£xp},
for some xp € Sx. Let € > 0 be fixed. It follows from the Hahn-Banach theorem that
there exists a hyperplane H of codimension 1 in X such that xg Lp H, i.e., xo Lpy
for all y € H. Furthermore, it is clear that every element of X can be uniquely written
as oaxog+h, where oo € R and h € H. For each natural number n, we define a map
A, : X — Y in the following way:

1
An(axg+h) = aTxy+ (1 - Z) Th.

It is clear that each A,, is well-defined and linear. We claim that for each n € N,
|An|| = 1, and therefore, in particular, A, € L(X,Y), for each n. To prove our claim,
we proceed in the following way:

Let z = oo +h € Sx. We note that, for any nonzero o, 1 = ||z|| = ||oxo + k|| =
|et|||xo+ Lh|| > ||. Therefore, we have, for any z € Sx,

1 1 1
1Anzl| = [T 0+ (1 - ;) Th| = | (1 - ;> (aTx0+ Th) + - oT x|

1 1 1 1
< (1= 2 ) Il + Halirel < (1- 1) +1 =1,
n n n n

Since ||[Apxol| = || Txo|| = ||T|| = 1, it follows that ||A,|| = 1, for each n. This
completes the proof of our claim. We observe that for each n, A, # T and xo € My, .
Furthermore, for z = o+ h € Sx, we also observe that 1 = ||axo + 4l = ||k — o] >
||| — 1. In other words, for any z = axo+h € Sx, we have, ||A|| < 2. Therefore,
(T —Apz|| = %||ThH < %||T|| — 0 as n — 0. In particular, this allows us to conclude
that |7 — A, || < &, whenever n is sufficiently large.

Since My = {+x¢}, X is reflexive, Kadets-Klee and T is compact, it follows from
the arguments given in the proof of the “only if”” part of Theorem 2.3 that there exists
0 = 6(€) > 0 such that M7y (6) C (B(xo,€) UB(—x0p,€)). In other words, if y € Sx is
such that ||Ty|| > ||T|| — &, then for sufficiently large n, we have the following:

(@) [[Anxoll = [|An] =1,
(i) [ly—xoll <e,
(i) ||T —A,| <€, and
(iv) Ag£T.

Equivalently, we have that, each A, is a nontrivial uniform €—BPB approximation
of T, for sufficiently large n. Since € > 0 was chosen arbitrarily, this establishes the
theorem. [

Conversely, in the following proposition, we would like to prove a sufficient con-
dition for smoothness in the space of compact operators, when the domain space is
reflexive and the range space is smooth.
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PROPOSITION 2.7. Let X be a reflexive Banach space and Y be a smooth Banach
space. Let T € K(X,Y) be of norm one. Suppose that for every € >0, T admits a
nontrivial uniform €—BPB approximation in K(X,Y) which is smooth in K(X,Y).
Then T itself is smooth in K(X,Y).

Proof. Clearly, +xo9 € My, for some xp € Sx. We claim that Mr = {£xo}, or,
equivalently, T is smooth. If possible, suppose that there exists wyg € My such that
wo # £xp. Let A € L(X,Y) be a uniform e—BPB approximation of 7 such that each
Ag is smooth. Let us choose & > 0 such that & < min{|[xg—wol|, [xo +wo}. Let
0 = 8(&) > 0 be the constant of uniform €—BPB approximation, corresponding to
the value € = g. Now, || Txo|| = ||[Two|| =1 > 1— 6. Since Ag, is a uniform &—BPB
approximation of 7, the following must be true:

Ag, attains norm in each of the open balls B(xo, &), B(—xo, &), and B(wp, &)

By virtue of our choice of &, it is easy to see that these three balls are mutu-
ally disjoint. Therefore, it follows that Ag, must attain norm at more than one pair of
points. However, this contradicts our assumption that Ag, is smooth. This contradiction
completes the proof of our claim and establishes the theorem. [l

Combining Theorem 2.6 and Proposition 2.7, it is possible to completely charac-
terize smooth points in the operator space in the finite-dimensional case, if we further
assume that the domain space is strictly convex. We accomplish this goal in the next
theorem:

THEOREM 2.8. Let X be a finite-dimensional strictly convex Banach space and
Y be a finite-dimensional smooth Banach space. Let T € L(X,Y). Then T is smooth
if and only if for every € > 0, T admits a nontrivial uniform €— BPB approximation
which is also smooth.

Proof. Clearly, the “if” part is already proven. Let us prove the “only if” part
of the theorem. We note that, in this case, K(X,Y) = L(X,Y), and, furthermore,
X is reflexive and Kadets-Klee. We follow the notations from the proof of Theorem
2.6. It is obvious that the proof will be completed, if we can show that each A, is
smooth, or, equivalently, each A, attains norm at only one pair of points. We claim that
My, = {£xo} foreach n. Let z = axo+h € Sx. This is where we would like to apply
the strict convexity of X. Suppose o # 0. We have, 1 = ||z|| = |et||lxo + 21| > |e],
since xo _Lp h. Let us note that we must have, xo, & are linearly independent, provided
h#0. As X is strictly convex, we have, ||xo+ éh” > ||xo0]| = 1, whenever & # 0. In
other words, whenever i # 0, we have that, || < 1. On the other hand, clearly, 7 =0
implies that o = +-1, i.e., z = +x(. Therefore, in effect, we have proved the following:

If z = oxp+ h € Sx then |a| < 1. Moreover, |a| =1 if and only if z = £xp.
Now, for any z € Sx \ {£x0}, we have,

1 1 1
| Anz]| = [|aTxo+ (1 - Z) Thl| = | (1 - Z) (aTx0+Th) + o Tx

1 1 1 1
< (1= 3 ) I+ Slalimsl < (1- 1) +2 = 1.
n n n n
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This proves that My, = {£x0}, as claimed by us. This completes the proof of the
theorem. [
In light of Theorem 2.8, the following complementary question arises naturally:

Let X)Y be finite-dimensional strictly convex and smooth Banach spaces. Ob-
tain a necessary and sufficient condition for a norm one element T of L(X,Y) to be
such that T admits no nontrivial uniform €— BPB approximation for sufficiently small
e>0.

While we are unable to answer this general question, we prove that the class of
all norm one linear operators satisfying the above mentioned property is nonempty
in L(E?,J%L where 2 < p € N. Indeed, in the following theorem, we prove that any

isometry in ]L(élz,,élz,) belongs to the desired category, when 2 < p € N,

THEOREM 2.9. Let X = éf,, where 2 < p € N. Let T € L(X,X) be an isometry.
Then there exists & > 0 such that for any 0 < € < &, T is the only uniform €¢—BPB

approximation of T.

Proof. We begin our proof with the remark that it is well-known that there are
only finitely many isometries in L(X,X).

Let g =min { ||V =S| : V, S are distinct isometries in L(X,X) } >0.

We would further like to remark that it follows from Theorem 2.8 of [8] that any
linear operator in L(X,X), which is not a scalar multiple of an isometry, attains norm
at not more than 2(8p — 5) number of points of Sx.

Let us choose 0 < & < min {g], m}

We claim that for any 0 < € < &, T is the only uniform €¢—BPB approximation
of T. If S(£T) is any isometry in L(X,X), then S cannot be a uniform €—BPB
approximation of T, since ||S—T|| > & > €. Now, let A € L(X,X) be a norm one
operator which is not an isometry. Then |M| < 2(8p —5), where |M,| denotes the
cardinality of A. Let A attains norm only at the points +x;,+x,...,+x; € Sx, where
k< (8p—5). Let O =", B(£x;,€). We observe that the diameter of O = sup {||x—
Yl :x,y € O} < 4ke < 4(8p —5)ey < 2. On the other hand, the diameter of Sx =
sup {|lx—y| : x,y € Sx} = 2. This proves that ONSx C Sx. In other words, Sx \ O
is nonempty. Let us choose zo € Sx \ O. Since T is an isometry, zo € M. However,
our choice of zp € Sx \ O ensures that A does not attain norm in an € neighbourhood
of the point z9. In other words, A cannot be a uniform €—BPB approximation of 7.
We note that A was chosen arbitrarily, with the only restrictions that ||[A]| =1 and A
is not an isometry. Therefore, we have effectively proved that when € < &), T cannot
have a nontrivial uniform €—BPB approximation. On the other hand, Theorem 2.5
ensures that 7 is a uniform €—BPB approximation of 7, for every € > 0. Combining
all these facts together, we may and do conclude that our claim is true. This establishes
the theorem. [J

Our next objective is to show that in certain cases, counterexamples to uniform
sBPBp can already be found by considering only the class of smooth operators of norm
one.
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THEOREM 2.10. Let X be a finite-dimensional strictly convex and smooth Ba-
nach space. Let F be the class of all norm one smooth operators in L(X,X). Then
the pair (X,X) does not have the uniform sBPBp with respect to . .

Proof. Let us fix any xo € Sx. Let Hp be the hyperplane of codimension 1 such
that xo Lp Hy, i.e., xo Lp yo for all yo € Hy. For each natural number n, we define a
map A, : X — X in the following way:

Ay(oxo+hy) = oxg+ (1 - %) hg, for ¢ € R and ho € Hy.

Since X is strictly convex, following arguments similar to those given in the proof
of Theorem 2.8, it is easy to verify that for each n € N, ||A,|| =1 and Ms, = {£x0}.
Since X is finite-dimensional and smooth, this proves that each A, is a norm one
smooth point in L(X,X), i.e., A, € .%#. On the other hand, if yp € HyNSx is any any
vector then it is easy to see that [|A,yol| = || (1= 1) yol|=1-1 =1 as n — e
We note that ||xo — yol|, ||xo + Yol = 1, since xo Lp yo. If possible, suppose that
(X,X) has uniform sBPBp with respect to .%. Let us choose € = 1. Then there exists
N =n(e) > 0 such that whenever T € .% and zy € Sx are such that || Tz > 1 -7,
there exists z; € Sx such that ||Tz;|| = 1 and ||z1 — 20| < &. Since [|A,yo]| — 1, there
exists ng € N such that ||A,,yo|| > 1 —1n. However, A,, does not attain norm in an &
neighbourhood of yo, since My, = {=£xo} and [xo —yoll, [lxo +yoll = 1 > e. Since
Ap, € 7, this contradicts our hypothesis that (X,X) has uniform sBPBp with respect
to .%. This contradiction completes the proof of the theorem. [

In the next theorem, we would like to obtain a complete characterization of uni-
form sBPBp for a pair of Banach spaces, with respect to a given family of norm one
bounded linear operators. To serve this purpose, it is convenient to introduce a new
notation.

THEOREM 2.11. Let X, Y be Banach spaces. Let .F be a family of norm one
bounded linear operators in 1L(X,Y). Then the pair (X,Y) has uniform sBPBp with
respectto .F if and only if for every € >0, we have, sup {||Tz|: T € %,z D(T,e)} <
1, where D(T,€) = Sx \ (Uyem, B(x,€)).

Proof. Let us first prove the “if” part. Let € > 0 be fixed. Let sup {||Tz||: T €
F,z€D(T,e)} =1—46. Letus choose 1 =1n(g) = 5. Let us suppose that T € .% and
Xo € Sx are such that || Txo|| > 1 —n. Itis clear from the choice of 7 that we must have,
xo & D(T,€) = Sx \ Uyem, B(x,€). Since xy € Sx, it follows that xo € Uyeps, B(x, €).
In other words, there exists x; € My such that ||x; —xo|| < €. Since € > 0 is chosen
arbitrarily, this proves that the pair (X,Y) has uniform sBPBp and thereby establishes
the theorem in one direction.

The “only if” part of the theorem can be proved by applying similar reasoning.
Suppose the pair (X,Y) has uniform sBPBp with respect to .%. Given any € > 0,
let 1 =n(&) be the constant associated with uniform sBPBp with respect to .%, corre-
sponding to €. Then it is easy to see that sup {||Tz||: T € #,z€ D(T,e)} <1—-n< 1.
This completes the proof of theorem in the reverse direction. [J

As the final result of this paper, we obtain a sufficient condition for a pair of Ba-
nach spaces to satisfy sBPBp for compact operators. It will be clear from the remark
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immediately after the theorem that our result is a proper refinement of an earlier analo-
gous result by Dantas in [5].

THEOREM 2.12. Let X be a reflexive Kadets-Klee Banach space and Y be any
Banach space. Then the pair (X,Y) has sBPBp for compact operators.

Proof. We prove the result by the method of contradiction. If possible, suppose
that the pair (X,Y) does not have sBPBp for compact operators. Then there exists an
& > 0 and a norm one compact operator Ty € K(X,Y) such that no n = n(ey,Tp)
“works”, i.e., given any 1 > 0, the following does not hold:

|| Toxo|| > 1 —n for some xg € Sx implies that there exists x; € Sx such that
[Tox1 || = 1 and [lx; —xo[| <e.

In particular, for any natural number n, there exists x, € Sx such that ||Tox,|| > 1—
L and ||x, —y|| > & for any y € My,. Since X is reflexive and ||x,|| = 1 for each n, we
must have, {x,} has a weakly convergent subsequence. Without loss of generality, let
us assume that x, — Z0 (say). Since Tp is compact and norm is a continuous function,
we have that, ||Tox,|| — || Tozo||. However, since 1 — 1 < || Tox, || < 1 = || To||, it follows
that zo € M7,. In particular, we have that, zo € Sx. Since X is Kadets-Klee, x, )
and 1 = ||x,|| = ||z0]| for each n, we must have, x, — zo € Mg,. However, this is
clearly in contradiction with our assumption that ||x, —y|| > & for any y € My,. This
contradiction completes the proof of the theorem. []

REMARK 2.2. Dantas proved in [5] that if X is reflexive and LUR then for any
Banach space Y, the pair (X,Y) has sBPBp for compact operators. It is well-known
that LUR implies Kadets-Klee property. Therefore, the analogous result proved by
Dantas in [5] follows directly from our result. On the other hand, in [7], Polak and Sims
have given an example of a Banach space which is reflexive and Kadets-Klee but not
LUR. This evidently illustrates that our result is an improvement of the corresponding
result by Dantas in [5].
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