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WEIGHTED COMPOSITION OPERATORS ON THE FOCK SPACE

MAHSA FATEHI

(Communicated by G. Misra)

Abstract. In this paper, we study weighted composition operators on the Fock space. We show
that a weighted composition operator is cohyponorma if and only if it is normal. Moreover, we
give a complete characterization of closed range weighted composition operators. Finally, we
find norms of some weighted composition operators.

1. Introduction

Let D denote the open unit disk in the complex plane C. For an analytic map ¢,
let ¢y be the identity function, ¢; = ¢ and ¢,y = @o ¢, for n =1,2,.... We call
them the iterates of ¢. It is well-known that if ¢, neither the identity nor an elliptic
automorphism of D (i.e., ¢ is an automorphism of D with a fixed point in D), is an
analytic map on the unit disk into itself, then there exists a point w in D such that ¢,
converges to w uniformly on compact subsets of I. The point w is called the Denjoy-
Wolff point of ¢. The Denjoy-Wolff point w is the unique fixed point of ¢ in D so
that |@'(w)| < 1 (see [7]).

Recall that the Fock space .%?2 is a Hilbert space of all entire functions on C that
are square integrable with respect to the Gaussian measures d(z) = n’le’k‘sz(z),
where dA is the usual Lebesgue measure on C. The Fock space .#? is a reproducing
kernel Hilbert space with inner product

(f.8) = [ SsEdu:)

and reproducing kernel function K, (z) = " for any w € C. Note that for any w €
C, ||Kwll = el"?/2 For each w € C, we define the normalized reproducing kernel as

ky(z) = IH%(EZH) = ™~ /2 For each nonnegative integer n, let e,(z) = z"/v/n!. The
set {e,} is an orthonormal basis for .2 (see [16]).

For entire function ¢ on C, the composition operator Cy, on .7 2 is defined as
Co(f) =foe forany fe .7 2 moreover, for y € .%2, the weighted composition
operator Cy ¢ is defined by Cy.of = W - (f o ¢@). There exists some literature on com-
position operators acting on the Hardy and Bergman spaces. The books [7] and [11]
are the important references.
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Carswell et al. [4] characterized the bounded and compact composition operators
on the Fock space over C". Specified to the one-dimensional case, they stated that Cy is
bounded if and only if ¢(z) = az, where |a| =1 or @(z) =az+b with |a| < 1. In[12],
Ueki found the criteria to characterize the boundedness and compactness of weighted
composition operators on the Fock space. After that in [10], Le obtained much easier
criteria for the boundedness and compactness of weighted composition operators on the
Fock space. On the Hardy space, normal weighted composition operators were stud-
ied; moreover, unitary weighted composition operators were characterized (see [3]).
Also in [6], cohyponormal weighted composition operators were obtained. After that
in [8], hyponormal weighted composition operators were investigated on the Hardy and
weighted Bergman spaces. Unitary weighted composition operators Cy, o on the Fock
space were obtained in [13]. Also invertible weighted composition operators on the
Fock space were characterized in [14]. In the second section, we find normaloid, hy-
ponormal and cohyponormal composition operators. After that we obtain all hyponor-
mal weighted composition operators Cy , where y = K. for each ¢ € C. Moreover,
we study a class of normaloid weighted composition operators. Next, we show that for
¢(z) = az+b, Cy, is cohyponormal if and only if y = u/(O)Kb% . Closed range
composition operators were studied on the Hardy and weighted Bergman spaces in [1],
[9] and [17]. In the third section, we characterize closed range weighted composition
operators on the Fock space. In the fourth section, we find norm of Cy, , on % 2 when
y =K, forany c € C.

2. Normaloid weighted composition operators

Suppose that 7 is a bounded operator on a Hilbert space. Throughout this paper,

the spectrum of 7', the essential spectrum of 7', and the point spectrum of 7 are de-
noted by o(T), 0.(T), 0,(T) respectively. Also the spectral radius of 7' is denoted
by r(T).
Le [10] studied the boundedness of weighted composition operator on the Fock space.
His result shows that if Cy , is bounded on % 2, then ¢(z) = az+ b, where |a| < 1;
furthermore, he proved that if |a| = 1 and Cy 4.1 is bounded on .7 2, then y =
w(0)K_gz . We use these facts frequently in this paper and so throughout this paper,
we assume that ¢(z) = az+ b, where |a| < 1. [4], [13] and [15] were written on an-
other Fock space (see [16, p. 33]), but their results hold for .% 2 which is considered in
this paper, with identical arguments.

In the following proposition, we investigate 6,(Cy,y), when ¢(z) = az+ b and
|a| < 1. Note that in the case that |a| = 1, as we saw in the preceding paragraph, v =
Y (0)K_z. Then Cy, is a constant multiple of a unitary operator from [13, Corollary
1.2]. Moreover, in [13, Corollary 1.4], the spectrum of unitary weighted composition
operators were characterized.

PROPOSITION 2.1. Let y and ¢ be entire functions on C and Cy, ¢ be a bounded
weighted composition operator on .F*. Suppose that ¢(z) = az+b, where |a| < 1 and
beC.If A €0y(Cy,), then |A| < l[/(lf;a). Moreover, if W(%) =0 and ¢ and y
are nonconstant, then Cy o has no eigenvalues.
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Proof. Suppose that |a| < 1. First we find a weighted composition operator Cj/@
which is unitary equivalent to Cy , such that the fixed point of ¢ lies in I and ¢ is
a self-map of . There exists a positive integer N such that |a|+ §|l —a| < 1. Itis
not hard to see that there is a complex number u € C such that |u + %| < % . By [13,
Corollary 1.2], we know that Cy, ., is unitary (the operator Cy, ., is known as the

Weyl unitary). By [10, Proposition 3.1], C;u,z—u =Ci_yz4u» SO

1
CrueuCy0Ch_yztu = Wcﬁﬁzfucwwcrm,zﬂ
1 - . .
= HKuH2euz y(z—u) . (—Tlaz+h))o(z M)C(z+u)o(az+b)o(z_u)
1 1 —ulaz—au
= HK Hze ZW(Z_u)e ( Z +b)CaZ+u(17u)+b~ (1)
u

Let ¢(z) = az+u(1 —a)+b and

~ | R =
y(z) = gz —u) - e et 2)

It is easy to see that the fixed point of @ is u + lf—a which belongs to D. Because
la| 4+ |u(1—a)+b| <1, ¢ is a self-map of D. Since Cy,, is unitary equivalent to
Cy.5 Gp(cju/,w)_: 0p(Cy.5)- Assume that A is a nonzero eigenvalue for Cy 5 with
corresponding eigenvector 4. We obtain

A"h(z) = T2 Y (9;(2))h(Pu(2) 3)

for each z € C and positive integer n. For any fixed point z € C, we obtain

_ ~ ~ ~ I I
1(@n(2))] = [(ho @n, Ko)| < [[ho @ull[[Kell = [0 @ulle > = [|Cg, (R)]|e >

[
< ICg, [lRlle > (4)

®n
Since A is not the zero function, we can choose z € D such that h(z) # 0. Since
u+ 2 is the Denjoy-Wolff point of ¢, @;(z) — u+ 12 and ¥(9;(z)) — Y(u+ )
as j — oo. Take n-th roots of the absolute value each side of Equation (3), use Equation
(4) and let n — o, we get |A| < |y (u+ f’Ta)\r(C(p). From Equation (2) and [15,
Theorem 1.1], we see that [A| < |y(u+ t2)[r(Cp) = |y(t2;)]. Then

b
4] < W(m)|~ ©)

Now assume that y(u+ %) = V’(lhTa) =0 and ¢ and y are nonconstant. Thus, by

Equation (5), 4 = 0 is the only possible eigenvalue for Cy . Since y is not the zero
function and ¢ is not constant, the Open Mapping Theorem implies that 0 cannot be
an eigenvalue for Cy o (see idea of the proof of [2, Lemma 4.1]). [
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Suppose that 7' is a bounded operator. The operator T is hyponormal (cohyponor-
mal) if T*T > TT* (T*T < TT"). Also T is normaloid if ||T|| = r(T). It is well
known that hyponormal (cohyponormal) operators are normaloid. In the following
proposition, we characterize hyponormal, cohyponormal and normaloid composition
operators on .72,

PROPOSITION 2.2. Let ¢(z) = az+b, where |a| <1 and b € C. Then Cy is a
bounded normaloid (hyponormal or cohyponormal) operator if and only if b = 0.

Proof. Let Cy be normaloid (hyponormal or cohyponormal). Suppose that b # 0.
L bf?
Then [4, Theorem 1] states that |a| < 1. By [4, Theorem 4], ||Cyl|| = e’ “l4* (note
that the inner product for .%? in this paper is different from [4], so the norm of a
composition operator is not exactly the same as [4, Theorem 4]; furthermore, in Remark
4.1, ||Cy|| will be described). Also [15, Theorem 1.1] implies that (Cy) = 1. Since
12

Cy is normaloid (hyponormal or cohyponormal), e’ 1-la®> = 1. Hence b = 0 which is
a contradiction.
Conversely, suppose that ¢(z) = az, where |a| < 1. Invoking [4, Lemma 2], Cp = Ca.-
Then C,; is normal and the result follows. [

Suppose that Cy, ¢, is a bounded weighted composition operator and ¢(z) =az+b.
Note that if @ = 1, then from [13, Corollary 1.2] and as we saw in the second paragraph
of this section, Cy ¢ is a constant multiplie of a unitary operator. Thus, Cy ¢ is normal,
normaloid, hyponormal and cohyponormal. Hence we state the following proposition
fora#1.

PROPOSITION 2.3. Let Wy =K. and ¢(z) = az+b, where |a| <1, a# 1 and
b,c € C. Suppose that Cy o is bounded on .7 2. Then the following are equivalent.
(a) Cy.p is hyponormal.
(b) Cy.p is cohyponormal.
(¢) Cy.p is normaloid.
(d) c =b2t.

Proof. Thereis u € C such that ¢ = u(a— 1). By Equation (1) and some calcula-
~ ~ where l"l}(z) _ e*|u|zeﬂz . W(Z_ u) .efﬂ(azfuwrh)
v,¢> i )
= y(t£) and @(z) = az+u(l —a) +b. We can see that Cy, is unitarily equivalent
to W(lé_a)caz+u(l—a)+b-

(a) = (d). Suppose that Cy ¢ is hyponormal. Then Cy 1 (1—4)4p is hyponormal.
Proposition 2.2 implies that u(1 —a)+b = 0. Since u = we conclude that ¢ =

ba=t,
a—1
(d) = (a). Assume that ¢ = bz—:} . Let u= £, By Equation (1) and some

a—1

tion, Cy o is unitarily equivalent to C,

<
a-1’

|62 ~
calculation, Cy , is unitarily equivalent to eT-@Cg, where ¢(z) = az. We infer from
Proposition 2.2 that Cj is hyponormal and so Cy,¢ is hyponormal.
(b) < (d). The idea of the proof is similar to (a) < (d).
(c) & (d). The idea of the proof is similar to (a) < (d). U
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Suppose that ¢(z) = az+ b, where |a| =1 and y is an entire function. If Cy
is bounded on %2, then as we saw in the second paragraph of this section, y(z) =
v(0)K_g, where B =ab. Hence Cy ¢ is a constant multiple of the unitary operator
(see [13, Corollary 1.2]). It shows that in this case Cy,¢ is normaloid and so in the next
theorem, we assume that |a| < 1.

THEOREM 2.4. Suppose that y is an entire function and is not identically zero.
Assume that ¢(z) = az+b, where |a| <1 and b € C. Let for each A € 6.(Cy.q),
IA| < |w(:Z)|. Then Cy.y is normaloid if and only if y = y(0)K pa-l -

Proof. Let p = 1= (note that it is obvious that p is the fixed point of ¢). By
[13, Corollary 1.2], Ckp,z p 1s unitary. Furthermore, [10, Proposition 3.1] states that
Cpep = Ch_pztp- We obtain

H:= C;c‘p,zfpcl!/@ckpﬂ—ﬁ = Ck—p72+pcll/7fpckp~,z—p = C%(p, (6)

where

¢(z) = 9(z+p)—p=alz+p)+b—p=az (7)

and

4(2) = k_p(@kp(9(z+ p)) Wz + p) = PP HIPPaDPlaVay, (1 )

= "y (24 p). ®)
Since Cy,¢ is unitary equivalent to C; g, Ge(Cl,, ¢) = 0c(Cy ). Itis not hard to see
that ¢(0) = y(p). Now suppose that Cy o is normaloid. Then C, 5 is normaloid.
Since Cy, and C, 5 are unitary equivalent, for each A € 6,(C, ), |M < g(0)]. We
infer from [3, Propos1t10n 6.7, p. 210] and [5, Proposition 4.4, p 359] that r(C, ) <

lq(0)]. Since C, 5 is normaloid, |g(0)| > [|C, 5 Coo(Vl = llqll. We know that
(0)|. It shows that ¢
must be constant. Thus, Equation (8) shows that y/(z) - 7@~ 1)(P) is constant. Then
Y(2) = w(0)e P = y(0)e T = y(0)K, ot (2).

Conversely, suppose that ¥ = y(0)K, pa-l - By Equatlon (8), g is constant. Equations

{ j:? :m > 0} is an orthonormal basis for .# 2. Then

(6) and (7) state that Cy,, is unitarily equlvalent to a constant multiple of C,;. Since
by Proposition 2.2, C,; is normaloid, Cy ¢, is also normaloid. [

We know that for each ¢ € C, Ck, ¢ is compact, where ¢(z) =az+b and |a| < 1
(see [15, Corollary 2.4 1). Hence o.(Ck,,p) = {0}. Thus, Ck, , satisfies the conditions
of Theorem 2.4 and so if Ck, ¢ is normaloid, then ¢ must be b% (see also Proposition
2.3).

COROLLARY 2.5. Suppose that y is an entire function and is not identically
zero. Assume that ¢(z) = az+b, where |a\ <1l and be C. Then Cy g is compact and
normaloid if and only if y = y(0)K,

1
Suppose that y is an entire fllIlCthIl and ¢(z) = az+b, where |a| < L. In the next
theorem, we show that Cy, , is cohyponormal if and only if Cy,, is normal (see [10,
Theorem 3.3] and note that if |a| = 1 and a # 1, then =} = —a).
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THEOREM 2.6. Suppose that y is an entire function and (p( ) =az+ b, where
la| < 1. Then Cy.q is cohyponormal if and only if y = y(0)K, for a#1 and

v = W(O)K_b fora=1.

Proof. We break the proof into two cases. First assume that a = 1. If vy =
y(0)K_}, then by [13, Corollary 1.2], Cy., is a constant multiple of a unitary op-
erator. Thus, Cy o is cohyponormal. Now let pr be cohyponormal. As we saw in
the second paragraph of this section y = y(0)K_

Now assume that @ # 1. Suppose that Cl,,q, is cohyponormal. Let C, 5 be as in
Equation (6), where ¢ and @ were obtained in Equations (7) and (8). It 1s obvious
that C, 5 is also cohyponormal. Then HC* K0|| > |IC, Koll. We obtain [g(0)| > [|q]|-
As we saw in the proof of Theorem 2.4, g must be constant, so Equation (8) stats that
w(2) = y(0)e e,

The other direction follows easily from Proposition 2.3. [J

3. Closed range weighted composition operator

In this section, we prove that Cy o has closed range if and only if Cy o is a con-
stant multiple of a unitary operator (see [13, Corollary 1.2 ]).

THEOREM 3.1. Let ¢ and y be entire functions on C such that y is not identi-
cally zero. Suppose that Cy o is bounded on F 2. Then Cy.¢ has closed range if and
onlyifand ¢(z) =az+b, with |a|=1, b€ C and y = y(0)K_g.

Proof. First suppose that |a| =1 and v = (0)K_z,. By [13, Corollary 1.2 ], we
have Cy , is a constant multiple of a unitary operator. Therefore, Cy , has closed
range.

Conversely, let Cy, , have closed range on .% 2. As we stated in the second paragraph of
Section 2, ¢(z) = az+b, with |a| < 1. Suppose that |a| < 1. By Equations (6) and (7),
Cy, is unitarily equivalent to C, 5, where ©(z) = az, so without loss of generality, we
assume that ¢(z) = az (note that Cy o has closed range if and only if C has closed
range). Since Cy ¢ is bounded on #2, Cy 4:(¢*) = y(z)e® belongs to . Now we
define a bounded linear functional Fy(;)ee by Fyz)eec(f) = (f(2), l[/(z) ) for each

f € Z?%. We know that ng\\ converges to zero weakly as |w| — eo. Then

K,
i (TR, V@) =0

It shows that
[y (w)l[e™]

lim
e

=0. 9)

Now if a = |ale’®, we take w = re™'® , where r is a positive real number. Then |e®| =

elavl Equation (9) shows that

lim |y (re0)2ele* = = . (10)

r—oo
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From Equation (10), we obtain

i6—
Kre”e 2 —i0 2||ere azHZ
hm”Cll/(PHK - H” —HH;\l//(re l )‘ T
— —i0y12 2 (|al>~1)
lim y(re” ) e
—0. (11)

Since v is not identically zero, it is easy to see that there exits a sequence {r,} such

that for any n, r, is a positive real number, 7, — oo as n — oo and y(r,e %) # 0 for
rnei0 S g KarnL”O Krne’IS

each n. We have CV/QDHK gy y(rye~! )HK = #0 and so Kool Z Ker(Cy, ) -

Equation (11) and [5, Proposmon 6.1, p. 363 ] show that Cy, , does not have closed

range. Thus, Cy, o does not have closed range (see [5, Proposmon62 p. 364 ]). Hence

|a| = 1 and the result follows from the second paragraph of Section 2. [J

4. Norm of weighted composition operator

Suppose that ¢ and y are entire functions on C and Cy ¢ is bounded on .7 2 It
is well-known that for any w € C,

Cy.pKw = Y (W)Kp()-

We use this formula in the following remark. Furthermore, in this section for each
¢ € C, Mg, is multiplication by the kernel function K..

REMARK 4.1. For ¢(z) = az+b, where |a| <1 and b,c € C, ||Cy|| was found
in [4, Theorem 4]. In [4], the inner product of the Fock space is different from ours.
An analogue of [4, Theorem 4] holds for .%? with our deﬁnition One can follow the
outline of the proof of [4, Theorem 4] to find ||Cy|| on .7~ . Moreover, we state another
proof for finding [|Cy||. We break it into two cases.

First assume that ¢@(z) = az+ b, where |a| < 1. By [4, Theorem 2], C, is compact.
Then [4, Lemma 2] implies that C;‘,Cq, = Mg, Cz:Cozqpp = MK,,C‘a‘sz is compact (
note that by the similar proof which was stated in [4, Lemma 2], we can see that
C:..», = Ck,az)- We know that [|Cy||* = 1CoColl = r(Mk,Ciy2,4p) - Since Mg, Cig2,p
is compact, r(Mk,Cp4p) = sup{|A|: A € 0,(Mk,Clyp.4p)} (see [5, Theorem 7.1, p.
b2
2141). By Proposition 2.1, for each A € 0 (Mk,Ciyp4p), [A] < \Kb(lf’wﬂ =el-la?,
o2 2
We have (Mk,Ciyp..p)"K_» ; —el K , . Then e'—ld? € 0p((Mk,Cly2,45)") and
1—|q| 1—|q|
Lol \h\z
so by [5, Theorem 7.1, p. 214 ], e'-l* € 6, (Mg, Clyj2,p) - Thus, [[Cozip| = e 1717

Now assume that ¢(z) = az+b with |a] = 1. By [4, Theorem 1], b= 0. From [4
Lemma 2], one can easily see that [|Cy||*> = 1CColl = 1CaCazll = |Cigp. |l = 2|l = 1.
Then in this case ||Cy|| = 1.

Nl—
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In the preceding sections, we saw that among weighted composition operators,
Ck,.p is much important, when ¢ € C. Hence in the following theorem, we try to find

ICke.ol -

THEOREM 4.2. Let y = K. and ¢(z) = az+b, where |a] <1 and b,c € C.
Suppose that Cy o is bounded on .F 2.
E= s

_ 1 | mg=r" "
(a)If |a| < 1, then ||Cy o|| = | T ]? 1= w

(b)If la| =1 and a # 1, then HCWPH _|em\
o2

(c)Ifa=1, then ||Cy || =€ .

Proof. (a) Assume that |a| < 1. By the proof of Proposition 2.3, Cy¢ is unitarily

equivalent to w(%)cazﬂ(l a)+b» Where u = . Since |a| < 1, [4, Theorem 4] im-
c(l-a) ﬂ) 2
LU=y
plies that [[Cy o] = [W(2) | Carrutt—ayll = [W(25)le* —7  (see also Remark
4.1).
(b) Assume that |¢| =1 and a ;é 1. Again by the proof of Proposition 2.3, ||Cy,¢|| =
|W(1 a)||| (l ﬂ) H - |W(1 u)|||caz+ca+bH Since ‘a| =1 and CKMP is bounded,
az+ +b

from the second paragraph of Section 2, ¢ = —ab. Then ca+ b = 0. Therefore,
1Cy.0ll = \l//(ﬁ)H\CaZH = |l//(1hTa)| (see [4, Theorem 4] and Remark 4.1). Thus,

a\ \ \h\
[Cypll = e | =[eT=].
(c) Assume that @ = 1. As we saw in the second paragraph of Section 2, ¢ = —ab =
—b. Then y(z) = e *. Now we must find IC, 5 z+h” By [13, Corollary 1.2],
—\h\z L6

C, 5 .} 1s unitary. Hence [Cyoll=e2. O
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