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SPECTROGRAMS AND TIME-FREQUENCY
LOCALIZED FUNCTIONS IN THE HANKEL SETTING

SAIFALLAH GHOBBER, SIWAR HKIMI AND SLIM OMRI

Abstract. The uncertainty principle in Fourier analysis sets a limit to the possible simultane-
ous concentration of a function and its Hankel transform. Nevertheless, signals that have highly
concentrated time—frequency content have many applications in quantum mechanics, PDE, engi-
neering and in signal analysis. We use here time—frequency localization operators in the Hankel
setting to measure the time—frequency content of functions on a subset of finite measure £ within
the time—frequency plane. Then, using eigenfunctions and eigenvalues of these operators, we
prove a characterization of functions that are time—frequency concentrated in X, and we obtain
approximation inequalities for such functions using a finite linear combination of eigenfunctions,
since they are maximally time—frequency-concentrated in the region of interest.
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