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SPECTROGRAMS AND TIME–FREQUENCY

LOCALIZED FUNCTIONS IN THE HANKEL SETTING

SAIFALLAH GHOBBER, SIWAR HKIMI AND SLIM OMRI

Abstract. The uncertainty principle in Fourier analysis sets a limit to the possible simultane-
ous concentration of a function and its Hankel transform. Nevertheless, signals that have highly
concentrated time–frequency content have many applications in quantum mechanics, PDE, engi-
neering and in signal analysis. We use here time–frequency localization operators in the Hankel
setting to measure the time–frequency content of functions on a subset of finite measure Σ within
the time–frequency plane. Then, using eigenfunctions and eigenvalues of these operators, we
prove a characterization of functions that are time–frequency concentrated in Σ , and we obtain
approximation inequalities for such functions using a finite linear combination of eigenfunctions,
since they are maximally time–frequency-concentrated in the region of interest.

Mathematics subject classification (2010): 94A12, 45P05, 42C25, 42C40.
Keywords and phrases: Time-frequency concentration, localized functions, windowed Hankel trans-

form, localization operator, spectrogram.

RE F ER EN C ES
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[17] H. J. LANDAU, On Szegö’s eigenvalue distribution theorem and non-Hermitian kernels, J. Anal. Math.
28 (1975), 335–357.

[18] H. J. LANDAU AND H. O. POLLACK, Prolate spheroidal wavefunctions, fourier analysis and uncer-
tainty II, Bell Syst. Tech. J. 40 (1961), 65–84.

[19] H. J. LANDAU AND H. O. POLLACK, Prolate spheroidal wavefunctions, fourier analysis and uncer-
tainty III: The dimension of the space of essentially time- and band-limited signals, Bell Syst. Tech. J.
41 (1962), 1295–1336.

[20] T. MOUMNI, On essentially time and Hankel band-limited functions, Integral Transforms Spec. Funct.
23 (2012), 83–95.

[21] J. RAMANATHAN AND P. TOPIWALA, Time-frequency localization and the spectrogram, Appl. Com-
put. Harmon. Anal. 1 (1994), 209–215.

[22] F. RIESZ AND B. SZ.-NAGY, Functional Analysis, Frederick Ungar Publishing Co., New York, 1955.
[23] H. RAUHUT, Time Frequency and Wavelet Analysis of Functions with Symmetry Properties, Logos

Verlag Berlin, 2005.
[24] H. RAUHUT, Banach frames in coorbit spaces consisting of elements which are invariant under sym-

metry groups, Appl. Comput. Harmon. Anal. 18 (2005), 94–122.
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