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A RIEMANNIAN STRUCTURE FOR CORRELATION MATRICES

PAUL DAVID AND WEIQING GU

Abstract. In this paper we present a new approach to viewing the set of non-degenerate correla-
tion matrices Corr(n) as a manifold and provide an optimization procedure using its newfound
Riemannian structure. First we give a proof that Corr(n) is a quotient submanifold of the sym-
metric positive-definite matrices SPD(n) obtained via a Lie group action of positive diagonal
matrices Diag+(n) . With this structure Corr(n) naturally inherits a Riemannian metric from
SPD(n) and therefore enables us to develop a Riemannian-based Newton’s method on Corr(n) .
We subsequently compare this Newton method to other optimization methods on Corr(n) .
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