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A RIEMANNIAN STRUCTURE FOR CORRELATION MATRICES

PAUL DAVID AND WEIQING GU

(Communicated by Y. Nakatsukasa)

Abstract. In this paper we present a new approach to viewing the set of non-degenerate correla-
tion matrices Corr(n) as a manifold and provide an optimization procedure using its newfound
Riemannian structure. First we give a proof that Corr(n) is a quotient submanifold of the sym-
metric positive-definite matrices SPD(n) obtained via a Lie group action of positive diagonal
matrices Diagy (n). With this structure Corr(n) naturally inherits a Riemannian metric from
SPD(n) and therefore enables us to develop a Riemannian-based Newton’s method on Corr(n).
We subsequently compare this Newton method to other optimization methods on Corr(n).

1. Introduction

Correlations and correlation matrices have been a standard object of study in statis-
tics and probability to measure the relationship between random variables, and as such
are very crucial to modern data analysis. A number of modern research areas have
utilized SPD(n) and correlation matrices (not necessarily positive-definite) in a vari-
ety of applications including but not limited to diffusion tensor imaging [6, 2, 18, 21],
statistics for modeling Gaussian distributions [14, 23], and their role in classification of
data sets that occur on non-linear spaces [14, 8, 13, 10]. Of fundamental importance
to the aforementioned research is to find efficient ways for averaging and optimizing
nonlinear matrix-valued data. We let SPD(n) be the set of symmetric positive-definite
matrices of size n, and define Corr(n) C SPD(n) to be the set of positive-definite cor-
relation matrices (elements of SPD(n) with unit diagonals). SPD(n) happens to be an
open and convex subset of the symmetric matrices Symm(n), hence linear averaging
is certainly possible on this subset. Many researchers however have found that uti-
lizing various Riemannian manifold structures of SPD(n) yield more accurate results
in optimization and modeling. The work done in [2, 3] for instance show how dis-
tances between symmetric positive-definite matrices can be interpreted in terms of a
log-Euclidean framework, in which SPD(n) is shown to be isomorphic to the space of
symmetric matrices Symm(n) = T;SPD(n) under a special binary operation defined on
this space. The work of Moakher [17] gives a criterion for the barycenter of SPD(n)-
valued observations, a result we subsequently use for a gradient descent procedure we
use in Section 3.
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Our investigation of the manifold structure of Corr(n) is the first, to our knowl-
edge, to incorporate its relationship as a subset of the symmetric positive-definite ma-
trices. It was already proven by Grubisi¢ and Pietersz in [7] that the nondegenerate
correlation matrices possess manifold structure, though this was merely a special case
of a larger result they proved: Correlation matrices of fixed size and rank form a man-
ifold. Our work in this article deviates from their construction in that we offer a new
quotient and Riemannian structure for correlation matrices in terms of the symmetric
positive-definite matrices SPD(n). Utilizing the affine-invariant geometry of SPD(n)
we are able to develop a Newton optimization algorithm for the sum of mean-squared
distances on Corr(n). In Section 2 we give our proof of the quotient manifold structure
of Corr(n) in terms of SPD(n). The main challenge following this was to define a
meaningful Riemannian metric and distance on Corr(n) that was reflective of its in-
herent quotient manifold structure. As a submanifold Corr(n) certainly inherits the
affine-invariant metric of SPD(n) simply by restriction, however we discovered that
this metric provides additional symmetry which was useful for computation. We ob-
served that the Lie group acts isometrically with respect to the affine-invariant metric,
hence using the theory of isometric Lie group actions developed in [1 1] the expressions
for geodesics and distances between elements of Corr(n) are simply modifications of
those on SPD(n). The main modification roughly involves the following procedure.
Taking two elements C;,C, € Corr(n) with C; as the starting point for the geodesic

1. View C; and C, as belonging to SPD(n) and find the element G lying along
the fiber over C; which minimizes the SPD-distance between C; and C,.

2. Find the SPD geodesic ¥ between C; and G.

3. Obtain the Corr geodesic y simply by projecting the SPD geodesic back to
Corr(n) (i.e. y=moy where m: SPD(n) — Corr(n) is the natural projection
arising from the group action).

Having obtained the necessary Riemannian framework for Corr(n), and hence
geodesics in this space, we embarked on developing a Newton’s algorithm for optimiz-
ing the sum of the squared distances between points in Corr(n), the details of which
comprise Section 3. We developed computations for approximating the Hessians as
well as obtaining Riemannian distances between elements of Corr(n), a task which
relies entirely on the quotient structure and the fact that the action is isometric. Our
Newton’s method is the first to utilize the affine-invariant structure in this manner and
is suggestive of a general way in which to perform optimization on arbitrary quotient
manifolds. We lastly provide some numerical experiments in Section 4 to compare the
performance of our algorithm to those proposed in [7], and investigate the validity of
our affine-invariant structure for computation, as well as the differences between Eu-
clidean and Riemannian means on Corr(n) for various sizes of n. We offer a brief
conclusion of our results in Section 5.
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2. The manifold of correlation matrices

2.1. Manifold structure for Corr(n)

We present here a proof that Corr(n) is a manifold.

THEOREM 1. The Lie group Diag.(n) of diagonal matrices with positive entries
acts smoothly, properly, and freely on SPD(n) as amap Diag(n) x SPD(n) — SPD(n)
given by (D,P) — DPD. Subsequently the quotient manifold SPD(n)/Diag(n) re-
sulting from this group action is a smooth manifold in which every element can be
uniquely expressed by an element of Corr(n). We therefore identify Corr(n) with this

quotient space itself, and observe that dimCorr(n) = dimSPD(n) — dimDiag. (n) =

n(n—1)
—5.

Proof. Consider the group action Diag (n) x SPD(n) — SPD(n) givenby A-X =
AZA. It follows from the theory of group actions on manifolds that if this is a smooth,
free, and proper action then the quotient space SPD(n)/Diag-(n) is a smooth manifold
and the projection mapping a smooth submersion. We immediately have that the action
is smooth since matrix multiplication is smooth. The action is free when AXA =X
implies that A = I. Observe that on the diagonal elements of X the action being free
implies that ll%a,-,- = 0;;. Since the o; > 0 we observe that QLZ% =1 implying A; = 1
foreach i € {1,...,n}. Therefore A =1 and the action is free.

To show that the action is proper, we borrow a result from [15] that properness
is equivalent to showing the following: If {¥;} is a sequence in SPD(n) such that
¥ — X, and {Dy} is a sequence in Diag(n) such that Dy -%; — Q € SPD(n) then a
subsequence of the {Dy} converges in Diag,(n). If {%:},{Dx} and Z,Q all satisfy
the above requirements, then we need only look at diagonal entries. The convergence
of sequences of matrices in this case is equivalent to the convergence of real number

2 2
sequences Gi(ik) <dl.(l.k)> — ¢ji- One can easily show that <dl.(l.k)> — z—’; > 0, and since
(k)

these values are all positive we have that the sequence {dﬁ } converges to a positive

real number. Since this result holds for each value of i we have that the sequence { Dy}
converges in Diag (n) and the action is proper.

We conclude that the quotient space SPD(n)/Diag(n) is a smooth manifold of
dimension "("; D_pn= "("; U with smooth projection mapping SPD(n) —
SPD(n)/Diag+(n). Lastly observe that we can represent each class [X] in the quo-
tient space uniquely by its representative Dy -~ where Dy = (I o Z)*l/ 2 and o is the
Hadamard product. Therefore Dy -2 is symmetric positive-definite with unit diagonal;
a correlation matrix. Since the quotient manifold is in bijective correspondence with
the correlation matrices we conclude that

Corr(n) = SPD(n)/Diagy(n). O (1)
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2.2. Isometric group action and Riemannian structure

While the result that Corr(n) exhibits this particular quotient manifold structure is
meaningful in and of itself, this fact alone does not yield results that are suitable for
algorithms and computation. In order for our results to have meaning in an algorithmic
sense we need the notion of distance on Corr(n) which can only be obtained from a
Riemannian structure.

The Riemannian structure of the ambient manifold SPD(n) has been well-studied
and has been used for computations in a variety of contexts. In particular, authors have
identified the affine-invariant structure for computing means [17], computer visualiza-
tion [18, 19], statistics [16], DT MRI [21], and kernel dictionary learning [9] to name a
few. In addition to this, another popular metric given by the Log-Euclidean framework
realizes SPD(n) as a manifold diffeomorphic to the vector space of symmetric matri-
ces using the exponential map as a diffeomorphism between the spaces, and the matrix
logarithm as its smooth inverse. The Log-Euclidean framework has been found to be
useful again in diffusion tensor MRI [2, 20], kernel SVM [12], with Arsigny et al. un-
covering a novel Lie group and vector space structure on SPD(n) using this framework
in [3].

For our present research, we find that the affine-invariant structure of SPD(n)
leads us to a natural Riemannian structure for Corr(n). While we can consider the
Riemannian structure of Corr(n) induced by the affine-invariant metric of SPD(n)
given by

(A,B)p = Tr[P~'AP™'B] 2)

simply via the restriction of this metric to the tangent space at each point, we find
that the Lie group action of Diag, (n) plays a crucial role in our understanding of this
structure. In particular, we find that Diag(n) acts isometrically on SPD(n), leaving
the value of the metric unchanged along the fibers of each point. Defining the map
®p : SPD(n) — SPD(n) for each D € Diag.(n) as ®p(P) = DPD, we can easily
verify that d (®p)p (A) = DAD. We subsequently find that the pushforward along fibers
satisfies

<d(q)D)P(A)7d(q)D)P(B)>(I)D(P) = (A4,B)p.

In [11] Huckemann et al. proved many useful results on the Riemannian structure of
manifolds obtained from isometric Lie group actions. The main result needed for our
present paper is the fact that the geodesic connecting two points in the quotient, can be
expressed as the geodesic in the ambient manifold from the starting point to an optimal
representative of the end point, lying on the fiber over the desired endpoint.

To make this concrete, given Cy,C, € Corr(n), the geodesic and corresponding
distance in SPD(n) connecting these two points are given by the following:

YSPD(I) = Cll/zEXp [tLog (C;1/2C2C;1/2>} C11/2

B - 2
&pp (C1,C2) = HLog (cl 12¢,c 1/2)HF.
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In order to adapt this Riemannian structure to Corr(n) we need to find the optimal
representative of C; with respect to the starting point Cy. This is done by finding the
unique element C, in the fiber 7~! (C,) which minimizes the SPD-distance between
Ci and C,. This can be found by writing

o (C1,C2) = inf  dgpp(C1,DC2D) 3)
DeDiag (n)

D* = arginf dap(Cy,DCD) 4)
DeDiag (n)

G, = D*C,D". )

As we will see in Section 3.3 we will generally approximate solutions to equation 4
using a Riemannian gradient descent on Diag (n). We then find that the corresponding
geodesic can be taken as the projection of the SPD-geodesic connecting C; and C;:

Yeorr(t) = T (c}/ 2Exp [tLog (Cfl/ 20,0 2)] cl/ 2) . ©)

2.3. Adaptability to complex correlations

We briefly mention here that the preceeding formulation can just as well be adapted
to complex-valued correlations by looking at a similar action on the set of Hermitian
positive-definite matrices which we denote HPD(n). Following the work of [1], we
know that HPD(n) is a homogeneous space equivalent to HPD(n) = GL,(C)/U (n),
with canonical tangent space TyHPD(n) = Herm(n), the set of Hermitian matrices. An
affine-invariant Riemannian metric is similarly given by

(A,B)p = Tr[P'AP™'B] (7)

where remarkably the right hand-side of equation 7 is real-valued, which can easily be
demonstrated by noting that P"!AP~! and B are both Hermitian and therefore admit
decompositions of the form X +iY, where X is real symmetric and Y is real skew-
symmetric. Theorem 1 can easily be adapted by considering the action Diag. (n) X
HPD(n) — HPD(n) by (D,H) — DHD. The proof is identical once we acknowledge
that elements of HPD(n) must have real positive diagonal entries, and thus we obtain
that complex correlations possess a quotient structure

Corr(n,C) = HPD(n)/Diag(n). (8)

The Lie group Diag, (n) similarly acts isometrically on HPD(n), and therefore the
expressions for geodesics and distances follow similarly using the results of [11]. The
one discrepancy here is simply acknowledging the dimensionality differences between
the real and complex cases. Viewing HPD(n) as a real manifold we find that

dimHPD(n) = dimGL,(C) —dimU(n) = 2n*>—n* = n?
dimCorr(n,C) = dimHPD(n) — dimDiag, (n) = n*—n = n(n—1).
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3. Newton’s method on SPD(n) and Corr(n)

We present here a Newton’s gradient descent algorithm which seeks to minimize the
mean-squared distances of SPD(n) and Corr(n)-valued observations with respect to
the affine-invariant distance. Given observations Py),..., Py € SPD(n), the objective
function on SPD(n) we will incorporate is

1Y 1Y ~1)2
Fpo(P) = 3 Y dion (P P) = 53 |[Los (r Perg )| 0
i=1 i=1 F
We will similarly discuss the same objective function applied to Corr(n) where given
observations C(y),...,Cy) € Corr(n) we define
1 1Y —1)2 1/2
Feorr(C) = 5 Edc(w ( ) = 3. 2 rgmf ‘Log ( (0) D;CD,; C ) H

i=1D;€Diag+(n

(10)

For the sake of computing the gradients and Hessians of these similar functions, we
initially focus our attention on equation 9. The reason for this is that in equation 9
we seek to optimize P, while in equation 10 we seek to optimize C. It is therefore
desirable to express our Newton’s method for working in SPD(n), and then to adapt
our results when we are restricted to working Corr(n), where Newton’s method again
occurs in the ambient space SPD(n), but with the added steps of finding optimal points
along fibers (before the update) and then projection back to Corr(n) (after the update).

3.1. Computing gradients

The computation of the gradient for SPD(n) follows immediately from the work of
Moakher [17] where it was shown for the objective function Fspp

N
VFgpp(P) = PY Log (P(;)IP) . (11)
i=1

3.2. Approximating Hessians

We focus again on the techniques developed in [17] in order to approximate the Hessian
to Fspp. Fundamental to this is the notion of approximating our expression for the
gradient above using a Taylor expansion. It is helpful for this analysis to define

Dy 12512\ _ 1 2 (p-1/2pp-1/2
fi(P) = HLog( PP )HF - 5Tr[Log (P(l.) PP, )}
and to observe that
N N N
Fspp(P) = Ef,(P) VFspplp = ZVf,|p Hess Fspplp = EHessfi|p.

i1 i1
(12)
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To proceed with approximating the Hessian, we borrow a key lemma from [17], which
demonstrated that given a smooth matrix-valued function X (¢) of a real variable ¢ such
that X ~!(¢) exists for all 7, we have that

di%Tr[Log( X(1)] = Tr[(LogX ()X ()X (1)]. (13)

To find an explicit approximation to the Hessian, consider the application Hess f;(A,A)|p
with tangent vector A. We compute the Hessian in coordinates by considering the
SPD(n)-valued curve

X(t) = ()l/zPl/zExp (tP‘l/zAP‘m) PI/ZP( /2 _ P( )1/2P( )P(l—_)l/z
where P(t) is the SPD geodesic satisfying P(0) = P and P(0) = A. A straightforward,
albeit tedious, computation demonstrates that

di%Tr [Log?(X(t))] = Tr [Log (P(;)IPW Exp (tP*l/zAP*/z) P1/2) P*IA} (14)
where we note a liberal use of the identity ALog(B)A~! = Log(ABA™!), which can
easily be proven taking the series expansion of the logarithm into account. In computing
the Hessian at the point P € SPD(n), we need to take another derivative of the expres-
sion above and then evaluate it at = 0. For symmetric matrices, the logarithm function
admits a closed-form expression using the spectral decomposition of its argument. We
however chose to avoid this method in computing the Hessian since this would neces-
sitate a chain. Instead, we considered the Taylor expansion of the Logarithm function,
which for algorithmic purposes yields terms expressed in ordinary matrix multiplica-
tion and tensor products. For our purposes, we truncated our expansion to third order,
and obtained the approximate expression

oo k+1 1 1
Log(A 2 ) (A—D*~A—T— (A =2A+1)+5 (A% =342 4 3A 1)
= 2 3
1, 3 11
= A3 ZA’43A——1I
3 6
Taking A = P(;)IPI/ 2Exp (tP~!/2AP~1/2) P!/, we compute the derivatives of each
term as
d d 1,12 1/2 5 p—1/2) pl/2 1
LAl = Zpip Exp(tP AP~ )P —pIA
|y dr ¥ —
d _ ,dA d _ p-lpp-1 —1Ap—1
| A+ A‘ = P PP A+ Py AP P
d ;3 _ dA*  dA , _ p-1 —1pp—1 —1Ap—1 —IAp—lpp-1
A e I [P PPy A+ PG ARG P 4 P AP PRI P
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Our full expression for the second derivative is therefore given by the approximation

2

1 2
e [Log”(X(1))] (15)
~ 1 —1 —1 —1 —1 —1 —1 —1
~ 3T By PR PR AP~ A+ 2P PR AR A

3 1pp-lrp-1 —1Ap-1 “1Ap-1
3T By PRSI APT A PG ARG A +3Tr [P APTA)

It is important to note that we can find the off-diagonal terms using the following equa-
tion

t=0

1 2 1 2
Hess fi(A1,8) = < Tr [P(l.)l (PP(;)l) AlPlAz} T {P(l.)l (PP(I’.;) AzPlAI]

+% Tr :P(l’.)lPP(l’.)lAlP(;)lAg} T % Tr [P(;)IPP(I’.)IAzP(I’.)IAI}
- % Tr :PG)IPPG)IAlP_lAz} - % Tr [P(;;PP(;)IAzp—IAI]
- % Tr :P@lAlP(j)lAz} _ % Tr [P(;)lAQP(;)IAI]
+% Tr :P@lAlP_lAz} + %Tr [P(;)lAQP—lAI] .

The derivation for this comes from the polarization identity which we borrow from [5],

and leave the details of the computation in the Appendix A. In Newton’s method we

will need to invert the Hessian of our objective function, hence it is necessary to express

our equation in terms of a standalone expression. Observing the tensor relation
(vecA)T (B®C)(vecD) = Tr (DBTATC) = Tr (BTATCD) ,

the fact that all of the matrices that we’re considering are symmetric, and recalling the
affine-invariant metric, we compute the following for each term in the above Hessian
approximation:

Hess filp ~ ~ (PP(51)3®1+1® (P(l.)lpﬂ (16)

:<PP(;)1)2 QI+ <P<;)1P)2]

[pp-1 —1 ~1 o p-1
+3 PPl 1+ 10 Py P— PRy @ PGP

v3|(pr) wrtpserte (re) |
3
4

We obtain our full approximation for the Hessian as

N
HessFspp|p ~ Y Hess f;. (17)
i=1
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The process of truncating the Taylor approximation of the matrix logarithm is admit-
tedly an ad hoc procedure, one which may be viewed as problematic, especially if the
argument is far away from the identity. In our algorithm we actually include a criterion
as to whether we include the component Hess f; in our overall Hessian. Recall that the
matrix logarithm Log(A) is absolutely convergent in the case that ||[A —I||p < 1. We
indeed impose this condition and discard terms that do not satisfy this.

3.3. Optimizing along fibers

The above analysis can be applied equally well in SPD(n) and will ultimately be used
for Newton’s method on Corr(n). However, before we continue we need to specify
how to optimize along the fibers over Corr(n)-valued elements since this is crucial in
accurately representing Riemannian distances between points of Corr(n). We recall
again from [1 1] that in order to appropriately find the distance between elements Cy,C;
of a quotient manifold we need to find the element between C; and the fiber over C;,
which minimizes the overall distance!. Recall again that the distance between C1,C; €
Corr(n) is given by

A2 (C1.C))= inf  d2py(Cy,DCD) = inf T[L 2<c‘1/2DCDc‘1/2)}
Corr(C1,C2) DeDliralg+(n) spp(C »D) DeDliI;g+(n) r|Log 1 200

where we note that by symmetry we can just as well fix C; and then optimize over
the fiber of C;. For our purposes, we intend to minimize the distance between an
iterate G; of our algorithm between all of the observations Cy),...,C), hence we
want to arrange our algorithm so that we are always keeping our iterate fixed and then
optimizing along the fibers of our observations. In this way, we guarantee that we are
updating our itererated point appropriately. If we were to optimize along the fiber of
our iterate, we would end up with drastically different optimal points, not yielding a
consistent base point.

An important note here is to recall the quantity D* given in equation 4. We ac-
knowledge that fiber optimization is relegated to a learning problem on the Lie group
Diag(n). Even though Diagy(n) is convex, the fact that it is noncompact leaves us
without a guarantee for convergence. However as we have seen in practice, the con-
vergence of our algorithm is quite reliable and has not posed any issues with respect
to optimization along Diag(n). In finding the optimal point, we employ a simpler
gradient descent in the Lie group Diag. (n) with respect to the objective function

1
gi(D) = Edng(c1 ,DC>D). (18)

In computing the gradient we use equation 13, the same result as given in [17]. In this
case we take

x@) = ¢;'2s@)c; ' = o Pyneyne?

"Here the distance is taken in the ambient manifold. In our case, this would be SPD(n).
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where y(t) = D'/2Exp (tD~'/2AD~'/2) D'/? and S(t) = y(t)C>¥(t) . Here v is a geodesic
in Diag, (n) with respect to the same affine-invariant metric. In order to compute the
gradient of the objective function we compute

d1
—~dspp(C1,DCyD
€2 $pp(C1,DC )t=0
= ilTr [Log < s (t)C_1/2>]
dr2 ! =0

— Tr [Log( 12 (0)c;1/2) (cj”D oniol lcl/z) ;"2 (AGD+ DAY

= Tr [Log (C; 'DC,D) (D™'C;'D™") (AC:D + DGA)|
= Tr [Log (C;DC; 'D) D™'A+Log (C; 'DC,D) D™'A] .

Interpreting the above quantity in light of the affine-invariant metric in equation 2 ap-
plied to Diag(n), we find that

Vgi(D) = IoD|Log (CgDCl_lD) +Log (C;chzD)] (19)

where we take the Hadamard product with respect to / to guarantee this quantity is
restricted to diagonal matrices. For computational convenience we can actually sim-
plify this further taking the symmetrization operator Sym(A) = %(A +AT) and the fact
that due to the Taylor series expansion for the logarithm we know that ALog(B)A~! =
Log(ABA™!). We find that
DLog (C,DC; 'D) + DLog (C; ' DC,D)

= DLog (C,DCy 'D) + DLog (C; ' DC,D) D™'D

= DLog (C,DC; ' D) + Log (DC; ' DC;) D

— DLog (C:DC; 'D) + [DLog (G:DC; 'D)]" = 28ym [DLog (CDC; ' D)].

Hence we further simplify
Vgi(D) = I02Sym[DLog(CDC{'D)]. (20)

In order to minimize the objective function 18 we can follow a simple gradient descent
algorithm using a stepsize 6 > 0 by the following iterative steps

A, = 102Sym [D;Log (C:D,C; ' Dy) ]
Dii = D Exp (—5Dt_l/2AtD_1/2> D)% = D, Exp (8D, 'A,)

until a desired stopping criterion is reached. We note that in the step rule for D, that
because all of the elements commute we can avoid finding matrix square-roots to ease
computation. Once we find an optimal Lie group element D* € Diag, (n), as a result
of minimizing g(D), we write our optimal fiber element over C, as 52 = D*C,D*.
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3.4. Newton’s method

In writing out a geodesic Newton’s method for SPD(n), we see that our update rules
are given by

— (Hess Fspp) ™" (VFspp(P))
Ptl/zEXp (P;‘_l/thPt_l/2> 1_‘,;1/2

H,

Py

where VFspp and Hess Fgpp are given by equations 11 and 17, respectively. While this
works fine for optimization in SPD(n), we need to modify these updates when taken in
the context of Corr(n) for the following reasons:

1. To accurately reflect distance between elements of Corr(n), we need to find opti-

mal points C(;) along the fibers of our observations Cj;), and measure the distance
of these optimal points to our current iterate C; .

2. Because our optimal points C(;) will in general belong to SPD(n) butnot Corr(n),
Newton’s method will then be carried out in SPD(n) using the above update
rules, treating our current iterate C; € SPD(n).

3. We determine a new update P4 using the above update rules, but because P,
will in general not lie in Corr(n), we project this element down and define
Ci1=7w(Ps1)-

We summarize our proposed algorithms for SPD(n) and Corr(n) in algorithms 1 and
2.

Algorithm 1 Newton’s method on SPD(n)
Require: Observables Py, ..., Py, initial point P
1. t=0
2: while Stopping criterion not met do:
x G =PBYY Log (P@%)
4 H; = Hess Fspp|p, (given in equation 17)
5 V, = —H, ! (vec(G;)) (resultis n> x 1)
6: Reshape V; tobe n xn
7
8
9

P =R Exp (B7Pvp ) B2
: t—r+1
: end while

We compare this with the augmented steps for Newton’s method on Corr(n) below:
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Algorithm 2 Newton’s method on Corr(n)

Require: Observables Cy),...,Cy), initial point Co, stepsize 6 >0
1. t=0
2: while Stopping criterion not met do:
3: fori=1,...,N do:

Require: Initial point Dy
4: k=0
5: while Stopping criterion not met do:
6: A =I02Sym [DyLog (C;)DiC; ' Dy)]
7 Dy1 = DiExp (—6D; 'Ay)
8: k—k+1
9: end while

10: C(l) = kaAXC(l-)kaax .

11: end for _

2 G =G3Y Log(C,lG)

13: H; = Hess Fspp|c, (given in equation 17)

14: V, = —H; '(vec(G,)) (resultis n> x 1)
15: Reshape V; tobe n xn

6 R =GlExp (67 e ) ¢
17:  Project back to Corr(n) with Cyy = (P 1) = I 0Py 1) /2P (IoP )~ '/?
18: t—t+1

19: end while

We comment here that while we focus specifically on the cases on SPD(n) and its
quotient Corr(n), the Newton’s method employed here is indicative of a way to conduct
Newton’s method on quotient manifolds obtained via isometric Lie group actions. An
additional note is in regards to the gradient expression in line 12 of algorithm 2. Here we
are using the gradient expression for mean-squared distance on SPD(n) since after we
lift our matrices along fibers, we then update our position in SPD(n) and then project
back to Corr(n).

4. Numerical experiments

In this section we discuss the performance of our proposed algorithm against other
algorithms on the correlation manifold. First we analyze the difference between the
mean-squared distance of randomly sampled points using different Riemannian struc-
tures. Specifically we compare Riemannian mean and Euclidean mean of randomly
sampled correlations and give the distribution of their distances for different sizes of
matrices. We next have a discussion of convergence by looking at the rate of conver-
gence of our algorithm compared to others. We compare the log relative residual of the
gradient steps to other algorithms for various size of matrix and number of correlations
to minimize.
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4.1. Affine-invariant mean vs. Euclidean mean

Since we have developed an algorithm on Corr(n) for minimization of mean-squared
distances, it is reasonable for us to consider in what sense that the minimizer of the
objective function stated in equation 10 deviates from the Euclidean mean. While it is
not clear the exact relationship between these quantities then we at least seek to quantify
the distances between these points.

Given an observed set of correlations Cy),...,Cy), we can find both the linear
average given by

=

—Lin 1
[omi—
N4

1

Ci)

as well as our Riemannian averaging given by

chiem — arginf Fe,(C)
CeCorr(n)
where again Fg,,, is the function in 10. We lastly compute the distance between these
points on the manifold by computing

dist = deoyr (6””,6“””).

We repeat this sequence of computations 500 times each on Corr(2),Corr(5),Corr(10),
and Corr(12). Similarly we also consider a fixed matrix size and evaluate the changes
in the distributions as we increased the sample size. Both histograms can be viewed in
figure 1. These histograms can give us a sense in how much the affine-invariant struc-
ture for Corr(n) deviates from the Euclidean structure we can impose on Corr(n).
The histograms indicate a well-defined distribution showing the deviation of the Rie-
mannian mean from the Euclidean mean. In addition, there appears to be an increase
in this deviation as we increase the size of the matrix. This phenomena may give an
indication as to how the curvature of Corr(n) changes with an increasing n, but we
leave these considerations for future research.

4.2. Convergence and run times

Our Newton algorithm that we proposed is not the first Riemannian optimization method
proposed on Corr(n). In [7] Grubisié¢ and Pietersz provided gradient descent and New-
ton algorithms on Corr(n) using a different structure: the manifold of Cholesky factors.
The work presented therein was mainly focused on the problem of rank reduction of
correlation matrices and their optimization procedure involved defining a Riemannian
manifold of Cholesky factors for each size n of the correlation matrix and each desired
size d for the rank of said matrix. The formalism they presented was strongly moti-
vated by the works [5, 4] where Edelman et al. defined efficient and robust optimization
methods for the Grassmann and Stiefel manifolds. Adapting the geometric optimiza-
tion procedures of the Grassmann and Stiefel manifolds yielded efficient methods for
correlation optimization of the Correlation manifold.

As a way to compare the convergence properties of our proposed method compared to
theirs we look at several of the methods utilized in [7, 22, 24]. Specifically we look at
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Figure 1: Left: Histogram of distances between Euclidean and Riemannian means for
sets of randomly intialized correlations of Corr(2),Corr(5),Corr(10), and Corr(12).
There are 500 trials for each size of matrix and each trial we take the mean of 20
correlations. We can see that as the dimension increases, so does the peak mean distance
for the distribution. Right: Histogram of distances between Euclidean and Riemannian
means in Corr(3) for samplings sets of sizes 20, 30, 50, and 100. We can discern here
a well-defined distribution which arises independent of the sample size. At the present
moment our best understanding of the relationship between these two means is given
statistically.

1. Newton’s method on Cholesky factors,
2. Fletcher-Reeves optimization, and
3. Polak-Ribiere optimization.

In order to offer an accurate comparison between these methods we would ideally need
to utilize the same objective function accross optimization algorithms. Unfortunately
the affine-invariant structure that we have developed for Corr(n) does not yet offer flex-
ibility for objective functions other than the mean-squared Riemannian distance. In our
future work we intend to broaden the applicability of this Riemannian structure to other
optimization problems on Corr(n). In order to provide a meaningful comparison of the
convergence properties of our algorithm we compare the Riemannian mean-squared op-
timization problem to that of the Euclidean mean-squared optimization problem, where

given a sequence of observed correlations Cy),...,Cy) we seek to
L 1Y 2
minimize Fp;,(C) = EEHC—C(,-)H 7 such that C € Corr(n). (21)
i=1
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To summarize: given sampled correlations C(y),...,Cy) we minimize the objective
function in equation 10 using the affine-invariant Newton method, and minimize equa-
tion 21 using the Cholesky Newton, Cholesky Fletcher-Reeves, and Cholesky Polak-
Ribiere algorithms. To compare the performance of each of these we look at the rela-
tive log-residuals of the gradient vectors at each iteration of our algorithms given by the
quantity In(||VF(G)||/||VF(C1)||) where the norm of the tangent vectors is the same
as the distance used for the corresponding optimization procedure (i.e. the Frobenius
norm is used when we minimize equation 21 and the affine-invariant norm is used to
minimize equation 10). We provide a few samples below in figure 2. What we find
overall is that the affine-invariant Newton method has a relatively slow rate of conver-
gence compared to the other methods.

The behavior is consistent and the log-resolution of tangent vectors decreases with each
step as the various experiments show. To give a sense of quickly these algorithms run
we recorded the run times of these algorithms over various dimensions and number of
samples. We show the histograms for run times in figure 3.

5. Conclusion

We first presented here a proof that the correlation matrices form a quotient subman-
ifold of SPD(n), next developed a Riemannian-based Newton’s algorithm for these
matrices, and finally demonstrated the efficacy of this new optimization procedure with
numerical experiments showing its convergence properties as well as comparing Eu-
clidean and Riemannian means. Our work gives a new geometric characterization of
correlation matrices which has a direct impact on our understanding of statistics and
machine learning. The quotient structure of Corr(n) proven is distinct from the other
Riemannian structures defined on it since it inherits a highly structured Riemannian
metric from SPD(n). The affine-invariant metric of SPD(n) remains unchanged with
respect to the action of Diag (n), thus we are able to utilize the theory of isometric
Lie group actions to efficiently obtain expressions for geodesics in Corr(n). We ob-
tain these expressions by first finding optimal points along the fiber of each correlation,
follow the SPD(n)-geodesic, and then project the result back to Corr(n). Because
of ubiquity of correlation matrices in applied mathematics, this newfound Riemannian
structure for Corr(n) has implications for probability, statistics, and methods for data
analysis and machine learning.

A. Off-diagonal terms of the approximate Hessian

Here we derive the off-diagonal terms of the approximate Hessian given in 15. Here we
use the polarization identity for quadratic forms QO

O(A1,A2) = —[O(A1+ A2, A1 +A2) — O(A1 — Ag, AL — Ay)] (22)

N
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Figure 2: Relative Log-residuals for various matrix size and number of samples. The
curves are given by In(||VF(G;)||/||VF(C1)||) at iterate i. The upper left chart uses
Corr(10) averaging 50 samples. The upper left uses Corr(10) averaging 100 sam-
ples. The lower left chart uses Corr(12) averaging 20 samples. The lower right uses
Corr(12) averaging 30 samples.
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Figure 3: Run time histograms for matrices of size n = 2,5,10,12 and 100 samples
each. 500 trials were performed for each choice of matrix size and sample size. As
the matrix dimension increases the run time distribution for the Corr-Newton method
shifts to the right. Though the Corr-Newton method is measurably slower than the other
algorithms, it still performs quickly overall.
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We first expand the first term in the expression above:

Hessf,-(A1 —|—A2,A1 +A2)
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Next we expand the second term:
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Subtracting one term from the other and dividing by 4 yield the Hessian on cross diag-
onal terms:
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In order to realize this as a Riemannian Hessian we have to take the affine-invariant
metric into account. Considering the first term, we find
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where the last term is what we extract in finding a stand-alone expression for the Hes-
sian. We omit the computations for the other terms since the steps are identical. Note
that if A; € TpSPD(n) then P~'A; will be symmetric.
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<

1
6



626

[1

—

[2

—

[3

[t}

[4]

[5]

[6

—

[7]

[8

[t}

[9

—

[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

P. DAVID AND W. GU

REFERENCES

KHALED ALYANI, MARCO CONGEDO, AND MAHER MOAKHER, Diagonality measures of Her-
mitian positive-definite matrices with application to the approximate joint diagonalization problem,
Linear Algebra and its Applications, 528:290-320, 2017.

VINCENT ARSIGNY, PIERRE FILLARD, XAVIER PENNEC AND NICHOLAS AYACHE, Fast and simple
calculus on tensors in the log-euclidean framework, Lecture Notes in Computer Science Medical
Image Computing and Computer-Assisted Intervention - MICCAI 2005, page 115-122, 2005.
VINCENT ARSIGNY, PIERRE FILLARD, XAVIER PENNEC, AND NICHOLAS AYACHE, Geometric
means in a novel vector space structure on symmetric positive-definite matrices, SIAM Journal on
Matrix Analysis and Applications, 29(1):328-347, 2007.

Z. BAI, G. SLEIJPEN, H. VAN DER VORST, R. LIPPERT, AND A. EDELMAN, Nonlinear eigen-
value problems with orthogonality constraints, Templates for the Solution of Algebraic Eigenvalue
Problems, page 281-314, 2000.

ALAN EDELMAN, TOMAS A. ARIAS, AND STEVEN T. SMITH, The geometry of algorithms with
orthogonality constraints, SIAM Journal on Matrix Analysis and Applications, 20(2):303-353, 1998.
WOLFGANG FORSTNER AND BOUDEWIIN MOONEN, A metric for covariance matrices, Geodesy-
The Challenge of the 3rd Millennium, page 299-309, 2003.

IGOR GRUBISIC AND RAOUL PIETERSZ, Efficient rank reduction of correlation matrices, SSRN
Electronic Journal, 2005.

MEHRTASH T. HARANDI, RICHARD HARTLEY, BRIAN LOVELL, AND CONRAD SANDERSON,
Sparse coding on symmetric positive definite manifolds using Bregman divergences, IEEE Transac-
tions on Neural Networks and Learning Systems, 27(6):1294-1306, 2016.

MEHRTASH T. HARANDI, CONRAD SANDERSON, RICHARD HARTLEY, AND BRIAN C. LOVELL,
Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach,
Computer Vision - ECCV 2012 Lecture Notes in Computer Science, page 216-229, 2012.

INBAL HOREV, FLORIAN YGER, AND MASAHI SUGIYAMA, Geometry-aware principal component
analysis for symmetric positive definite matrices, 2015 ACML Conference Proceedings, 2015.
STEPHAN HUCKEMANN, THOMAS HOTZ AND AXEL MUNK, Intrinsic shape analysis: Geodesic
pca for Riemannian manifold modulo isometric Lie group actions, Statistica Sinica.

SADEEP JAYASUMANA, RICHARD HARTLEY, MATHIEU SALZMANN, HONGDONG LI, AND
MEHRTASH HARANDI, Kernel methods on the Riemannian manifold of symmetric positive definite
matrices, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.

TAKOUA KEFI, RIADH KSANTINI, MOHAMED BECHA KAANICHE, AND ADEL BOUHOULA,
A novel incremental covariance-guided one-class support vector machine, Machine Learning and
Knowledge Discovery in Databases Lecture Notes in Computer Science, page 17-32, 2016.
Hyunwoo J. KiM, NAGESH ADLURU, BARBARA B. BENDLIN, STERLING C. JOHNSON, BABA C.
VEMURI AND VIKAS SINGH, Canonical correlation analysis on spd(n) manifolds Riemannian Com-
puting in Computer Vision, page 69-100, 2016.

J. M LEE, Introduction to Smooth Manifolds, Springer, 2012.

CHRISTOPHE LENGLET, MIKAEL ROUSSON, RACHID DERICHE AND OLIVIER FAUGERAS, Statis-
tics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor
MRI processing, Journal of Mathematical Imaging and Vision, 25(3):423—444, 2006.

MAHER MOAKHER, A differential geometric approach to the geometric mean of symmetric positive-
definite matrices, SIAM Journal on Matrix Analysis and Applications, 26(3):735-747, 2005.

MAHER MOAKHER AND PHILIPP G. BATCHELOR, Symmetric positive-definite matrices: From ge-
ometry to applications and visualization, Mathematics and Visualization Visualization and Processing
of Tensor Fields, page 285-298, 2006.

MAHER MOAKHER AND MOURAD ZERAT, The Riemannian geometry of the space of positive-definite
matrices and its application to the regularization of positive-definite matrix-valued data, Journal of
Mathematical Imaging and Vision, 40(2):171-187, 2010.

XAVIER PENNEC, Statistical computing on manifolds: From Riemannian geometry to computational
anatomy, Emerging Trends in Visual Computing Lecture Notes in Computer Science, page 347-386,
2009.

XAVIER PENNEC, PIERRE FILLARD, AND NICHOLAS AYACHE, A Riemannian framework for tensor
computing, International Journal of Computer Vision, 66(1):41-66, 2006.



A RIEMANNIAN STRUCTURE FOR CORRELATION MATRICES 627

[22] WOLFGANG RING AND BENEDIKT WIRTH, Optimization methods on Riemannian manifolds and
their application to shape space, STAM Journal on Optimization, 22(2):596-627, 2012.

[23] SALEM SAID, LIONEL BOMBRUN, YANNICK BERTHOUMIEU, AND JONATHAN H. MANTON, Rie-
mannian Gaussian distributions on the space of symmetric positive definite matrices, IEEE Transac-
tions on Information Theory, 63(4):2153-2170, 2017.

[24] HIROYUKI SATO AND TOSHIHIRO IWAIL A new, globally convergent Riemannian conjugate gradient
method, Optimization, 64(4):1011-1031, 2013.

(Received March 22, 2018) Paul David
Claremont Graduate University

Weiging Gu
Harvey Mudd College

Operators and Matrices
www.ele-math.com
oam@ele-math.com



