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A NEW CLASS OF HYPERFINITE KADISON–SINGER FACTORS

FEI MA AND YE ZHANG

(Communicated by Z.-J. Ruan)

Abstract. In this paper, we construct a new class of hyperfinite Kadison-Singer factors on sep-
arable Hilbert spaces, and we show that each of these Kadison-Singer factors is isomorphic to
a subalgebra of CSL algebra. Moreover, a sufficient and necessary condition for two of these
Kadison-Singer factors being isometrically isomorphic is given. Finally, we obtain that every
norm preserving automorphism on these Kadison-Singer algebras is inner.

1. Introduction

In 1960, Kadison and Singer (see [12]) introduced and studied a class of non-self-
adjoint operator algebras which they called triangular (operator) algebras. Suppose H
is a separable Hilbert space and B(H ) is the algebra of all bounded linear operators
on H , and M is a von Neumann subalgebra of B(H ) . A triangular algebra T is a
subalgebra of M such that T ∩T ∗ is a maximal abelian selfadjoint subalgebra of M .
One of the interesting cases is M = B(H ) . Nest algebras introduced by Ringrose (see
[7, 8]) are the most well understood non-selfadjoint algebras, it is a class of maximal
triangular algebras. Let L be a set of projections in B(H ) , and Alg(L ) denote the
set of bounded operators that leave the range of every element of L invariant, i.e.,

Alg(L ) = {T ∈ B(H ) : (I−P)TP = 0,∀P ∈ L }.
Dually, let A be a set of operators in B(H ) , Lat(A ) denote the collection of projec-
tions whose ranges are left invariant by every element of A , i.e.,

Lat(A ) = {P ∈ B(H ) : P∗ = P,P2 = P,(I−P)TP = 0,∀T ∈ A }.
Recall that a subalgebra A of B(H ) is called reflexive if A = Alg(Lat(A )). Every
nest algebra is a reflexive algebra, and reflexive algebras are completely determined by
their lattices of invariant subspace projections.

In 2009, Ge and Yuan (see [10]) combined triangularity, reflexivity and von Neu-
mann algebra properties in a single class of algebras and introduced Kadison-Singer
(KS) algebras.
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DEFINITION 1.1. (See [10], Definition 1.) Let H be a separable Hilbert space.
A subalgebra A of B(H ) is called a Kadison-Singer algebra (or KS-algebra) if A
is reflexive and maximal with respect to the diagonal subalgebra A

⋂
A ∗ of A , in the

sense that if there is another reflexive subalgebra B of B(H ) such that A ⊆ B and
B
⋂

B∗ = A
⋂

A ∗ , then A = B . When the diagonal of a KS-algebra A is a factor,
we say A is a Kadison-Singer factor (or KS-factor). A lattice L of projections in
B(H ) is called a Kadison-Singer lattice (or KS-lattice) if L is a minimal reflexive
lattice that generates the von Neumann algebra L ′′ , equivalently, L is reflexive and
Alg(L ) is a Kadison-Singer algebra.

In [10], Ge and Yuan gave a class of algebras with hyperfinite diagonals. Later,
in [11] they constructed three free projections with trace 1

2 , and then proved that the
reflexive lattices generated by these three projections are homeomorphic to the sphere
S2 plus two points. In [6], Hou and Yuan generalized this result and proved the same
holds true for reflexive lattice generated by any double triangle lattice of projections
in a finite von Neumann algebra. Ren and Wu in [17] constructed a new kind of KS
lattices in separable Hilbert spaces. Dong and Hou in [1] studied the automorphisms
of some KS algebras. Wu and Yuan in [15] proved that if an abelian KS algebra A
is a subalgebra of matrix algebra Mn(C)(n � 3), then A cannot be generated by a
single element. Similar results can be found in [2, 3, 4, 5, 9, 16]. KS-algebras bring
connections between selfadjoint and non-selfadjoint theories, so many techniques and
tools in von Neumann algebras can be used to study these non-selfadjoint algebras.

In this paper, based on the hyperfinite KS-factors in [10], we construct a class of
lattices and a class of unbounded operators in separable Hilbert spaces, then we prove
that this lattice algebra is isomorphism to a subalgebra of CSL algebra. Moreover, we
show that Alg(L (n1,n2, · · · ,ns, · · ·)) is isometrically isomorphic to
Alg(L (m1,m2, · · · ,ms, · · · )) if and only if ni = mi, for all i = 1,2, · · · . Furthermore, in
Section 3, we show that if ni = 2 for each i , then every norm preserving automorphism
on Alg(L∞) is an inner automorphism.

2. Hyperfinite KS-factors

In this section, we shall construct a new hyperfinite KS-Factor. Similar to [10],
let Mnλ (C) (nλ > 1) be the algebra of nλ × nλ matrices and A obtained by tak-
ing the completion (with respect to operator norm) of ⊗∞

λ=1Mnλ (C) . Then we may

write A for Mn1 ⊗Mn2 ⊗·· · . We denote by E(k)
i j , i, j = 1, . . . ,nk, the standard matrix

unit system for Mnk(C) (k = 1,2 . . .), and for all m = 1,2 · · · , let

E(m)
i =

i

∑
t=1

E(m)
tt i = 1,2, · · · ,nm

be projections of Mnm(C) . Let

Nm(n1,n2, · · · ,nm) = Mn1(C)⊗Mn2(C)⊗·· ·⊗Mnm(C). (2.1)

Then A = ∪∞
m=1Nm(n1,n2, · · · ,nm) . Now, we construct (inductively) a family of pro-

jections in Nm(n1,n2, · · · ,nm) .
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If m = 1, define P1, j1 = ∑ j1
i=1 E(1)

ii , j1 = 1, . . . ,n1 −1, and P1,n1 = 1
n1

∑n1
s,t=1 E(1)

st .
Suppose when k � m−1, for each jk = 1, . . . ,nk, Pk, jk ∈ Nk(n1,n2, · · · ,nk) is defined.
Now when k = m, we define

Pm, jm = Pm−1,nm−1−1 +(I−Pm−1,nm−1−1)
jm

∑
i=1

E(m)
ii , jm = 1, . . . ,nm−1, (2.2)

Pm,nm = Pm−1,nm−1−1 +(I−Pm−1,nm−1−1)

(
1
nm

nm

∑
s,t=1

E(m)
st

)
. (2.3)

Denote by Lm(n1,n2, · · · ,nm) the lattice generated by {Pk, jk : 1 � k � m,1 �
jk � nm} and L∞(n1,n2, · · · ,nm, · · ·) = ∪mLm(n1,n2, · · · ,nm) , the lattice generated by
{Pk, jk : k � 1,1 � jk � nk} . If the sequence {nk}∞

k=1 is clear, without causing confusion,
we may write Nm,Lm,L∞ instead of Nm(n1,n2, · · · ,nm),Lm(n1,n2, · · · ,nm),
L∞(n1,n2, · · · ,nm, · · ·). We can easily show that Nm is generated by Lm (as a finite-
dimensional von Neumann algebra).

Let ρλ be a faithful state on Mnλ (C) , and ρ = ρ1⊗ρ2⊗·· · . Clearly, ρ is a state
on A . Let H and Hλ be the Hilbert space obtained by GNS construction on (A ,ρ)
and (Mnλ (C),ρλ ) . It is well-known (see Chapter 11.4 in [13]) that the weak operator
closure of A in B(H ) is a hyperfinite factor R (In particular, the factor R is type
II1 if ρ is a trace). Then Lm and L∞ become lattices of projections in R . It is similar
to [10] we can prove that Alg(L∞) is KS-factor containing the hyperfinite factor R ′
as its diagonal and the following lemma.

LEMMA 2.1. [10] With L1 ⊂ N1 defined above, we have

Alg(L1) = { T ∈ B(H ) : E(1)
ii TE(1)

j j = 0, 1 � j < i � n1;
n1

∑
j=1

E(1)
11 TE(1)

j1 =
n1

∑
j=2

E(1)
12 TE(1)

j1 = · · · = E(1)
1n1

TE(1)
n11

},

where E(1)
i j (i, j = 1, . . . ,n1) are the matrix units for N1 .

Let F1 = ∑n1
i=1 E(1)

i,n1
, and

Fm = (I−Pm−1,nm−1−1)
nm

∑
i=1

E(m)
i,nm

.

Now, we construct a class of operators {Vm} . Define Vm : H → H with

V1 =
n1−1

∑
i=1

E(1)
ii +

n1

∑
i=1

E(1)
in1

= P1,n1−1 +F1,

and when m � 2,

Vm = Pm−1,nm−1−1 +(I−Pm−1,nm−1−1)(E
(m)
nm−1 +Fm).

By the definition of Vm we have the following fact.
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LEMMA 2.2. If k > m, then VkPm,nm−1 = Pm,nm−1 = Pm,nm−1Vk .

Proof. From the definition of Vm , it is easy to see that when k > m ,

Vk −Pm,nm−1

= (I−Pm,nm−1)(Pk−1,nk−1−1−Pm,nm)+ (I−Pk−1,nk−1−1)(E
(m)
nm−1 +Fm)

= (I−Pm,nm−1)(Vk −Pm,nm−1).

When k � m, Pk−1,nk−1−1 � Pm−1,nm−1−1 . For all k > m, we have

(I−Pm,nm−1)VkPm,nm−1 = (I−Pm,nm−1)(Pm,nm−1 +(Vk−Pm,nm−1))Pm,nm−1 = 0,

and

VkPm,nm−1 = (P1,n1−1 +(Vk −P1,n1−1))(P1,n1−1 +(I−P1,n1−1)(Pm,nm−1−P1,n1−1))
= P1,n1−1 +(I−P1,n1−1)(Vk −P1,n1−1)(Pm, jm −P1,n1−1))
= · · · · · ·
= Pm,nm−1 +(I−Pm,nm−1)(Vk −Pm,nm−1)Pm,nm−1

= Pm,nm−1.

Similarly, we also have that Pm,nm−1Vk = Pm,nm−1 for all k > m. �
Since ∀x ∈ ∪∞

m=1Pm,nm−1H , there exists a smallest integer k = k(x) such that
x ∈ Pk,nk−1H . Then we define an operator V0 on D(V0) = ∪∞

m=1Pm,nm−1H with

V0x = (
∞

∏
i=1

Vi)x = (
k

∏
i=1

Vi)x.

By the definition of Pm, jm and using Lemma 2.2, we are able to get lim
m→∞

Pm,nm−1 =
I , and

V0Pm, jm = V1V2 · · ·VmPm, jm ∈ Pm,nm−1H ,

for all jm = 1,2, . . . ,nm −1. Thus, V0 is densely defined on H .

REMARK 2.1. Note that the V0 defined above is unbounded. In fact, for any m ,
choose a unit vector am in Hm such that ξm = (0,0, · · · ,0,am)� ∈Pm,nm−1H ⊆D(V0) ,
then we have

‖
∞

∏
i=1

Viξm‖ = ‖
m

∏
i=1

Viξm‖ = ‖
m−1

∏
i=1

Vi(0, · · · ,0,am, · · · ,am)�‖

= · · · = ‖(am,am, · · · ,am,am)�‖→ ∞

as m → ∞ , and then V0 is unbounded.
By Lemma 2.2, we know that for each x∈Pm,nm−1H , V0Pm,nm−1 = ∏m

i=1ViPm,nm−1

and (Pm,nm−1V0)x = Pm,nm−1(∏∞
i=1Vi)x = Pm,nm−1(∏m

i=1Vi)x, it is clear that V0Pm,nm−1

is bounded. It is not hard to see that

V−1
1 = I−

n1−1

∑
i=1

E(1)
i,n1

,
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and when m � 2,

V−1
m = Pm−1,nm−1−1 +(I−Pm−1,nm−1−1)(I−

nm−1

∑
i=1

E(m)
i,nm

).

LEMMA 2.3. V ∗
0 is a densely defined closed operator on H .

Proof. We claim that
⋃∞

m=1((V
∗
1 )−1(V ∗

2 )−1 · · · (V ∗
m)−1Pm,nm−1H ) ⊆ D(V ∗

0 ).
Let k > m and ξ ∈ (V ∗

1 )−1(V ∗
2 )−1 · · ·(V ∗

m)−1Pm,nm−1H . Then for every η ∈
Pk,nk−1H , we have

< ξ ,
k

∏
i=1

Viη >=<V ∗
mV ∗

m−1 · · ·V ∗
1 ξ ,

k

∏
i=m+1

Viη > .

Note that V ∗
mV ∗

m−1 · · ·V ∗
1 ∈ Pm,nm−1H , by Lemma 2.2,

<V ∗
mV ∗

m−1 · · ·V ∗
1 ξ ,

k

∏
i=m+1

Viη >=<V ∗
mV ∗

m−1 · · ·V ∗
1 ξ ,Pm,nm−1η >=<V∗

mV ∗
m−1 · · ·V ∗

1 ξ ,η > .

This implies that η ∈ ⋃∞
m=1 Pm,nm−1H ⊂ D(V ∗

0 ). Therefore V ∗
0 is densely de-

fined. �
Since V ∗

0 is densely defined and D(V0) = ∪∞
m=1Pm,nm−1H , we know that V0

is preclosed and refer to V0 as the closure of V0 . Now let V = V0 = V ∗∗
0 . Then

D(V0) ⊆ D(V ) and V |D(V0)= V0. In this case, we say that D(V0) is a core for V .
From Lemma 2.3, V is densely defined and closed on H . By the definition of V , we
have that VPm, jm = V1V2 · · ·VmPm, jm , indeed, we have the result as follows.

LEMMA 2.4. For jm = 1,2, . . . ,nm, VPm, jm = V1V2 · · ·VmPm, jm ∈ L ′′
∞ .

Proof. When m = 1, clearly, E(1)
ii ∈ L

′′
1 ⊆ L ′′

∞ and when j1 < n1, we have

VP1, j1 = V1P1, j1 = P1, j1 ∈ L∞
′′,

and if j1 = n1,

n1E
(1)
ii P1,n1E

(1)
j j = E(1)

i j ∈ L
′′
1 ⊆ L ′′

∞ .

Therefore, the lemma holds when m = 1.
Now, we assume the lemma holds for all m � k , that is, VPk, jk ∈ L ′′

∞ and E(k)
i j ∈

L
′′
k ⊆ L ′′

∞ . Since Lk ⊆ Lk+1, we have

Lk ⊆ L
′′
k ⊆ L

′′
k+1 ⊆ L ′′

∞ .

Thus, we conclude that both ∑ j
i=1 E(k+1)

ii ( j = 1, . . . ,nk+1 −1) and ∑nk+1
s,t=1 E(k+1)

st are in

L
′′
k+1. By the definition of Pk+1,nk+1 , we see that

nk+1E
(k+1)
ii Pk+1, jk+1E

(k+1)
j j ∈ L

′′
k+1 ⊆ L ′′

∞ .

Hence VPk+1, jk+1 ∈ L ′′
∞ . �
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LEMMA 2.5. V is affiliated with L ′′
∞ .

Proof. Let W be a unitary in L ′
∞. It follows from W ∗Pm,nm−1W = Pm,nm−1 (∀m)

that WD(V0) = D(V0). Moreover, since V is the closure of V0 , WD(V ) = D(V ) .
Let ξ ∈ Pm,nm−1H . Since

V0Wξ = V1V2 · · ·VmWξ = WV1V2 · · ·Vmξ ,

for each β ∈D(V ), there exists a sequence {βn}∞
n=1 ⊆

⋃∞
n=1 Pn, jnH such that βn → β .

Note that D(V0) is a core for V , we have

Vβn = V0βn →Vβ .

Clearly, Wβn →Wβ . By Lemma 2.4, we get

V0Wβn = (V0Pn, jn)Wβn = W (V0Pn, jn)βn = WV0βn →WVβ .

On the other hand,
V0Wβn = VWβn →VWβ .

Then VWβ =WVβ . This proves that if W commutes with V0, then W commutes with
V. Therefore V is affiliated with L ′′

∞ . �
By the proof of Lemma 2.3, we know that Ker(V0) = {0}. Observe that V ∗ =

V0
∗ = V ∗

0 , for every x ∈ Ker(V ) ,

0 =<Vx,y >=< x,V ∗y >=< x,V ∗
0 y >, ∀y ∈V ∗

0 .

This implies that x ⊥ ran(V ∗
0 ). Since the range of V ∗

0 is closed densely defined on H ,
x = 0 and hence Ker(V ) = {0}. Thus V is ono-to-one, the inverse V−1 of V exists,
and

V−1 = V−1
0 =

(
∞

∏
i=1

Vi

)−1

= · · ·V−1
m V−1

m−1 · · ·V−1
1 .

LEMMA 2.6. For every A ∈ Alg(L∞), ‖V−1AV‖ � ‖A‖.

Proof. Let A ∈ Alg(L∞). Since for each m, VPm,nm−1H = Pm,nm−1H and
V−1Pm,nm−1H = Pm,nm−1H , we only need to show that for every m, ‖V−1AVPm,nm−1‖�
‖A‖.

Assume that

A =

⎛⎜⎜⎜⎜⎝
A(1)

1,1 A(1)
1,2 · · · A(1)

1,n1

0 A(1)
2,2 · · · A(1)

2,n1
...

...
. . .

...

0 0 · · · A(1)
n1,n1

⎞⎟⎟⎟⎟⎠ ∈ Alg(L∞).
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By Lemma 2.1, we know ∑n
i=1 A(1)

1,i = ∑n
i=2 A(1)

2,i = · · · = A(1)
n1,n1 , and then

V−1AV = · · ·V−1
2 V−1

1

⎛⎜⎜⎜⎜⎝
A(1)

1,1 A(1)
1,2 · · · A(1)

1,n1

0 A(1)
2,2 · · · A(1)

2,n1
...

...
. . .

...

0 0 · · · A(1)
n1,n1

⎞⎟⎟⎟⎟⎠V1V2 · · ·

= · · ·V−1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(1)
1,1 A(1)

1,2 · · · A(1)
1,n1−1 0 · · · 0

0 A(1)
2,2 · · · A(1)

2,n1−1 0 · · · 0
...

...
. . .

... · · · · · · · · ·
0 0 · · · A(1)

n1−1,n1−1 0 · · · 0

0 0 · · · 0 A(2)
1,1 · · · A(2)

1,n2· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · A(2)

n2,n2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
V2 · · ·

= · · · =

⎛⎜⎜⎜⎜⎜⎜⎝

Mn1 0 · · · 0 · · ·
0 Mn2 · · · 0 · · ·
...

...
. . .

... · · ·
0 0 · · · Mnk · · ·
...

...
. . .

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where for i = 1,2, · · · ,

Mni =

⎛⎜⎜⎜⎜⎝
A(i)

1,1 A(i)
1,2 · · · A(i)

1,ni−1

0 A(i)
2,2 · · · A(i)

2,ni−1
...

...
. . .

...

0 0 · · · A(i)
ni−1,ni−1

⎞⎟⎟⎟⎟⎠ .

Therefore, we have that ‖V−1AVPm, jm‖� ‖A‖, and hence for every A∈Alg(L∞),
|V−1AV‖ � ‖A‖ . �

A family of projections in Nm was given by (2.2) and (2.3), we now construct a
new family of projections in Nm . Let

P̃m, jm = Pm, jm , jm = 1, . . . ,nm −1; (2.4)

P̃m,nm = I−Pm,nm−1. (2.5)

Denote by L̃m and L̃∞ = ∪mL̃m the lattice generated by {P̃k, jm : 1 � k � m,1 �
jm � nm}, and {P̃k, jk : k � 1,1 � jk � nk} , respectively. Then they are commuta-

tive subspace lattices (CSL), and hence Alg(L̃∞) is a commutative subspace lattices
algebra. Moreover, the following theorem follows directly from the preceding lemma.
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THEOREM 2.1. With L∞ and L̃∞ defined above, there exists an unbounded oper-
ator V and a strong operator topology (SOT) dense subalgebra A of the CSL-algebra
Alg(L̃∞) such that

V−1Alg(L∞)V ∼= A ⊂ Alg(L̃∞).

Proof. By the definition of Pk, jk and P̃k, jk , we know that Pk, jk = P̃k, jk for all k and
jk = 1,2, · · ·nk−1. Since (I−V−1Pk, jkV )A(V−1Pk, jkV )=V−1((I−Pk, jk)VAV−1Pk, jk )V =
0, (I− P̃k, jk)AP̃k, jk = 0 for all k � 1 and A ∈ Alg(L∞) . Thus

Ran(V−1Pk, jkV ) = Ran(P̃k, jk ),

and by the proof of Lemma 2.6, we know V−1Alg(L∞)V is a dense subalgebra in
Alg(L̃∞), which implies that there exists a SOT-dense subalgebra A of the CSL-
algebra Alg(L̃∞) , satisfying

V−1Alg(L∞)V ∼= A . �
COROLLARY 2.1. If T ∈ Alg(L∞) is in the center of Alg(L∞) , then

T = V (λ1P1,n1−1 +
∞

∑
i=2

λi(Pi,ni−1−Pi−1,ni−1−1))V−1,

where {λn}∞
n=1 ⊂ C .

Proof. By Theorem 2.1, we know that V−1Alg(L∞)V is a SOT-dense subalgebra
of the CSL-algebra Alg(L̃∞) , then V−1TV is in the center of Alg(L̃∞) . Since an ele-

ment in the center of CSL-algebra Alg(L̃∞) is of the form λ1P1,n1−1 +
∞
∑
i=2

λi(Pi,ni−1 −
Pi−1,ni−1−1) for some {λn}∞

n=1 ⊂ C, we have that

T = V (λ1P1,n1−1 +
∞
∑
i=2

λi(Pi,ni−1−Pi−1,ni−1−1))V−1. �

Let T (1)
n1 = P1,n1−1 , T (m)

nm = Pm,nm−1−Pm−1,nm−1−1, and Wm = VT (m)
nm V−1. Then

T = V (
∞

∑
i=1

λiT
(i)
ni )V−1 =

∞

∑
i=1

λiWi.

REMARK 2.2. It is not hard to see that for all m �= k � 1, WmWk = WkWm = 0.

Since T (m)
nm and T (k)

nk are the minimal idempotents in the center of Alg(L̃∞) , by Corol-
lary 2.1, we know Wm and Wk are the minimal idempotents in the center of Alg(L∞) .

The following result shows that in the sense of isometrical isomorphism,
Alg(L∞(n1,n2, · · · ,ns, · · · )) is unique.

THEOREM 2.2. If Alg(L∞(n1,n2, · · · ,ns, · · · )) is isometrically isomorphic to
Alg(L∞(m1,m2, · · · ,ms, · · · )) , then ni = mi, for all i = 1,2, · · · .

Proof. Let W ′
m = E(m)

nm −Fm . By the definition of Wi , we know that W1 = W ′
1 =

E(1)
n1 −F1 . Thus

‖W1 ‖ = ‖W ∗
1 W1 ‖ 1

2 =
√

n1,
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and

‖W2 ‖ = ‖W ∗
2 W2 ‖ 1

2

=

∥∥∥∥∥∥
⎛⎝ 0 · · · 0

· · · · · · · · ·
(W ′

2)
∗ · · · (W ′

2)
∗

⎞⎠
n1

⎛⎝ 0 · · · W ′
2

· · · · · · · · ·
0 · · · W ′

2

⎞⎠
n1

∥∥∥∥∥∥
1
2

=‖ n1(W ′
2)

∗W ′
2 ‖=

√
n1n2.

Similarly, we can show ‖Ws ‖= √
n1n2 · · ·ns for each s � 2.

By Corollary 2.1, we know that ∑∞
i=1 λiW

(ni)
i is in the centralizer of

Alg(L∞(n1,n2, · · · ,ns, · · · )) , and ∑∞
i=1 λiW

(mi)
i is in the centralizer of

Alg(L∞(m1,m2, · · · ,ms, · · · )) . If Alg(L∞(n1,n2, · · · ,ns, · · · )) is isometrically isomor-
phic to Alg(L∞(m1,m2, · · · ,ms, · · · )), then we have ni = mi for all i. Otherwise, we
may assume that there exists an integer k such that for 1 � i < k, ni = mi, and nk �= mk,

‖W (nk)
k ‖= √

n1n2 · · ·nk �= √
m1m2 · · ·mk =‖W (mk)

k ‖ .

Since Alg(L∞(n1,n2, · · · ,ns, · · ·)) is isometrically isomorphic to
Alg∞(L (m1,m2, · · · ,ms, · · · )), it must be norm preserving. Note that Wni and Wmi are
minimal idempotent elements of Alg(L∞(n1,n2, · · · ,ns, · · · )) and
Alg(L∞(m1,m2, · · · ,ms, · · · )), they must have the same norm, which is a contradiction
and therefore ni = mi for all i . �

3. Automorphisms on Alg(L∞)

Algebraic automorphisms of reflexive operator algebras acting on separable Hilbert
spaces have been investigated by many mathematicians. Recall that a automorphism ϕ
on an algebra A is inner if there exists a unitary u ∈ A such that ϕ(A) = u∗Au,∀A ∈
A . Moreover, if ϕ is an isometric isomorphism, it follows from Theorem 2.2 that
Alg(L∞(n1,n2, · · · ,ns, · · ·)) has only one structure. In this section, we let all ni = 2 in
(2.1), and L∞ = ∪mLm, we will study automorphism on Alg(L∞) .

THEOREM 3.1. If an automorphism ϕ : Alg(L∞)→Alg(L∞) is norm preserving,
then ϕ is an inner automorphism.

Proof. Let ϕ : Alg(L∞) → Alg(L∞) be an automorphism. By Theorem 2.2, we
know that Wi ’s are minimal idempotent elements of Alg(L∞), then ϕ(Wi) = Wi. Par-

ticularly, we have ϕ
((

I −I
0 0

))
=
(

I −I
0 0

)
and ϕ

((
0 I
0 I

))
=
(

0 I
0 I

)
. Then

ϕ
((

A −A
0 0

))
= ϕ

((
A −A
0 0

)
W1

)
= ϕ

((
A −A
0 0

))
W1

=
(

ϕ1(A) B−ϕ1(A)
0 B

)
W1 =

(
ϕ1(A) −ϕ1(A)

0 0

)
.
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Similarly, we obtain

ϕ
((

0 A
0 A

))
= ϕ

((
0 A
0 A

))(
0 I
0 I

)
=
(

0 ϕ2(A)
0 ϕ2(A)

)
.

Let P be a projection in B(P1,1H ) . Then∥∥∥∥(P −P
0 0

)∥∥∥∥=
∥∥∥∥(P −P

0 0

)(
P 0
−P 0

)∥∥∥∥ 1
2

=
∥∥∥∥( 2P 0

0 0

)∥∥∥∥ 1
2

=
√

2.

Since

∥∥∥∥(ϕ1(P) −ϕ1(P)
0 0

)∥∥∥∥=
√

2 ‖ ϕ1(P) ‖, which implies ‖ ϕ1(P) ‖= 1, there-

fore ϕ1(P) is also a projection in Alg(L∞). Since Alg(L∞)⊂ B(H ), we have ϕ1 is
an isometric automorphism. Thus, for all A ∈ Alg(L∞), ϕ(A∗) = ϕ(A)∗. Then for all
A ∈ Alg(L∞), there exists a unitary operator u1 such that ϕ1(A) = u∗1Au1.

Now we claim that

u1

(
1 0
0 0

)
=
(

1 0
0 0

)
u1, u1

( 1
2

1
2

1
2

1
2

)
=
( 1

2
1
2

1
2

1
2

)
u1

and

ϕ2

((
A −A
0 0

))
= u∗1

(
A −A
0 0

)
u1.

Indeed, since

ϕ

⎛⎜⎜⎝
⎛⎜⎜⎝

0 0 1 −1
0 0 0 0
0 0 1 −1
0 0 0 0

⎞⎟⎟⎠
⎞⎟⎟⎠=

⎛⎜⎜⎝
0 0 1 −1
0 0 0 0
0 0 1 −1
0 0 0 0

⎞⎟⎟⎠ ,

there exists a unitary u2 such that

ϕ

⎛⎜⎜⎝
0 0 A −A
0 0 0 0
0 0 A −A
0 0 0 0

⎞⎟⎟⎠=

⎛⎜⎜⎝
0 0 u∗2Au2 −u∗2Au2

0 0 0 0
0 0 u∗2Au2 −u∗2Au2

0 0 0 0

⎞⎟⎟⎠ .

Let P be a projection and P1 =
(

P −P
0 0

)
. It’s easy to see that

∥∥∥∥(P1 −P1

0 0

)
+
(

0 P1

0 P1

)∥∥∥∥=
∥∥∥∥(P1 0

0 P1

)∥∥∥∥=
√

2.

Since ϕ is norm preserving, we know

√
2 =

∥∥∥∥ϕ
((

P1 0
0 P1

))∥∥∥∥=

∥∥∥∥∥∥∥∥
(

u∗1P1u1 −u∗1P1u1

0 0

)
+

⎛⎜⎜⎝
0 0 u∗2Pu2 −u∗2Pu2

0 0 0 0
0 0 u∗2Pu2 −u∗2Pu2

0 0 0 0

⎞⎟⎟⎠
∥∥∥∥∥∥∥∥ .
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Let Q = u∗1P1u1 = u∗1

(
P −P
0 0

)
u1 and E =

(
u∗2Pu2 −u∗2Pu2

0 0

)
. Then

ϕ
((

P1 0
0 P1

))
=
(

Q −Q
0 0

)
+
(

0 E
0 E

)
=
(

Q E −Q
0 E

)
.

Hence

2 =
∥∥∥∥(Q E −Q

0 E

)∥∥∥∥2

=
∥∥∥∥(Q E −Q

0 E

)(
Q∗ 0

E∗ −Q∗ E∗

)∥∥∥∥
=
∥∥∥∥(QQ∗ +(E −Q)(E∗−Q∗) (E −Q)E∗

E(E∗ −Q∗) EE∗

)∥∥∥∥ .

This implies that ‖QQ∗ +(E−Q)(E∗ −Q∗)‖ � 2.

Since QQ∗ = u∗1

(
2P 0
0 0

)
u1 , we have ‖QQ∗‖= 2. Note that QQ∗ = 2u∗1

(
P 0
0 0

)
u1 ,

we obtain u∗1

(
P 0
0 0

)
u1E = Q, that is

u∗1

(
P 0
0 0

)
u1

(
u∗2Pu2 −u∗2Pu2

0 0

)
= u∗1

(
P −P
0 0

)
u1. (3.1)

It is easy to check that

u∗1

(
P 0
0 0

)
u1

(
u∗2Pu2 0

0 0

)
u∗1

(
P 0
0 0

)
u1 = u∗1

(
P 0
0 0

)
u1.

Note that u∗1

(
P 0
0 0

)
u1 and

(
u∗2Pu2 0

0 0

)
are the projections in B(P1,1H ) , then

u∗1

(
P 0
0 0

)
u1 is a subprojection of

(
u∗2Pu2 0

0 0

)
.

Similarly, we have u1

(
P 0
0 0

)
u∗1 is a subprojection of

(
u2Pu∗2 0

0 0

)
. Let u1 =(

a1 a2

0 a3

)
. In particular, u∗1 commute with

(
P 0
0 0

)
, and therefore a2 = 0.

Since(
a∗1Pa1 0

0 0

)(
u∗2Pu2 −u∗2Pu2

0 0

)
= u∗1

(
P P
0 0

)
u1 =

(
a∗1 0
0 a∗3

)(
P P
0 0

)(
a1 0
0 a3

)
,

a∗1Pa1 = a∗1Pa3, and Pa1 = Pa3 for all projection P , therefore we have a1 = a3. So
u1 ∈ (Alg(L∞))′.

From (3.1), we know that for every projection P , a∗1Pa1u∗2Pu2 = a∗1Pa1. Multiply-
ing the above equation by a1 on left and u∗2 on right, we have Pa1u∗2P = Pa1u∗2 . We
also have Pa1u∗2P = a1u∗2P by (a∗1Pa1)∗ = a∗1Pa1 . The claim is proved. Then

ϕ
((

A −A
0 0

))
=

⎛⎝(u∗2 0
0 u∗2

)
A

(
u2 0
0 u2

)
−
(

u∗2 0
0 u∗2

)
A

(
u2 0
0 u2

)
0 0

⎞⎠ ,



640 F. MA AND Y. ZHANG

and

ϕ
((

0 B
0 B

))
=

⎛⎜⎜⎝0

(
u∗2 0
0 u∗2

)
B

(
u2 0
0 u2

)
0

(
u∗2 0
0 u∗2

)
B

(
u2 0
0 u2

)
⎞⎟⎟⎠ ,

where B =
(

A −A
0 0

)
. Similarly, u2 =

(
u3 0
0 u3

)
, and u3 =

(
u4 0
0 u4

)
, · · · . This im-

plies that

(
u1 0
0 u1

)
∈ (L∞)′ . Therefore, we get

ϕ
((

A B−A
0 B

))
=
(

u∗1 0
0 u∗1

)(
A B−A
0 B

)(
u1 0
0 u1

)
.

Since the commutator of a von Neumann Algebra is self-adjoint, ϕ is an inner auto-
morphism. �
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