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SELF–ADJOINT OPERATORS AND THE GENERAL GKN–EM THEOREM

LANCE L. LITTLEJOHN AND RICHARD WELLMAN

Abstract. We construct self-adjoint operators in the direct sum of a complex Hilbert space H
and a finite dimensional complex inner product space W . The operator theory developed in this
paper for the Hilbert space H ⊕W is originally motivated by some fourth-order differential op-
erators, studied by Everitt and others, having orthogonal polynomial eigenfunctions. Generated
by a closed symmetric operator T0 in H with equal and finite deficiency indices and its adjoint
T1 , we define families of minimal operators {̂T0} and maximal operators {̂T1} in the extended
space H ⊕W and establish, using a recent theory of complex symplectic geometry, developed
by Everitt and Markus, a characterization of self-adjoint extensions of {̂T0} when the dimension
of the extension space W is not greater than the deficiency index of T0 . A generalization of the
classical Glazman-Krein-Naimark (GKN) theorem - called the GKN-EM theorem to acknowl-
edge the work of Everitt and Markus - is key to finding these self-adjoint extensions in H ⊕W.
We consider several examples to illustrate our results.
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