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ON THE CLASSES OF (n,m)–POWER D–NORMAL

AND (n,m)–POWER D–QUASI–NORMAL OPERATORS
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(Communicated by I. M. Spitkovsky)

Abstract. This paper is devoted to the study of some new classes of operators on Hilbert space
called (n,m) -power D -normal

(
[(n,m)DN]

)
and (n,m) -power D -quasi-normal

(
[(n,m)DQN]

)
,

associated with a Drazin invertible operator using its Drazin inverse. Some properties of [(n,m)DN]
and [(n,m)DQN] are investigated and some examples are also given.

1. Introduction

Let H be a complex Hilbert space, B(H ) be the algebra of all bounded linear
operators defined in H . For every T ∈ B(H ) , denote by R(T ) , N (T ) and T ∗ the
range, the null space and the adjoint of T , respectively. If M ⊂H is a closed subspace
of H satisfying TM ⊂M , then M is called an invariant subspace of T . In addition,
if M also is invariant subspace of T ∗ , then M is called a reducing subspace of T .
For any arbitrary operator T ∈ B(H ) , we can write

T = X + iY (1.1)

where

X = ReT =
1
2

(
T +T ∗), Y = ImT =

1
2i

(
T −T ∗). (1.2)

The operators X and Y are called the real and imaginary parts of T , and the decom-
position (1.1) is called the Cartesian decomposition of T and it is unique. We shall
write for positive integer m, C2

m = T ∗mTm and B2
m = TmT ∗m , where Bm and Cm are

non-negative definite. For any operator T ∈ B(H ) , |T | = (T ∗T )
1
2 and

[T ∗,T ] = T ∗T −TT ∗ = |T |2−|T ∗|2.

An operator T ∈ B(H ) is called normal if it satisfies the following condition T ∗T =
TT ∗ . The class of quasi-normal operators denoted by [QN] , was first introduced and
studied by A. Brown [6] in 1953. The operator T is quasi-normal if T commutes
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with T ∗T ( T (T ∗T ) = (T ∗T )T ). The author A. S. Jibril in [15] introduced the class
of n -power normal operators as a generalization of normal operators and its denoted
by [nN] . The operator T is called n -power normal if TnT ∗ = T ∗Tn . In [21] and [22],
the first named author introduced the class of n -power quasi-normal operators denoted
by [nQN] , as a generalization of quasi-normal operators. An operator T is called n -
power quasi-normal if Tn commutes with T ∗T , i.e.; Tn(T ∗T ) = (T ∗T )Tn . In [1]
and [2], the authors has introduced and studied the classes of (n,m)-normal powers
and (n,m)-power quasi-normal operators as follows: an operator T ∈ B(H ) is said
to be (n,m)-powers (or (n,m)-power normal) if Tn

(
Tm

)∗ =
(
Tm

)∗
Tn and it said to

be (n,m)-power quasi-normal if TnT ∗mT = T ∗mTTn where n,m be two nonnegative
integers. Let [(n,m)N] and [(n,m)QN] the classes constituting of (n,m)-power normal
and (n,m)-power-quasi-normal operators respectively. Then [(n,m)N] ⊂ [(n,m)QN] .

The Drazin inverse in the setting of bounded linear operators on complex Banach
spaces was investigated by Caradus [8] and King [17]. The Drazin inverse has become a
useful tool in a number of areas such that differential and difference equations, Markov
chains, optimal control and iterative method ( [4], [7]).

We recall that the Drazin inverse of the operator T ∈B(H ) is the unique operator
TD ∈ B(H ) , provided it exists, satisfying the following conditions

TDT = TTD,
(
TD)2

T = TD, T ν+1TD = T ν for some integer ν � 0.

The smallest natural number ν satisfying the previous system of equations is known as
the index of the operator T and is denoted by ind(T ) . It is well known ([9]) that the
Drazin inverse of the operator T ∈ B(H ) exists if and only if 0 /∈ σ(T )�{0} and the
point zero, provided 0 ∈ σ(T ) , is a pole of the resolvent R(T,μ) := (μI−T )−1 . Here
σ(T ) denotes spectrum of the operator T , and for K ⊂ C symbol K denotes closure
of K .

If we define T 0 = I , then the previous conditions hold with μ = 0 if and only if T
is invertible. We note that if T is nilpotent, then it is Drazin invertible, TD = 0, and
ind(T ) = p , where p is the power of nilpotency of T . When ind(T ) = 1, TD is called
the group inverse of T and the symbol T � denote it.

For T ∈ B(H ) , it was observed that the Drazin inverse TD of T satisfies (T ∗)D =
(TD)∗ and

(
Tk

)D =
(
TD

)k
for positive integer k . The Drazin invertibility of an opera-

tor in B(H ) is similarly invariant, i.e. if T is Drazin invertible and S ∈ B(H ) is an
invertible operator, then S−1TS is Drazin invertible and

(S−1TS)D = S−1TDS.

We denote by B(H )D the set of all Drazin invertible elements of B(H ) .

Very recently, the authors M. Dana and R. Yousfi in [11] has introduced the following
classes of operators. Let T ∈ B(H )D , T is said to be

(i) D-normal if TDT ∗ = T ∗TD .
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(ii) D-quasi-normal if TD(T ∗T ) = (T ∗T )TD .

(iii) n -power D-normal if
(
TD

)n
T ∗ = T ∗(TD

)n
.

(iv) n -power D-quasi-normal if
(
TD

)n(T ∗T ) = (T ∗T )
(
TD

)n
.

Let [DN], [nDN], [DQN] and [nDQN] denote the classes constituting of D-normal, n-
power D-normal, D-quasi-normal and n-power D-quasi-normal operators. Then

(i) [DN] ⊂ [DQN] ⊂ [nDQN] .

(ii) [DN] ⊂ [nDN] ⊂ [nDQN] .

LEMMA 1.1. ([8], [25]) Let T,S ∈ B(H )D . Then the following properties hold.

(1) TS is Drazin invertible if and only if ST is Drazin invertible. Moreover

(TS)D = T [(ST )D]2S and ind(TS) � ind(ST )+1.

(2) If T is idempotent, then TD = T � = T .

(3) If TS = ST , then (TS)D = SDTD = TDSD,TDS = STD and TSD = SDT .

(4) If TS = ST = 0 , then
(
T +S

)D = TD +SD .

LEMMA 1.2. ([12, Lemma 3.1]) If T ∈ B(H ) and S ∈ B(H ) are Drazin in-

vertible with ind(T ) = p and ind(S) = q. Then V =
(

T R
0 S

)
is also Drazin invertible

and VD =
(

TD X
0 SD

)
where

X = ∑
0� j�q−1

(
TD) j+2

RS jSπ +Tπ
(

∑
0�k�p−1

T jR
(
SD)k+2

)
−TDRSD. (1.3)

This paper has been organized in three sections. In section two, we introduce a new
class of operators named (n,m)-power D-normal operators associated with a Drazin
invertible operator using its Drazin inverse. Our motivation for this study comes from
the problem of finding operators that their Drazin inverses are (n,m)-power normal.
Some of the basic properties of this class with some examples are studied. More-
over, the product, direct sum, tensor product and the sum of finite numbers of these
type are discussed. In section three, the classes of (n,m)-power D-quasi-normal op-
erators which are generalizations of the class of n -power D-quasi-normal operators
and (n,m)-power D-normal operators are introduced and also some properties of such
classes are given. An investigation of extensions of the Fuglede-Putnam´s theorem for
(n,m)-power D-normal operator will be given in section four.
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2. (n,m)-power D-normal operators

In this section, the class of (n,m)-power D-normal operators as a generalization
of the classes of D-normal and n -power D-normal operators is introduced. In addition,
we study several properties for members from this class of operators.

DEFINITION 2.1. Let T ∈ B(H ) be Drazin invertible operator. We said that T
is (n,m) -power D-normal if (

TD)n
T ∗m = T ∗m(

TD)n (2.1)

for some positive integers n and m .This class of operators will denoted by [(n,m)DN] .

REMARK 2.1. (i) If n = m = 1, then (n,m)-power D-normal becomes D-
normal, i.e.

[(1,1)DN] = [DN].

(ii) If m = 1, then (n,1)-power D-normal becomes n -power D-normal, i.e.

[(n,1)DN] = [nDN].

(iii) T ∈ [(n,m)DN] ⇐⇒ [
(
TD

)n
,T ∗m] = 0.

REMARK 2.2. Obviously, that the class of (n,m) power D-normal operators in-
cludes classes of (n,m)-power-normal and n -power D–normal operators, i.e. the fol-
lowing inclusions holds

[(n,m)N] ⊂ [(n,m)DN] and [nDN] ⊂ [(n,m)DN].

REMARK 2.3. The following inclusions hold.

(i) [(n,m)DN] ⊂ [(2n,m)DN] .

(ii) [(n,m)DN] ⊂ [(n,2m)DN] .

(iii) [(n,m)DN] ⊂ [(2n,2m)DN] .

EXAMPLE 2.1. Consider the matrix T =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ∈B(C3). We observe that

TD =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . A direct calculation shows that T is (n,m)-D-power normal for

all positive integers n and m .
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The following examples show that there exists a (n,m)-power D-normal operator
which is neither (n,m)-power normal or nor n -power D-normal.

EXAMPLE 2.2. Let T =

⎛
⎝ 1 1 3

5 2 6
−2 −1 −3

⎞
⎠ be an operator on Hilbert space C3 , it

is easy to check that TD =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ . A direct calculation shows that

(
TD)2

T ∗ = T ∗(TD)2
and T 2T ∗ �= T ∗T 2.

This shows that T is (2,1) power-D-normal but it is not (2,1)-power normal.

EXAMPLE 2.3. Consider the operator T =
(

0 1
−1 1

)
operator acting on C2. Then

TD =
(

1 −1
1 0

)
. A Direct calculation shows that T is (2,2)-power D-normal but T

is not 2-power D-normal.

It is well known that if T is n -power D-normal, then Tn is D-normal. In the following
theorem, we extend this result to (n,m)-power D-normal operator as follows.

THEOREM 2.1. Let T ∈ B(H )D . If T is (n,m)-power D-normal, then the fol-
lowing statements hold:

(i) T k is D-normal where k is the least common multiple of n and m.

(ii) Tnm is D-normal operator.

Proof.

(i) Assume T is (n,m)-power D-normal that is
(
TD

)n
T ∗m = T ∗m(

TD
)n . Let k =

pn and k = qm . We have(
Tk)D(

Tk)∗ =
(
TD)pn(

T ∗)qm

=
[(

TD)n]p[(
T ∗)m]q

=
(
TD)n

. · · · .(TD)n︸ ︷︷ ︸
p−times

(
T ∗)m · · ·(T ∗)m︸ ︷︷ ︸

q−times

=
(
T ∗)m · · ·(T ∗)m︸ ︷︷ ︸

q−times

(
TD)n

. · · · .(TD)n︸ ︷︷ ︸
p−times

=
(
T ∗)qm(

TD)np

=
(
Tqm)∗(

Tnp)D

= T ∗k(Tk)D
,
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which means that Tk is D-normal.

(ii) By similar way. �

The following proposition collects some of basic properties of (n,m)-power D-normal
operators.

PROPOSITION 2.1. Let T ∈ B(H )D . The following properties hold.

(1) If T is (n,m)-power D-normal, then TD is (n,m)-power normal.

(2) T is (n,n)-power D-normal if and only if
(
TD

)n
is normal.

(3) T is (n,m)-power D-normal if and only if T ∗ is (n,m)-power D-normal.

(4) If M is a closed subspace of H such that M reduces T , then
(
T |M )nm

is D-
normal.

(5) If T,S ∈ B(H )D such that S is unitary equivalent to T and T is (n,m)-power
D-normal, then S is (n,m)-power D-normal.

Proof.

(1) Assume that T is (n,m)-power D-normal that is
(
TD

)n
T ∗m = T ∗m(

TD
)n

. By
Lemma 1.1, it follows that

(
TD)n

T ∗m = T ∗m(
TD)n ⇒ (

TD)n(
T ∗m)D =

(
T ∗m)D(

TD)n

⇒ (
TD)n(

TD)∗)m =
((

TD)∗)m(
TD)n

.

Therefore TD is (n,m)-power normal.

(2) Assume that T is (n,n)-power D-normal, then by the statement (1) we have TD

is (n,n)-power normal that is
(
TD

)n(
TD

)∗n =
(
TD

)∗n(
TD

)n
or equivalently

(
TD)n((

TD)n)∗ =
((

TD)n)∗(
TD)n

.

Thus
(
TD

)n
is normal.

Conversely, assume that
(
TD

)n
is normal. Since TDT = TTD , we have

(
TD)n

T = T
(
TD)n

.

By Fuglede theorem ([10]),
(
TD

)∗n
T = T

(
TD

)∗n and it follows that

(
TD)n(

T ∗)n =
(
T ∗)n(

TD)n
.

Therefore T is (n,n)-power D-normal.
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(3) We obtain the equivalence by taking conjugate operator.

(4) Since T is (n,m)-power D-normal operator, then by Theorem 2.1, Tnm is D-
normal. Since M reduces T , then Tnm/M is D-normal (see [11]). Moreover,
Tnm/M =

(
T/M

)nm , thus
(
T/M

)nm is D-normal.

(5) Since S is unitary equivalent to T , then there exists a unitary operator U ∈
B(H ) such that S = U∗TU . In view of the property that the Drazin invert-

ibility of an operator is similarly invariant, we have SD =
(
U∗TU

)D = U∗TDU
and furthermore(
U∗TDU

)n = U∗(TD
)n

U . On the other hand, it is easily seen that(
SD)n(

S
)∗m = U∗(TD)n

U.U∗T ∗mU =U∗(TD)n
T ∗mU

= U∗T ∗m(
TD)n

U

=
(
U∗TmU

)m(
U∗TDU

)n

= S∗m
(
SD)n

.

Consequently, S is (n,m)-power D-normal. �

The following example shows that (n,m)-power D-normality is not preserved under
similarity.

EXAMPLE 2.4. Let T =
(

2 0
0 3

)
and X =

(
1 1
1 2

)
. Then T is (2,2)-power D-

normal but S = XTX−1 =
(

1 1
−2 4

)
is not (2,2)-power D-normal.

PROPOSITION 2.2. Let T ∈ B(H )D , X =
(
TD

)n +T ∗m and Y =
(
TD

)n−T ∗m .
The following statements hold.

(1) T is (n,m)-power D-normal if and only if XY = YX .

(2) If T is of class [(n,m)DN] , then Z =
(
TD

)n
T ∗m commutes with X and Y .

(3) T is of class [(n,m)DN] if and only if
(
TD

)n
commutes with X .

(4) T is of class [(n,m)DN] if and only if
(
TD

)n
commutes with Y .

Proof.

(1)

XY = YX

⇔ ((
TD)n +T∗m)((

TD)n−T ∗m)
=

((
TD)n−T ∗m)((

TD)n +T ∗m)
⇔ (

TD)2n− (
TD)n

T ∗m +T ∗m(
TD)n −T∗2m

=
(
TD)2n +

(
TD)n

T ∗m −T ∗m(
TD)n −T∗2m

⇔ (
TD)n

T ∗m = T ∗m(
TD)n

.
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Hence XY = YX if and only if T is (n,m)-power D-normal.

The proof of statements (2) ,(3) and (4) are straightforward. �

Recall that a pair of operators (T,S) ∈ B(H )2 is said to be a doubly commuting pair
if (T,S) satisfies TS = ST and T ∗S = ST ∗ .

The following discusses the conditions for product and sum of two (n,m)-power D-
normal operators to be (n,m)-power D-normal.

THEOREM 2.2. Let T,S ∈ B(H )D are (n,m)-power D-normal. If (T,S) is a
doubly commuting pair, then the following statements hold.

(1) TS is (n,m)-power D-normal.

(2) If TS = ST = 0 , then T +S is (n,m)-power D-normal operator.

Proof.

(1) Since TS = ST and T ∗S = ST ∗ , if follows that

((
TS

)D)n((
TS

)∗)m =
(
TDSD)n(

T ∗S∗
)m =

(
TD)n(

SD)n(
T ∗)m(

S∗
)m

=
(
TD)n

T ∗m(
SD)n

S∗m = T ∗mS∗m
(
TD)n(

SD)n

=
((

TS
)∗)m((

TS
)D)n

.

Thus ST is (n,m)-power D-normal.

(2) Under the assumptions that T and S are (n,m)-power D-normal, it follows by
taking into account the statements of Lemma 1.1 that

((
T +S

)D
)n(

T +S

)∗m
=

((
TD)n +

(
SD)n

)(
T ∗m +S∗m

)

=
(
TD)n

T ∗m +
(
TD)n

S∗m +
(
SD)n

T ∗m +
(
SD)n

S∗m

= T ∗m(
TD)n +S∗m

(
TD)n +T ∗m(

SD)n +S∗m
(
SD)n

=
(

T +S

)∗m((
T +S

)D
)n

.

Hence T +S is (n,m)-power D-normal. �

PROPOSITION 2.3. Let T and S are of class [(n,m)DN] such that TS = ST = 0 .
Then (T +S) is nm-power D-normal.

Proof. By the statements (3) and (4) of Lemma 1.1, it is well known that

(T +S)D = TD +SD,TDS = STD = 0 and TSD = SDT = 0.



(n,m) -POWER D -NORMAL AND (n,m) -POWER D -QUASI-NORMAL OPERATORS 713

Therefore, we have the following relations(
TD)nm

S = S
(
TD)nm = 0 and T

(
SD)nm =

(
SD)nm

T = 0.

In view of Theorem 2.1, we clearly have Tnm is D-normal and Snm is D-normal.

Now, since
(
TD

)nm
and

(
SD

)nm
are normal by Fuglede theorem we have

(
TD)∗nm

S = S
(
TD)∗nm = 0 and T

(
SD)∗nm =

(
SD)∗nm

T ∗ = 0.

We can deduce that((
T +S

)D
)nm(

T +S

)∗nm

=
((

TD)nm +
(
SD)nm

)(
T ∗nm +S∗nm

)

=
(
TD)nm

T ∗nm +
(
TD)nm

S∗nm +
(
SD)nm

T ∗nm +
(
SD)nm

S∗nm

= T ∗nm(
TD)nm +S∗nm(

SD)nm

=
(

T +S

)∗nm((
T +S

)D
)nm

.

Therefore (T +S)nm is D-normal and consequently T +S is nm-power D-normal as
required and the proof is complete. �
The following example shows that the classes [(n,m)DN] and [(n+ 1,m)DN] are not
the same.

EXAMPLE 2.5. Let T =
(

3 −2
0 −3

)
and S =

(
1 1
−1 0

)
. Then TD = 1

9

(
3 −2
0 −3

)

and SD =
(

0 −1
1 1

)
. A Direct calculation shows that T is of class [(2,2)DN] but

T /∈ [(3,2)DN]. Moreover S is of class [(3,2)DN] but S /∈ [(2,2)DN] .

In the following proposition, we study the relation between the two classes [(2,m)DN]
and [(3,m)DN] .

PROPOSITION 2.4. Let T ∈ B(H ) be Drazin invertible operator such that T is
of class [(2,m)DN] and of class [(3,m)DN] for some positive integer m, then T is of
class [(n,m)DN] for all positive integer n � 4 .

Proof. We prove the assertion by using the mathematical induction. For n = 4, it
is a consequence of the item (i) of Remark 2.3.

We prove this for n = 5. Since T ∈ [(2,m)DN] ,

(TD)2(T ∗)m = (T ∗)m(TD)2, (2.2)

multiplying (2.2) to the left by (TD)3 we get

(TD)5(T ∗)m = (TD)3(T ∗)m(TD)2.
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Thus implies

(TD)5(T ∗)m = (T ∗)m(TD)5.

Now assume that the result is true for n � 5 that is

(TD)n(T ∗)m = (T ∗)m(TD)n,

then

(TD)n+1(T ∗)m = TD(T ∗)m(
TD)n

= TD(T ∗)m(
TD)2(

TD)n−2

= (TD)3(T ∗)m(TD)n−2

= (T ∗)m(TD)n+1.

Thus T is of class [(n+1,m)DN]. The proof is complete. �

EXAMPLE 2.6. Consider the operator matrix T =
(

1 0
−1 1

)
acting on C2 . The

Drazin inverse of T is TD =
(

1 0
1 1

)
. By calculations we have that T ∈ [(2,2)DN]∩

[(3,2)DN] . Therefore T ∈ [(n,2)DN] for n � 4.

PROPOSITION 2.5. Let T ∈ B(H )D . If T is of class [(n,m)DN] and of class
[(n+1,m)DN] , then T is of class [(n+2,m)DN] for some positive integers n and m.
In particular T is of class [(k,m)DN] for all k � n.

Proof. Since T is of class [(n,m)DN] and of class [(n+1,m)DN] , it follows that

(
TD)n

T ∗m = T ∗m(
TD)n

and
(
TD)n+1

T ∗m = T ∗m(
TD)n+1

.

Note that

(
TD)n+2

T ∗m =
(
TD)(

TD)n+1
T ∗m =

(
TD)

T ∗m(
TD)n+1

=
(
TD)(

TD)n
T ∗mTD

= T ∗m(
TD)n+2

.

Hence T is of class [(n+2,m)DN] . By repeating this process we can prove that T is
of class [(k,m)DN] for all k � n . �

PROPOSITION 2.6. Let T ∈ B(H ) be Drazin invertible operator. If T is both
of class [(n,m)DN] and [(n + 1,m)DN] such that TD is injective, then T is of class
[(1,m)DN] .
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Proof. Since T is of class [(n,m)DN] and of class [(n+1,m)DN], it follows that

(TD)n
(

TD(T ∗)m − (T ∗)mTD
)

= 0.

If TD is injective, then so is (TD)n and we have TD(T ∗)m− (T ∗)mTD = 0, hence T is
of class [(1,m)DN] . �
The following examples show that a (n,m)-power D-normal operator need not be
(n,m+1)-power D-normal and vice versa.

EXAMPLE 2.7. Let T =
(

0 1
−1 1

)
be an operator acting on C2. The Drazin in-

verse of T is TD =
(

1 −1
1 0

)
. A Direct calculation shows that T is of class [(2,3)DN]

but T /∈ [(2,2)DN].

EXAMPLE 2.8. Let T =
(

3 −2
0 −3

)
. Then TD = 1

9

(
3 −2
0 −3

)
. A Direct calculation

shows that T is of class [(2,2)DN] but T /∈ [(2,3)DN].

In the following proposition, we study the relation between the two classes [(n,2)DN]
and [(n,3)DN].

PROPOSITION 2.7. Let T ∈ B(H ) be Drazin invertible operator such that T is
of class [(n,2)DN] and of class [(n,3)DN] for some positive integer n, then T is of
class [(n,m)DN] for all positive integer m � 4 .

Proof. We omit the proof since the techniques are similar to those of the proof of
Proposition 2.4. �

EXAMPLE 2.9. Consider the operator matrix T =
(

1 1
0 1

)
acting on C2 . The

Drazin inverse of T is TD =
(

1 −1
0 1

)
. By calculations we have that T ∈ [(2,2)DN]∩

[(2,3)DN] . Therefore T ∈ [(2,m)DN] for m � 4.

The proof of the following proposition is very similar to the proof of proposition 2.5,
thus we omitted.

PROPOSITION 2.8. Let T ∈ B(H )D . If T is of class [(n,m)DN] and of class
[(n,m+ 1)DN] , then T is of class [(n,m+ 2)DN] for some positive integers n,m. In
particular T is of class [(n,k)DN] for all k � m.



716 O. A. M. SID AHMED AND O. B. SID AHMED

In the following proposition, we discuss conditions pertaining to an (n,m)-power D-
normal operator to be n -power D-normal.

PROPOSITION 2.9. Let T ∈ B(H )D . If T is both of class [(n,m)DN] and
[(n,m+1)DN] such that T ∗ is injective, then T is of class [(n,1)DN] = [nDN] .

Proof. Since T is of class [(n,m)DN] and of class [(n,m+1)DN], it follows that

(T ∗)m
((

TD)n
T ∗ −T ∗(TD)n

)
= 0.

If T ∗ is injective, then so is (T ∗)m and we have
(
TD

)n
T ∗ −T ∗(TD

)n = 0, hence T is
of class [(n,1)DN] or equivalently T is of class [nDN] . �
In [15] it was proved that if T is n -power normal which is a partial isometry, then T is
(n+1)-power normal. In the following theorem we extend this result to (n,m)-power
normal operator.

THEOREM 2.3. Let T ∈ B(H ) be an (n,m)-power normal for n � m. If Tm is
a partial isometry, then T is (n+m,m)-power normal.

Proof. Since Tm is partial isometry, TmT ∗mTm = Tm by [10, p.250].

Hence, we easily get

TmT ∗mTn = Tn and TnT ∗mTm = Tn,

which means that TnT ∗mTm = TmT ∗mTn . Since T is (n,m)-power normal, we get

Tn+mT ∗m = T ∗mTn+m,

and the proof is complete. �

THEOREM 2.4. Let T ∈ B(H )D be of class [(n,m)DN] for some positive in-
tegers n and m for which n � m. If Tm is a partial isometry, then T is of class
[(n+m,m)DN] .

Proof. Firstly observe that since T is a Drazin invertible we have
(
TD

)2
T = TD

from which it is easily to obtain that

(
TD)2k

T k =
(
TD)k

k � 1.

Since Tm is partial isometry, then

TmT ∗mTm = Tm. (2.3)
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Multiplying (2.3) to the left by
(
TD

)n+m
and to the right by

(
TD

)2m
we get

(
TD)n

T ∗m(
TD)m = (TD)n+2m

(2.4)

Multiplying (2.3) to the left by
(
TD

)2m
and to the right by

(
TD

)n+m
we get

(
TD)m

T ∗m(
TD)n = (TD)n+2m

. (2.5)

In view of (2.4) and (2.5) we have

(
TD)n

T ∗m(
TD)m =

(
TD)m

T ∗m(
TD)n

.

By taking into account that T is of class [(n,m)DN] , we obtain

T ∗m(
TD)n+m =

(
TD)n+m

T ∗m.

Thus T is of class [(n+m,m)DN]. �

REMARK 2.4. If m = 1, Theorem 2.4 coincides with [11, Proposition 3.21].

PROPOSITION 2.10. Let T ∈B(H )D . If T is (n,m) power D-normal operator,
then so is T k for every positive integer k .

Proof. To prove that Tk is of class [(n,m)DN] , we have to prove that

(
Tk)D)n(Tk)∗m =

((
Tk)∗m((

Tk)D)n
, k = 1,2, · · · .

We prove the statement by using mathematical induction on k . Since T is (n,m)-
power D-normal, the result is true for k = 1. Now we assume that the result is true for
k , that is (

Tk)D)n(Tk)∗m =
(
Tk)∗m((

Tk)D)n
,

and prove it for k+1.

(
(Tk+1)D)n(

Tk+1)∗m =
((

T
)D)n((

Tk)D)n(
Tk)∗mT ∗m

=
((

T
)D)n(

Tk)∗m(
TD)n

T ∗m

=
(
Tk)∗mT ∗m((

T
)D)n(

TD)n

= (
(
Tk+1)∗m[

(Tk+1)D)n
.

Therefore Tk+1 is of class [(n,m)DN] . We conclude that the statement of the proposi-
tion holds. �

THEOREM 2.5. The class of all (n,m)-power D-normal on H is a closed subset
of B(H )D under scalar multiplication.
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Proof. Let T ∈ [(n,m)DN] . A simple calculations show that αT ∈ [(n,m)DN]
for α ∈ C . On the other hand let (Tk)k be a sequence in [(n,m)DN] converges to
T ∈B(H ) strongly and TD

k converges to TD strongly. Then by a simple computation,
one can get that

‖(TD)n
T ∗m −T ∗m(

TD)n‖ = ‖(TD)n
T ∗m − (

TD
k

)n
T ∗m
k +T∗m

k

(
TD
k

)n−T ∗m(
TD)n‖

� ‖(TD)n
T ∗m − (

Tk
)n

T ∗m
k ‖+‖T∗m

k

(
TD
k

)n−T ∗m(
TD)n‖.

By taking k −→ ∞ and tanking into account [24, lemma 3.1 and Theorem 3.6] we get
that (

TD)n
T ∗m −T∗m(

TD)n = 0.

Therefore T is of class [(n,m)DN]. �

THEOREM 2.6. Let (Tk)1�k�d ∈ (
B(H )D

)d
such that each Tk is (n,m)-power

D-normal, then

(1) T1⊕T2⊕·· ·⊕Td is a (n,m)-power D-normal.

(2) T1⊗T2⊗·· ·⊗Td is a (n,m)-power D-normal.

Proof.

(1) Since each Tk for k = 1, · · · ,d is (n,m)-power D-normal, then(
TD
k

)n
T ∗m
k = T ∗m

k

(
TD
k

)n
and we have

((
T1⊕T2⊕·· · ⊕Td

)D)n(
T1⊕T2⊕·· · ⊕Td

)∗m
=

(((
T1

)D)n⊕ ((
T2

)D)n⊕·· · ⊕ ((
Td

)D)n)(
T ∗m
1 ⊕T ∗m

2 ⊕·· · ⊕T ∗m
d

)
=

((
T1

)D)n
T ∗m
1 ⊕ ((

T2
)D)n

T ∗m
2 ⊕·· · ⊕ ((

Td
)D)n

T ∗m
d

= T ∗m
1

((
T1

)D)n⊕T ∗m
2

((
T2

)D)n⊕·· · ⊕T ∗m
d

((
Td

)D)n

= (T1⊕T2⊕·· · ⊕Td
)∗m((

T1⊕T2⊕·· · ⊕Td
)D)n

.

Thus ⊕1�k�dTk is a (n,m)-power D-normal.

(2) Since each Tk for k = 1, · · · ,d is (n,m)-power D-normal, then
(
TD
k

)n
T ∗m
k =

T ∗m
k

(
TD
k

)n
and we have for (xk)1�k�d ∈ H d

((
T1⊗T2⊗·· ·⊗Td

)D)n(
T1⊗T2⊗·· ·⊗Td

)∗m(x1⊗ x2⊗·· ·⊗ xd)

=
(
TD
1

)n
T ∗m
1 x1⊗

(
TD
2

)n
T ∗m
2 x2⊗·· ·⊗ (

TD
d

)n
T ∗mxd

= T ∗m
1

(
TD
1

)n
x1⊗T ∗m

2

(
TD
2

)n
x2⊗·· ·⊗T ∗m(

TD
d

)n
xd

=
(
T1⊗T2⊗·· ·⊗Td

)∗m((
T1⊗T2⊗·· ·⊗Td

)D)n(x1⊗ x2⊗·· ·⊗ xd).

Hence the result. �

The following theorem characterizes the (n,m)-power D-normal operator matrix.
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THEOREM 2.7. Let T,S ∈ B(H )D and let V =
(

T R
0 S

)
∈ B(H ⊕H ) . Then

V is of class [(n,m)DN] if and only if T ∈ [(n,m)DN] , S∈ [(n,m)DN] and Q1 = Q2 =
0, where

Q1 = ∑
0� j�n−1

(
TD) j

X
(
SD)n−1− j

, Q2 = ∑
0� j�m−1

S∗m−1− jR∗T ∗m

and X is given by (1.3).

Proof. In view of lemma 1.2, V is Drazin invertible and VD =
(

TD X
0 SD

)
. It can

be easily verified that

(
VD)n =

⎛
⎝

(
TD

)n ∑
0� j�n−1

(
TD) j

X
(
SD)n−1− j

0
(
SD

)n

⎞
⎠ =

((
TD

)n
Q1

0
(
SD

)n

)

and

V ∗m =

⎛
⎝ T ∗m 0

∑
0� j�m−1

S∗m−1− jR∗T ∗m S∗m

⎞
⎠ =

(
T ∗m 0
Q2 S∗m

)
.

According to the Definition 2.1, we must have

(
VD)n

V ∗m = V ∗m(
VD)n ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
TD

)n
T ∗m = T ∗m(

TD
)n

,

(
SD

)n
S∗m = S∗m

(
SD

)n

Q1 = Q2 = 0

This finishes the proof of theorem. �

3. (n,m)-power D-quasi-normal operators

In this section, the class of (n,m)-power D-quasi-normal operators as a general-
ization of the classes of (n,m)-power D-normal operators is introduced. In addition,
we make several observations about members from this class.

DEFINITION 3.1. Let T ∈ B(H )D . We said that T is (n,m)-power D-quasi
normal if (

TD)n(
T ∗mT

)
=

(
T ∗mT

)(
TD)n (3.1)

for some positive integers n,m . This class of operatorswill be denoted by [(n,m)DQN] .

REMARK 3.1. We make the following observations.

(1) [(1,1)DQN] is the class of D-quasi-normal operator, i.e. [(1,1)DQN] = [DQN] .
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(2) [(n,1)DQN] is the class of n -power D-quasi normal: [(n,1)DQN] = [nDQN] .

(3) Every n -power D-quasi-normal is an (n,m)-power D-quasi-normal:

[nDQN] ⊂ [(n,m)DQN].

(4) Every (n,m)-power D-normal is an (n,m)-power D-quasi-normal, i.e.

[(n,m)DN] ⊂ [(n,m)DQN].

(5) T ∈ [(n,m)DQN] ⇐⇒ [
(
TD

)n
,T ∗mT ] = 0.

(6) If T is (n,m)-power D-quasi-normal such that T has a dense range, then T is
(n,m)- power D-normal.

(7) If T is (n,m)-power D-quasi-normal, then T is (2n,m)-power D-quasi-normal.

REMARK 3.2. Clearly, the class of (n,m)-power D-quasi-normal operators in-
cludes class of (n,m)-power quasi-normal, i.e. the following inclusion holds

[(n,m)QN] ⊂ [(n,m)DQN].

We give the following example to show that there exists a (n,m)-power D-quasi-
normal operator which is neither a (n,m)-power D-normal nor n -power D-quasi-
normal for some integers n and m .

EXAMPLE 3.1. Let T =

⎛
⎝0 0 0

1 0 0
1 0 1

⎞
⎠ be an operator on Hilbert space C3 , it is easy

to check that TD =

⎛
⎝0 0 0

0 0 0
1 0 1

⎞
⎠ . Then by computations we get that

(
TD)2(

T ∗2T
)
=

(
T ∗2T

)(
TD)2

,
(
TD)2

T ∗2 �= T ∗2(TD)2
and

(
TD)2

T ∗T �= T ∗T
(
TD)2

This shows that T is (2,2)-power D-quasi-normal which is neither (2,2)-power D-
normal nor 2-power D-quasi-normal.

The following proposition gives a characterization of an (n,m)-power D-quasi-normal
operators.

PROPOSITION 3.1. Let T ∈ B(H )D , A =
(
TD

)n + T ∗mT and B =
(
TD

)n −
T ∗mT . Then T is of class [(n,m)DQN] if and only if A commutes with B.

Proof. Commutativity of A and B is equivalent to
(
TD

)n
T ∗mT = T ∗mT

(
TD

)n
. �

PROPOSITION 3.2. Let T,A,B be as in Proposition 3.1. If T is of class [(n,m)DQN] ,
then

(
TD

)n
T ∗mT commutes with A and B.
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Proof. By (3.1) we have that

(
TD)n

T ∗mT

((
TD)n ±T ∗mT

)
=

((
TD)n ±T ∗mT

)(
TD)n

T ∗mT. �

In general, the two classes [(n,m)DQN] and [(n+ 1,m)DQN] are not the same (see
[21]).

PROPOSITION 3.3. Let T ∈ B(H )D . If T is both of class [(n,m)DQN] and
[(n+1,m)DQN] , then it is of class [(n+2,m)DQN] , i.e.

[(n,m)DQN]∩ [(n+1,m)DQN] ⊂ [(n+2,k)DQN].

Proof. Since T is both of class [(n,m)DQN] and [(n+1,m)DQN] , it follows that

(
TD)n+1

T ∗mT = T ∗mT
(
TD)n+1

and
(
TD)n

T ∗mT = T ∗mT
(
TD)n

.

Now(
TD)n+2

T ∗mT = (TD)T ∗mT
(
TD)n+1 =

(
TD)n+1(T ∗mT

(
TD)

= T ∗mT
(
TD)n+2

so that
(
TD

)n+2
T ∗mT may be transformed into T ∗mT

(
TD

)n+2
. �

In [21] it was probed that if T is of class [nQN] such that T is a partial isometry, then
T is of class [(n+1)QN]. We extend this result to the class of [(n,m)QN] as follows.

THEOREM 3.1. Let T ∈ B(H ) be of class [(n,m)QN] for some positive in-
tegers n and m such that n � m. If Tm is a partial isometry, then T is of class
[(n+m,m)QN].

Proof. Under the assumption that Tm is a partial isometry, we have

TmT ∗mTm = Tm,

or equivalently
Tm(T ∗mT )Tm−1 = Tm. (3.2)

Multiplying (3.2) to the left by Tn−m and to the right by T we get

Tn(T ∗mT )Tm = Tn+1. (3.3)

Multiplying (3.2) to the right by Tn−m+1 we get

Tm(T ∗mT )Tn = Tn+1. (3.4)

Combining (3.3) and (3.4) and using the fact that T ∈ [(n,m)QN] we get

Tn+m(T ∗mT ) = (T ∗mT )Tn+m.

Therefore T is (n+m.m)-power D-quasi-normal. �



722 O. A. M. SID AHMED AND O. B. SID AHMED

THEOREM 3.2. Let T ∈ B(H )D be an (n,m)-power D-quasi-normal for some
integers n and m with n � m. If Tm is a partial isometry, then is of class [(n +
m,m)DQN].

Proof. Firstly, observe that since T is a Drazin invertible we have
(
TD

)2
T = TD

from which it is easily to obtain that(
TD)2k−1

Tk−1 =
(
TD)k

k � 1.

Since Tm is partial isometry by

TmT ∗mTm = Tm. (3.5)

or equivalently
Tm(T ∗mT )Tm−1 = Tm. (3.6)

Multiplying (3.6) to the left by
(
TD

)n+m
and to the right by

(
TD

)2m−1
we get

(
TD)n(T ∗mT )

(
TD)m = (TD)n+2m−1

. (3.7)

Multiplying (3.6) to the left by
(
TD

)2m and to the right by
(
TD

)n+2m−1 we get

(
TD)m(T ∗mT )

(
TD)n = (TD)n+2m−1

. (3.8)

In view of (3.7) and (3.8) we obtain(
TD)n(T ∗mT )

(
TD)m =

(
TD)m(T ∗mT )

(
TD)n

.

By taking into account that T is of class [(n,m)DQN] we obtain

(T ∗mT )
(
TD)n+m =

(
TD)n+m(T ∗mT ).

Thus T is of class [(n+m,m)DQN]. �

The class [(n,m)DQN] has the following properties.

THEOREM 3.3. The class [(n,m)DQN] is closed under unitary equivalence.

Proof. Let S∈B(H ) be unitary equivalent to T . Then there is a unitary operator
U ∈ B(H ) such that T = U∗SU which implies that T ∗ = U∗S∗U. Noting that Tn =
U∗SnU , T ∗mT = U∗Sm∗SU and

(
U∗TU

)D = U∗TDU. Inserting I = UU∗ suitably,
then if T is of class [(n,m)DQN] we deduce that

U∗(SD)n
S∗mSU = (TD)nT ∗mT = T ∗mT

(
TD)n =U∗S∗mS

(
SD)n

U.

Therefore S is of class [(n,m)DQN] . �

The following examples show that a (n,m)-power D-quasi-normal need not be a (n+
1,m)-power D-quasi-normal and vice versa.
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EXAMPLE 3.2. Let us consider the operator T given in Example 3.1. It easily
to check that T is (2,2)-power D-quasi-normal but T is not (3,2)-power D-quasi-
normal.

EXAMPLE 3.3. Let us consider the matrix operator T =
(

0 −1
1 1

)
acting on C2 .

Then TD =
(

1 1
−1 0

)
. By simple calculations, it follows that T is of class [(3,2)DQN]

but not of class [(2,2)DQN] .

PROPOSITION 3.4. Let T ∈ B(H )D . If T is both of class [(n,m)DQN] and
[(n+1,m)DQN] such that TD is injective, then T is of class [(1,m)DQN].

Proof. Since T is of class [(n,m)DQN]∩ [(n+1,m)DQN], it follows that

(TD)n
(

TDT ∗mT −T ∗mTTD
)

= 0.

If TD is injective, then so is (TD)n and we have TDT ∗mT −T ∗mTTD = 0, whence T
is of class [(1,m)DQN] . �

PROPOSITION 3.5. Let T ∈ B(H )D such that T is of class [(2,m)DQN]
⋂

[(3,m)DQN] for some positive integer m, then T is of class [(n,m)DQN] for all posi-
tive integer n � 4 .

Proof. We prove the assertion by using the mathematical induction. For n = 4 it
is a consequence of the statement (7) of Remark 3.1.

We prove this for n = 5. Since T ∈ [(2,m)DQN] ,

(
TD)2

T ∗mT = (T ∗mT
(
TD)2

, (3.9)

multiplying (3.9) to the left by
(
TD

)3
we get

(
TD)5

T ∗mT =
(
TD)3

T ∗mT
(
TD)2

.

Thus implies

(
TD)5

T ∗mT = T ∗mT
(
TD)5

.

Now assume that the result is true for n � 5 that is

(
TD)n

T ∗mT = T ∗mT
(
TD)n

,
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then (
TD)n+1

T ∗mT = TDT ∗mT
(
TD)n

= TDT ∗mT
(
TD)2(

TD)n−2

=
(
TD)3

T ∗mT
(
TD)n−2

= T ∗mT
(
TD)n+1

.

Thus T is of class [(n+1,m)DQN]. The proof is complete. �

PROPOSITION 3.6. Let T ∈B(H )D be of class [(n,m)DQN] and of class [(n,m+
1)DQN] for some positive integers n and m. If T is injective, then T ∗ is of class
[nDN] .

Proof. Since T ∈ [(n,m)DQN]∩ [(n,m+1)DQN], we have(
TD)n

T ∗m+1T −T ∗m+1T
(
TD)n = 0

⇒ (
TD)n

T ∗T ∗mT −T∗T ∗mT
(
TD)n = 0

⇒ [(
TD)n

T ∗ −T ∗(TD)n]
T ∗mT = 0

⇒ T ∗Tm[
T

(
(T ∗)D)n − (

(T ∗)D)n
T

]
= 0

⇒ T ∗mTm[
T

(
(T ∗)D)n− (

(T ∗)D)n
T

]
= 0

⇒ [
T

(
(T ∗)D)n − (

(T ∗)D)n
T

]
= 0

(
by N (T ∗mTm) = {0})

⇒ T
(
(T ∗)D)n =

(
(T ∗)D)n

T = 0.

Therefore T ∗ is of class [nDN]. �

THEOREM 3.4. Let T ∈ B(H )D of class [(n,m)DQN] . If T is m-power nor-
mal, then TD is of class [(n,m)QN] .

Proof. Since T is (n,m)-power D-quasi-normal, it follows in view of lemma 1.1
that (

TD)n
T ∗mT −T ∗mT

(
TD)n = 0

⇒ (
TD)n(

T ∗mT
)D − (

T ∗mT
)D(

TD)n = 0

⇒ (
TD)n((T )D)∗mTD − ((T )D)∗mTD(

TD)n = 0 (since T ∗mT = TT ∗m).

Hence TD is (n,m)-power quasi-normal operator as required. �

PROPOSITION 3.7. The set of all (n,m)-power D-quasi-normal operators on H
is closed subset of B(H )D with is closed under scalar multiplication.

THEOREM 3.5. Let (Tk)1�k�d ∈ (
B(H )D

)d
such that each Tk is (n,m)-power

D-quasi-normal, then



(n,m) -POWER D -NORMAL AND (n,m) -POWER D -QUASI-NORMAL OPERATORS 725

(1) T1⊕T2⊕·· ·⊕Td is a (n,m)-power D-quasi-normal.

(2) T1⊗T2⊗·· ·⊗Td is a (n,m)-power D-quasi-normal.

Proof. The proof of this theorem is formally the same as the proof of Theorem 2.4
with suitable changes and thus we omit the details. �
In the following theorem, we collect some further of basic properties of the class
[(n,m)DQN] .

THEOREM 3.6. Let T is of class [(n,m)DQN] . Then the following properties
hold.

(1) If M is a closed subspace of H such that T is a reducing subspace for T , then
T/M is of class [(n,m)DQN] .

(2) If S ∈ B(H ) is of class [(n,m)DQN] such that [T,S] = [T,S∗] = 0 , then TS is
of class [(n,m)DQN] .

(3) If S is of class [N] such that [T,S] = 0 , then TS is of class [(n,m)DQN] .

(4) If S is of class [(n,m)DQN] such that [T,S] = [T,S∗] = 0, then T +S is of class
[(n,m)DQN] .

(5) If S is of class [N] such that [T,S] = 0, then T +S is of class [(n,m)DQN] .

Proof. By analogous arguments as in the proof of [11, Theorem 4.7], we show the
statements (1)− (5) . �
Now we discuss (n,m)-power D-quasi-normality of an operator under some commut-
ing conditions on the real and imaginary part of its Drazin inverse.

THEOREM 3.7. Let T ∈ B(H )D such that R(Tm−1) is dense. Then T is of
class [(n,m)DQN] if and only if Cm commutes with Re

(
TD

)n
and Im

(
TD

)n
.

Proof. Let T be (n,m)-power D-quasi-normal, i.e.

(
TD)n(

T ∗mT
)

=
(
T ∗mT

)(
TD)n

,

it follows that (
TD)n(

T ∗mTm)
=

(
T ∗mTm)(

TD)n
,

i.e. C2
m

(
ReTD

)n =
(
ReTD

)n
C2

m. Since Cm is non-negative definite, it follows that

CmRe
(
TD)n =

(
ReTD)n

Cm.

In a Similar way we can prove that Cm
(
ImTD

)n = Im
(
TD

)n
Cm.
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Conversely, assume that CmRe
(
TD

)n = Re
(
TD

)n
Cm and CmIm

(
TD

)n = Im
(
TD

)n
Cm.

Then
C2

mRe
(
TD)n =

(
ReTD)n

C2
m and C2

mIm
(
TD)n = Im

(
TD)n

C2
m.

Hence
C2

m

(
Re

(
TD)n + iIm

(
TD)n) =

(
Re

(
TD)n + iIm

(
TD)n)

C2
m

and we have C2
m

(
TD

)n =
(
TD

)n
C2

m.

On the other hand, we have

C2
m

(
TD)n =

(
TD)n

C2
m ⇔ T ∗mTm(

TD)n− (
TD)n

T ∗mTm = 0

⇔
(

T ∗mT
(
TD)n − (

TD)n
T ∗mT

)
Tm−1 = 0

⇔ T ∗mT
(
TD)n − (

TD)n
T ∗mT = 0

(
R(Tm−1) = H

)
.

Therefore T is of class [(n,m)DQN] . �

THEOREM 3.8. Let T is of class [(n,m)DQN] for some positive integers n and
m for which n � m. Assume that R(Tm−1) is dense and C2

m

(
TD

)n =
(
TD

)n
B2

m , then
Bm commutes with Re

(
TD

)n
and Im

(
TD

)n
.

Proof. Since T is of class [(n,m)DQN] , then(
TD)n

T ∗mTn = T ∗mTn(TD)n
and

(
TD)n

T ∗mTn = T ∗mTn(TD)n
.

B2
mRe

(
TD)n =

1
2
TmT ∗m

((
TD)n +

(
TD)∗n)

=
1
2

(
TmT ∗m(

TD)n +TmT ∗m(
TD)∗n)

=
1
2

(
TmT ∗mTn(TD)2n +Tm(

TD)∗n
T ∗m

)

=
1
2

(
Tm(

TD)2n
T ∗mTn +TmT ∗n(TD)∗2n

T ∗m
)

=
1
2

((
TD)2n−m(T ∗mTm)Tn−m +TmT ∗m(

TD)∗n
T ∗n−m(

TD)∗n
T ∗m

)

=
1
2

(
T ∗mTm(

TD)2n−m
Tn−m +

(
TD)∗n

T ∗mTm(
TD)∗m

T ∗m
)

=
1
2

(
T ∗mTm(

TD)n +T∗mTm(
TD)∗n)

=
1
2

((
TD)n

TmT ∗m +
(
TD)∗n

TmT ∗m
)

= Re
(
TD)n

B2
m.
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Consequently, BmRe
(
TD

)n = Re
(
TD

)n
Bm .

In a similar way, we can prove that BmIm
(
TD

)n = Im
(
TD

)n
Bm. �

PROPOSITION 3.8. Let T ∈ B(H )D . If T is of class [(n,m)DQN] such that
N (T ∗) ⊂ N (TD) , then T is of class [(n,m)DN] .

Proof. We consider the following two cases:

Case I: If R(T ) is dense, then T is of class [(n,m)DN] .

Case II: If R(T ) is not dense. By the fact that T is of class [(n,m)DQN] it is easily to
see that ((

TD)n
T ∗m−T ∗m(

TD)n
)

T = 0,

which implies that (
TD)n

T ∗m −T ∗m(
TD)n = 0 on R(T ).

We now apply the condition N (T ∗) ⊂ N (TD) to conclude that

(
TD)n

T ∗m −T ∗m(
TD)n = 0 on N (T ∗).

Combining these we have that T belong to [(n,m)DN] . �

4. Fuglede-Putnam theorem for (n,m)-power D-normal operatoes

The Fuglede-Putnam theorem plays a major role in the theory of bounded oper-
ators. Many authors have worked on it since the papers of B. Fuglede [13] and then
by C. R. Putnam [20]. A. Bachir and M. W. Altanji [3] generalized that theorem for
(p,k)-quasiposinormal operators, M. Hichem Mortad [19] generalized this theorem to
isometry and co-isometry operators. There were various generalizations of Fuglede-
Putnam’s theorem to nonnormal operators, we only cite [5, 14, 23].

The famous Fuglede-Putnam’s theorem is as follows:

THEOREM 4.1. (Fuglede-Putnam). Let M,N ∈B(H ) be normal and T ∈B(H ) .
If TN = MT , then TN∗ = M∗T .

REMARK 4.1. If N = M , this is Fuglede’s theorem.

REMARK 4.2. Here, we give out an example that if A ∈ B(H ) and T is (n,m)-
power D-normal satisfying TA = AT , we can not get T ∗A = AT ∗.

To see this, just consider the following example.
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EXAMPLE 4.1. Let T the operator represented by the matrix T =
(

0 1
−1 0

)
and

A =
(

0 1
1 0

)
. A direct computation shows the following

• T is D-normal and AT = TA but AT ∗ �= T ∗A.

• TD is normal and ATD = TDA but AT ∗ �= T ∗A.

PROPOSITION 4.1. Let T be (n,m)-power D-normal operators, for some posi-
tive integers n and m. If there exists another operator A, such that, TA = AT , then

we have
(
TD

)∗k
A = A

(
TD

)∗k
where k is the least common multiple of n and m. In

particular
(
TD

)∗nm
A = A

(
TD

)∗nm
.

Proof. From the hypothesis TA = AT , we have TkA = ATk . In view of lemma

1.1, we have
(
TD

)k
A = A

(
TD

)k
. By applying Theorem 2.1 we have

(
TD

)k
is normal

and so that
(
TD

)∗k
A = A

(
TD

)∗k (by Fuglede theorem). �

PROPOSITION 4.2. Let T,S be (n,m)-power D-normal operators, for some pos-
itive integers n and m. If there exists another operator A, such that, TDA = ASD,
then

(i)
(
TD

)∗k
A = A

(
SD

)∗k
where k is the least common multiple of n and m.

(ii)
(
TD

)∗nm
A = A

(
SD

)∗nm
.

Proof.

(i) By the assumption that TDA = ASD, it is easy to see that

(
TD)k

A = A
(
SD)k

.

Now, from the statement (2) of Proposition 2.1, it follows that, TD and SD are

(n,m)-power normal. In particular,
(
TD

)k
and

(
SD

)k
, are normal operators.

Thus, the pair,
((

SD
)k

,
(
TD

)k)
, do satisfy the Fuglede-Putnam theorem.

The statement (ii) follows by similar arguments. �

THEOREM 4.2. Let T ∈ [(n,m)DN] , for some positive integers n and m, and

S ∈ [DN] . If there exists another operator A, such that,
(
TD

)k
A = ASD where k is the

least common multiple of n and m. Then we have

(
TD)∗

A = A
(
SD)∗

.
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Proof. Under the assumptions we have

T ∈ [(n,m)DN] ⇒ TD ∈ [(n,m)N] ⇒ (
TD)k ∈ [N] ⇔ TD ∈ [(k,1)N].

and
S ∈ [DN] ⇔ SD ∈ [N].

Since
(
TD

)k
A = ASD, it follows from [16] that

(
TD

)∗
A = A

(
SD

)∗
. �

COROLLARY 4.1. Let T ∈ [(n,m)DN] , for some positive integers n and m, and
S ∈ [DN] . If there exists another operator A, such that,

(
TD

)nm
A = ASD , then

(
TD)∗

A = A
(
SD)∗

.

THEOREM 4.3. Let T , S be injective (n,m)-power D-normal operators, for
some positive integers n and m. If there exists another operator A, such that,

(
TD)k

A = A
(
SD)k

where k is the least common multiple of n and m,

then (
TD)∗

A = A
(
SD)∗

.

Proof. Firstly, we not that, the assumptions that T and S are injective implies
that TD and SD are injective. In view of Proposition 2.1 we know that TD ∈ [(n,m)N]
and SD ∈ [(n,m)N]. Hence

(
TD

)k
and

(
SD

)k
are normal operator (Theorem 2.1), i.e;

TD and SD are k -power normal. As
(
TD

)k
A = A

(
SD

)k
, it follows from [16] that(

TD
)∗

A = A
(
SD

)∗
. �

We omit the proof of the following corollary since the techniques are similar to
those of the proof of Theorem 4.3.

COROLLARY 4.2. Let T , S be injective (n,m)-power D-normal operators, for
some positive integers n and m. If there exists another operator A, such that,

(
TD

)nm
A =

A
(
SD

)nm
, then

(
TD

)∗
A = A

(
SD

)∗
.

THEOREM 4.4. Let T ∈ [DN] and A,B ∈ B(H ) satisfying

AT = TB (4.1)

BT = TA, (4.2)

(A−B)TD = −TD(A−B), (4.3)

Then (
TD)∗

A = B
(
TD)∗

and
(
TD)∗

B = A
(
TD)∗

.
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Proof. By adding (4.1) and (4.2) we get

(A+B)T = T (A+B) (4.4)

and we deduce from Lemma 1.1 that (A+B)TD = TD(A+B) . Since TD is normal, it
follows by Fuglede theorem that

(A+B)
(
TD)∗ =

(
TD)∗(A+B)

and so that
A
(
TD)∗ − (

TD)∗
B =

(
TD)∗

A−B
(
TD)∗

. (4.5)

Also by (4.3) we have by same reason

(A−B)
(
TD)∗ = −(

TD)∗(A−B), (4.6)

By adding (4.5) with (4.6) we get

2A
(
TD)∗ −2

(
TD)∗

B.

Therefore
A
(
TD)∗ =

(
TD)∗

B.

On the other hand, By subtracting (4.5) from (4.6) we get

2
(
TD)∗

A−2B
(
TD)∗ = 0

and so that (
TD)∗

A = B
(
TD)∗

.

The proof is completed. �

COROLLARY 4.3. Let T ∈ [(n,m)DN] and A,B ∈ B(H ) satisfying

ATk = TkB, (4.7)

BTk = TkA, (4.8)

(A−B)
(
TD)k = −(

TD)k(A−B), (4.9)

where k is the least common multiple of n and m. Then

(
TD)∗k

A = B
(
TD)∗k

and
(
TD)∗k

B = A
(
TD)∗k

,

Proof. The proof goes along the same lines as the proof of Theorem 4.4.

Under the assumption that T is of class [(n,m)DN] , it follows that Tk is of class [DN]
(Proposition 2.1). Moreover Tk satisfies the conditions of Theorem 4.4, the conclusion
of Corollary 4.3 holds. �
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COROLLARY 4.4. Let T ∈ [(n,m)DN] and A,B ∈ B(H ) satisfying

ATnm = TnmB, (4.10)

BTnm = TnmA, (4.11)

(A−B)
(
TD)nm = −(

TD)nm(A−B), (4.12)

Then (
TD)∗nm

A = B
(
TD)∗nm

and
(
TD)∗nm

B = A
(
TD)∗nm

.

Proof. Since T ∈ [(n,m)DN] , it follows that Tnm is D-normal by Theorem 2.1.
However Tnm satisfy the conditions of Theorem 4.4 and consequently the statements
of the corollary are proved. �
Recall that an operator T ∈ B(H ) is said to be decomposable if for every open cover
{U,V} of C there are T -invariant subspaces N and M such that H = N + M ,
σ(T |N ) ⊂ U and σ(T |M ) ⊂ V . Remark that T is decomposable if and only if T
and T ∗ have the property (β ) ([18, Theorem 2.5.19]).

THEOREM 4.5. Let T ∈ B(H )D be (n,m)-power D-normal, then TD is de-
composable.

Proof. Since T is (n,m)-power D-normal by Proposition 2.1 and Theorem 2.1
Tnm and T ∗nm are D-normal or equivalently

(
TD

)nm
and

(
TD

)∗nm
are normal. Hence(

TD
)nm

is decomposable. In view of [18, Theorem 3.3.9], we deduce that TD is
decomposable. �

Conclusion

Here by concluded that this paper shows that there is a lot of work that can be done in
the area of Drazin invertible operators on a Hilbert space. In further studies this work
will be extended and serves as a tool for other works.
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