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2-LOCAL x-LIE AUTOMORPHISMS OF SEMI-FINITE FACTORS

XIAOCHUN FANG, XINGPENG ZHAO"™ AND BING YANG

(Communicated by P. Semrl)

Abstract. Let ./ be a semi-finite von Neumann algebra factor on a complex Hilbert space H
with dimension greater than 3. Then every surjective 2-local *-Lie automorphism @ of .# is of
the form ® =¥ + 7, where W is a x-automorphism or the negative of a x-anti-automorphism
of ./ ,and T is a mapping from .# into CI vanishing on every sum of commutators.

1. Introduction and preliminaries

Let </ be an algebra over the complex field C. Recall that a linear map 6 on
</ is called a local isomorphism (respectively, local derivation) if for each A € o7,
there exists an isomorphism (respectively, a derivation) 8,4, depending on A, such that
0(A) = 04(A). The local map problem was initiated by Kadison [1] and Larson and
Sourour [2] in 1990. In the past decades, the study of local maps has attracted much
attention of scholars. There exists a vast literature on local isomorphisms and local
derivations. Some results on them are contained in [3, 4, 5, 6, 7, 8].

In 1997, Semrl [9] introduced the notion of 2-local maps. Recall that a (non-
necessarily linear) map 6 on an algebra .7 is called a 2-local isomorphism (respec-
tively, 2-local derivation) if for any A,B € <7, there exists an isomorphism (respec-
tively, a derivation) 64 5, depending on A and B, such that 6(A) = 64 5(A) and
0(B) = 64.8(B). Recently, 2-local maps have been studied on different operator al-
gebras by many authors. In [9], Semrl studied 2-local isomorphisms and 2-local deriva-
tions on the algebra of all bounded linear operators on an infinite dimensional separable
Hilbert space. Ayupov and Kudaybergenov [10] studied 2-local derivations and auto-
morphisms on B(H) and in [11] they described 2-local derivations on von Neumann
algebras. We can refer to [12, 13, 14, 15, 16] for more about 2-local maps.

Let & and £ be Banach x-algebras. Recall that a (non-necessarily linear) bijec-
tion ¢ : o — A is called a Lie *-isomorphism if ¢([A,B]) = [¢(A),¢(B)],¢(A*) =
®(A)* and called a *-Lie isomorphism if ¢([A,B*]) = [¢(A),¢(B)*] for A,B € o,
where [A,B] = AB — BA is the usual Lie product of A and B. Contrary to Lie *-
isomorphisms, a *-Lie isomorphism need not preserve Lie products nor involution. A
*-Lie isomorphism is more general and complicated than a Lie *-isomorphism. There-
fore, in the process of dealing with details of a *-Lie isomorphism, we need more skills
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and tools. Recently, Bai and Du [17, 18] studied the nonlinear *-Lie isomorphism. Let
A and .4/ be von Neumann algebra factors on a complex Hilbert space H with di-
mension greater than 3. Bai and Du [17] proved that if ¢ : .# — .4 is a non-linear
x-Lie isomorphism, then ¢ is of the form o + 7, where ¢ is a linear *-isomorphism,
or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the
negative of a conjugate linear *-isomorphism of .# onto .4 and 7 is a mapping from
A into CI vanishing on every commutator. Li and Lu [19] studied 2-local *-Lie iso-
morphisms. Recall that a map ¢ on an operator algebra <7 is called a 2-local *-Lie
isomorphism if for each A,B € 7, there exists a linear *-Lie isomorphism ¢4 3 on
</ such that ¢(A) = ¢4 p(A) and ¢(B) = ¢ p(B). Let H be a complex Hilbert space
of dimension greater than 3. Li and Lu [19] proved that every surjective 2-local *-Lie
isomorphism @ of B(H) has the form ® =¥ + 7, where ¥ is a *-isomorphism or the
negative of a x-anti-isomorphism of B(H) and 7 is a homogeneous map from B(H)
into CI vanishing on every sum of commutators.

In this paper, we generalize the result of Li and Lu to semi-finite von Neumann
algebra factors on a complex Hilbert space H with dimension greater than 3. The main
result in the paper reads as follows. Let .# be a semi-finite von Neumann algebra
factor on a complex Hilbert space H with dimension greater than 3. Then every sur-
jective 2-local *-Lie automorphism ® of .# is of the form ® =¥ + 7, where W is a
x-automorphism or the negative of a *-anti-automorphism of .# , and 7 is a homoge-
neous mapping from .# into CI vanishing on every sum of commutators.

Throughout the paper, let .#; be the set of all elements A € . such that 7(|A|) <
oo, Then .7 is a *-algebra, and moreover, .#; is a two-sided ideal of .# . Suppose
that P is an arbitrary projection in .# , then we set PX =1 —P.

2. Main results

In this section, we characterize surjective 2-local *-Lie automorphisms on semi-
finite von Neumann algebra factors on a complex Hilbert space with dimension greater
than 3. For this, we need some lemmata as follows.

Let .# be a von Neumann algebra and let @ : .# — .# be a 2-local x-Lie auto-
morphism. For A,B € .# , the symbol @4, stands for a x-Lie automorphism of .#
satisfying ®(A) = ®4,5(A) and ®(B)=P4,5(B).

LEMMA 2.1. Let A4 be a von Neumann algebra factor and let ® : # — M be
a surjective 2-local x-Lie automorphism. Then

(1) @ is homogeneous and injective;
(2) ® ! isalso a 2-local *-Lie automorphism;

(3) ®(0) =0 and ®(CI) =CI.

Proof.
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(1) Let A € C and A € . . Then we have
D(AA) =Dy 5 4(AA) = XDy 34(A) = A D(A).

Hence @ is homogeneous.
If ®(A) = ®(B), then @4 5(A) = Dy p(B) and so A = B. Hence P is injective.

(2) Forany C,D € ./ , there exist A,B € .# such that ®(A) = C and ®(B) = D.
Then there is a *-Lie automorphism ®, g(A) : # — .4 such that C = P(A) =
@, 5(A) and D = ®(B) = , 5(B). By (1), A=d(C) =, ,(C) and B =
@~ !(D) = @, 5(D). Notice that @, % is also a *-Lie automorphism of ./ .
Hence @ is a 2-local *-Lie automofphism.

(3) By the homogeneity of @, it is clear that ®(0) =0. Let A € C and any A € .Z,
we have

[cD(A),cI)(/lI)*} :[q)/ll,A(A)»q)u,A(/u)*] = (DM,A([AIID =0.

Since @ is surjective, it follows that ®(A1)*C = CO(AI)* for any C € . .
Hence ®(AI) € CI, which implies ®(CI) C CI. Notice that ®~! is also a
surjective 2-local *-Lie automorphism. Thus, ®~!(CI) C CI. Hence ®(CI) =
Cr. O

LEMMA 2.2. [20, Theorem 6] Let .# be a von Neumann algebra and T € A .
Then T = P+ Al for some idempotent P € .4 and A € C, if and only if

[[[X7T]’T]’T] :[X’T}
forevery X € . .

LEMMA 2.3. [17, Main theorem] Let .4,V be von Neumann algebra factors
on a complex Hilbert space H with dimension greater than 3. If ® : .4 — N is a
linear x-Lie isomorphism, then ® is of the form ® = o+ T, where © is a linear *-
isomorphism or the negative of a linear x-anti-isomorphism, and T is a linear map
from A into CI which maps commutators to zero.

LEMMA 2.4. [21, Proposition 8.5.3 and Theorem 8.5.7] Suppose that .# is a von
Neumann algebra factor which is not type 111, then there is a faithful normal semi-finite
tracial weight p on 4 and every such weight is a positive scalar multiple of p. In
particular, if A is a finite von Neumann algebra factor, then there is a unique state pg
on A and py is faithful and normal.

LEMMA 2.5. Let .# be a semi-finite von Neumann algebra factor with a faithful
normal semi-finite trace T and let ® be a 2-local *-Lie automorphism of .# . Then for
any A € .# and B = PXP*, where X € .#; and P is an arbitrary projection in .,
there exists A > 0 such that T(®(A)D(B)) = AT(AB). In particular, if # is a finite
von Neumann algebra factor; then T(®(A)®(B)) = 1(AB). Similarly, ®~" satisfies the
same conclusion.
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Proof. For A,B above, there exists a *-Lie automorphism ®4 g of .# such that
D(A) = Py 3(A) and ®(B) = P, 5(B). Noticing that B € .#; is a commutator, by
Lemma 2.3, there exist a linear *-automorphism or the negative of a linear x*-anti-
automorphism 7y g, and A € C such that @y 3(A) = my p(A) + Al and P4 (B) =
ma(B).

Here, we claim that ®(B),®4 3(B),ms 5(B) € Az.

Indeed, either ¢ a x-automorphism or a *-anti automorphism, 7(¢(-)) is a faith-
ful normal semi-finite trace of .#. By Lemma 2.4, there exists A9 > 0 such that
7(¢(-)) =Ao7(-). Notice that B € .#;. Hence 7(¢(B)) = AyT(B) < e and then ¢(B) €
M. Thus, if map is a linear *-automorphism, then T(®(B)) = t(ma g(B)) < oo; if
T p is the negative of a linear *-anti-automorphism, then 7(®(B)) = 7(P4 5(B)) =
T(ma p(B)) = —t(—ma p(B)) < oo, which implies that ®(B), D4 p(B),7s p(B) € M.

Since .#; is a two-sided ideal of .# , there exists A € C such that

T(D(A)D(B)) = T(Pa 5(A)Pa 5(B)) = T((7a,5(A) + A1) 7s (B))
= 1(ma g(A+ Al)ma (B)),

where 74 p is either a linear *-automorphism or the negative of a linear *-anti-
-automorphism. So we shall discuss the equality by two cases.
Case 1. If my 5 is a linear *-automorphism, then 7(P(A)P(B)) = 1(ma 5((A+AI)B)).
Notice that 7(7a g(-)) is a faithful normal semi-finite trace of . .
Case 2. If my p is the negative of a linear *-anti-automorphism, then 7(D(A)D(B))
= 7(—mas(B(A+AI))). Notice that T(—ms 5(-)) is a faithful normal semi-finite trace
of A .

Hence, by Lemma 2.4, either Case 1 or Case 2, there exists A > 0 such that
T(D(A)P(B)) = At(((A+ AI)B)) = AT(AB). In particular, if .# is a finite factor,
then A = 1. It follows that 7(®(A)®(B)) = t(AB). O

LEMMA 2.6. Let .# be a von Neumann algebra factor and x € # . Suppose
that Q is a fixed projection in A . If Q10xQ = OxQQ, for any Q) € P (M) with
Q1 < Q, then OxQ € CQ.

Proof. We observe that Q. Q is also a von Neumann algebra with unit Q and
OxQ € Q. Q. By 010xQ = OxQQ, for any projection Q1 < Q, we can get that OxQ
commutes with all projections in Q. Q. Since the linear span of all projections of
Q.7 Q is norm dense in Q.7 Q, it follows that QxQ is in the center of Q. Q. Noticing
that .# is a factor, it follows that the center of Q.#Z Q is CQ. Hence OxQ € CQ. O

Our main result reads as follows.

THEOREM 2.7. Let .# be a semi-finite von Neumann algebra factor on a com-
plex Hilbert space H with dimension greater than 3. Then every surjective 2-local *-
Lie automorphism ® of A is of the form ® =¥ + 1, where ¥ is a x-automorphism
or the negative of a *-anti-automorphism of # , and T is a homogeneous map from
A into CI vanishing on every sum of commutators.
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We will prove the theorem by checking several claims as follows.

Claim 1. Let .# be a semi-finite von Neumann algebra factor. Suppose that
O A — M is a surjective 2-local -Lie automorphism. Then ®(A+C) — ®(A) —
®(C) € CI forany A,C € # . Similarly, ®~" satisfies the same conclusion.

Let 7 be a faithful normal semi-finite trace on .# . Suppose that A,C € .# and
B =PXP', where X € .#; and P is an arbitrary projection in . . Now we claim that

T(P(A+C)D(B)) = 1((P(A) + D(C))P(B)).

It is obvious for B = 0. So we need to prove the case B # 0. Notice that B is
a commutator. For A+ C,B € .# , by Lemma 2.3, there exist a *- automorphism
or the negative of a *-anti-automorphism mscp and A € C such that ®(A+C) =
mta+c.8(A+C)+ Al and ®(B) = ma4c g(B). We only prove the case in which s ¢ (-)
is a linear *-automorphism. The case in which mac g(-) is the negative of a linear -
anti-automorphism is similar (we refer to the proof of Lemma 2.5).

We know from the proof of Lemma 2.5 that 7(ma1c p(-)) is also a faithful normal
semi-finite trace on .# and ®(B),Dsic p(B),Ta+cs(B) € ;. Notice that .#; is a
two-sided ideal of .# . By Lemma 2.4 and Lemma 2.5, there exist A(D,1(2) 1) >0
such that 7(ma.c(-)) = AV1(-), T(@(A)D(B)) = AP)7(AB) and T(®(C)D(B)) =
AG)7(CB). It follows that

T(q)(A + C)‘D(B)) :T((I)A+C7B(A + C)(I)A+C7B(B)) = T((?TA+C7B(A + C) + AI)EAJFC’B(B))
=1(marcp((A+C+ADB)) = AV T((A+C+AI)B)
=AWz((A+C)B) = A W1(AB) + 1M1 (CB)

For B=PXPL #0, where X € .#;, we claim that A() = 1(2) = 10,

Indeed, for any X|,X; € .# and B= Pxpt #0, where X € .+, observing that B
is a commutator, then ®(B) = ®px, (B) = mp x,(B) and ®(B) = Dpx,(B) = 7p x,(B)
by Lemma 2.3, where 7p x, is either a linear *-automorphism or the negative of a linear
s-anti-automorphism and so is mpx,. Thus 7gx, (B) = g x,(B), and ngx, (B*) =
g x, (B*). In the following, we will deal with the problem in four cases.

Case 1. If mpx,, 7 x, are both linear x-automorphisms, then we have 7g x, (B
B*) = mp x,(BB*). Notice that T(mpx, (), T(npx,(-)) are both faithful normal semi-
finite traces of .Z .

Case 2. If mp x,,7p x, are both the negative of linear *-automorphisms, then we
have —mp x, (BB*) = —mpx,(BB*). Notice that 7(—mpyx, (), T(—7px,(-)) are both
faithful normal semi-finite traces of .Z .

Case 3. If mpx, is a linear *-automorphism and 7g x, is the negative of a linear
s -automorphism, then we have 7 x, (B*B) = —7p x, (BB*). Notice that T(7g x, (+)),
7(—mp x,(-)) are both faithful normal semi-finite traces of . .
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Case 4. If 7p y, is the negative of a linear *-automorphism and 7p x, is a linear
*-automorphism, then we have —7p x, (B*B) = mp x,(BB*). Notice that T(—mx,()),
7(7mpx,(-)) are both faithful normal semi-finite traces of . .

We only discuss Case 1, and the rest cases are similar.

Notice that npx, (BB*), mpx,(BB*) € .#; from the proof of Lemma 2.5. It
follows that ©(7gx, (BB*)) = 7(ns x,(BB*)). Moreover, by Lemma 2.4, there exist
A',2" such that t(mpx, (BB*)) = A'1(BB*), and 1(nsx,(BB*)) = A" T(BB*). Hence
A'7(BB*) = A" t(BB*). Noticing B#0, we get ' = ". Then it follows that A(1) =
A2 = 2G) Thus,

7(®(A+C)D(B)) = 1(P(A)D(B)) + 1(P(C)D(B)) = 7((P(A) + D(C))D(B)),
and then
T((®(A+C) —DP(A) —D(C))D(B)) =0

forany A,C € .# and B = PXP~, where X € .#; and P is an arbitrary projection in
A . By Lemma 2.5,

0=1((D(A+C)—D(A) — ®(C))P(B)) = At(®~ (DA 4 C) — D(A) — B(C))B),
for some A > 0. It follows that
(@ (DA +C) — D(A) — D(C))B) = 0.
Let Y =& (D(A+C) — ®(A) — ®(C)), then T(YPXPL) = 0. It follows that
T(PtYPXPt) =0.

Now take a monotone net { Py} of projections in .# with 7(Py) < o= which converges
strongly to /. Since .# is an ideal and P, C .#;, the elements P, PY™* also belong to
M. Hence, we obtain

T(PLYPPy(PTYP)*) = 0.

As 7 is normal, T(P+YPPy(P+YP)*) — t(P*YP(PLYP)*), which implies
(PtYP(PtYP)*) = 0.

Since 7 is faithful, PLYP = 0. By the arbitrariness of P, we also have PYPL =0.
The above two equations lead to PY =Y P. As the linear span of all projections of .#
is norm dense in .Z , it follows that AY = YA for all A € .# , thatis, Y is in the center
of ./ . Noticing that .# is a factor, we have ¥ € CI. Hence ® ! (®(A+C) —D(A) —
®(C)) € CI. By Lemma 2.1, we get ®(A+C) — D(A) — d(C) € CI.

Claim 2. Let .# be a von Neumann algebra factor. Suppose that ® : M — M is
a surjective 2-local *-Lie automorphism. If E € Z(.#)\{0,1}, then ®(E) = F 4+ Agl,
where Ap € C and F € P (4 )\ {0,1}. Moreover, the projection F and the scalar Ag
are unique. Similarly, ®~' satisfies the same conclusion.
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Let E € Z(#)\{0,1}. Since [[[T,E|,E],E] = [T,E] forall T € .# , then

[[@7£(T), PrEe(E)], Pre(E) ]|, @re(E)] = [@re(T), Pre(E)],

and thus
[[(T),®(E)"],®(E)"],®(E)"] = [®(T),D(E)"].

Noticing that @ is surjective, it follows that
(18, ®(E)"], ®(E)"],®(E)"] =[S, D(E)]
forall S € .# . By Lemma 2.2, we have
OE) =F+ ugl,
where F is an idempotentin .# and ur € C. Morever,
0= £([E,E]) = [@p £ (E), P £ (E)"] = [O(E), ®(E)] = [F, F7], 2.1

which implies that F' is normal. Thus F = F* and then F € &(.#). We claim that
F #0 or I. Otherwise, ®(E) = Agl or (Ag + 1)I for some Ag € C. Then by Lemma
2.1, we have E =0 or I, which is a contradiction. Next we prove that F and Ag are
unique. Suppose that ®(E) =F +Agl = F gus JLZEI , where F is also a projection and
Ap € C. Then F = F + (Ay — Ag)l. Thus o(F) = {0,1} = 6(F + (Ay — Ap)I) =
{Ap —Ag, Ay — Az +1}. Hence Ay = Ag and F = F .

By Claim 2, we can define a map & : 2(.#)\{0,I} — 2(.#)\{0,I} by
®(E) = D(E) — Agl.

Claim 3. & is bijective and CI;—\1 =d 1

First, we prove that & is bijective.

Let E,F € Z(#)\{0,1},then ®(E) = ®(E) — Agl and ®(F) = ®(F) — Ael. If
®(E) = O(F), then ®(E) — ®(F) € CI. By Claim 1, ®(E — F) € CI, which implies
E—F € CI by Lemma 2.1. Then E = F +ul, and 6(E) ={0,1} = o(F + ul) =
{u,1+u} for some u € C. Hence u =0 and then E = F, which implies that ® is
injective.

Forany F € 2(.#)\{0,1},by Claim2, ® ' (F) =E +ArI, where E € () \
{0,1} and Ap € C, then F = ®(E + Arl). By Lemma 2.1 and Claim 1, there exists
u € C such that F = ®(E + Apl) = ®(E)+ ul, then ®(E) = F — ul. Thus by the
uniqueness in Claim 2, we get F = ®(E), which implies @ is surjective.

Finally, we prove that ®—! = &1

Indeed, for any F € 2(.# )\ {0,1}, by Lemma 2.5, we observe that @' (F) =

E+ Arl, where E € Z(#)\{0,I} and Ar € C. Then ®~!(F) = E. On the other
hand, since @ !(F) = E + Arl, then F = ®(E + Arl) = ®(E) + Al for some A € C
by 2.1(3) and Claim 1. By the uniqueness in Lemma 2.5, we have that F = ®(E) and

& !(F)=E. Hence ® 1 =1,
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Claim 4. Suppose that .# is a semi-finite von Neumann algebra factor. If
P, Py € P(M)\{0,I} and P, + P> =1, then ®(P) +d(P,) =1.

By Lemma 2.1 and Claim 1, we obtain that ®(P; + P,) = ®(I) € CI and ®(P; +
Pg) — q)(Pl) — q)(Pz) € CI. Thus q)(Pl) +q)(P2) € CI and then qA)(Pl) +qA)(P2) e CI.
Then there exists A € C such that ®(P;)+®(P,) = AI. Observing that ®(P;),d(P;) €
P (M)\{0,I}, wehave that 6(D(P)) ={0,1} = 6(AI—D(Py)) = {A,A —1}. Hence
A = 1, which implies that ®(P,) +®(P,) =1.

Let Pl,P,€ P(M). Wesay P < P, if PP, =P, =P,P,and P, <P, if L < P,
and P # P.

Claim 5. Ler .# be a von Neumann algebra factor and P\,P, € P (M) with
0<P <P,<I. Set Qi=®P),i=1,2. Then either 0 < Q< Qy <I or 0 <
0, < Q1 < I. Moreover, let M be a semi-finite factor and Py, Py,Py € P (M) with
0<P <Py<P;<I. Set Qj=®(P),i=1,2,3. Then

(1) If Q1 < Qa, then Q1 < Q2 < Q3.

(2) If Q2 < Qu, then Q1 > 02> Q3.

First, we give the proof of the first part. By the definition of ® and Claim
2, P,P,,P, — P ¢ CI implies Q1,0,,0> — Q1 ¢ CI, in particular O, # Q. Since
[P, ] =0, we have

0 =®p, p, [PlvPZ} = [q)P17P2(P1)7(DP17P2(P2)*] = [q)(Pl)»q)(P2)*] = [qA)(Pl)»d)(PZ)]
=[01,01],

which implies Q10> = 02Q;. Then (Q> — Q1)® = Q> — Q;. Thus, if O, and Q; are
not comparable, then 6(Q>— Q1) ={—1,1} or {—1,0,1}. On the other hand, noticing
that P, — Py € (.4 )\ {0,1}, then by Claim 2, we have ®(P, — P,) € Z(.#)+CI.
Hence Q) — Q1 = O(Py) — D(P) = ®(P,) — Ap, I — D(P) +Ap [ = D(Py— Py) + Al €
P (M )+ CI for some A by Claim 1. Thus there exists a scalar u such that o(Qs —
01) ={u,u+1}, which is a contradiction. Hence 0 < Q1 < Qr <l or 0< 0y < 01 <
1

Next we give the proof of the second part. We only prove the case Q; < Q».
The case Q1 > O, is similar. Assume that Q1 < Q». The projections Q1,0>,0Q3 are
distinct and mutually comparable by the first part. By simple calculation, we have
that P+ P3— P, € () and so Q1+ 03 — Qr € & (4 )+ CI by Claim 1. Hence
0(01+03—02) ={A,A+1} forsome A € C. If O} < Q3 < Q; or Q3 < Q) < 0y,
then (Q1 + Q3 — 02)° = Q1 + Q3 — Q>. It follows that 6(Q1 +Q3 — Q) = {—1,0,1},
which is a contradiction.

REMARK 1. Similarly, o1 (= &) also satisfies the same conclusion of Claim
In the following, from Claim 6 to Claim 12, let .# be a semi-finite von Neumann

algebra factor on a complex Hilbert space H with dimension greater than 3 and let P;
be a fix projection. Set P, =1— P, and Q; = ®(P;),i = 1,2. Notice that 01,0, €
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P (M )\{0,1} and Q1+Q2—1byC1aim4 Let #;j = P.#P; and A;; = Q;.# Q;,
i,j=1,2.Then A# =37, | Mij= ZU 1 Aij-

Claim 6.

i,j=1

(1) If there exists E\ € P (.#)\{0,1} suchthat E; < P, and OE) < d(P) =0
or Ey > Py and &(E)) > O(P)) = Q, then for any E € 2(.#)\{0,1},E < P,
implies ®(E) < Q1 and E > Py implies ®(E) > Q1. Moreover, E < P, implies
®(E) < 0, and E > P, implies ®(E) > Q.

(2) If there exists Ey € 2 (M) \{0,1} such that Ey < P and ®(E;) > ®(Py) = 0y
or E; > P and ®(E;) < ®(P,) = Qy, then for any E € 2(.#)\{0,I},E < P,
implies ®(E) > Q) and E > P, implies &(E) < Q1. Moreover, E < Py implies
®(E) > 0, and E > P implies ®(E) < Q5.

We only prove (1). The proof of (2) is similar. Assume that there exists E| €
P( M)\ {0,I} such that E; < P, and ®(E;) < ®(P;) = Q;. Forany E € () \
{0,1},if E > Py, then E; < P, < E. By Claim 5, we can get ®(E;) < 0 < ®(E). If
E < Py, by Claim 5, either ®(E) > Q; or ®(E) < Q;. If ®(E) > Qy, then we have
®(E) > Q1 > ®(E;). By Remark 1, applying ®~! to Claim 5, we have E; < P; < E,
which is a contradiction. Hence ®(E) < Q. The case that there exists E; € 2 (.4 \
{0,1} such that E; > P; and ®(E;) > ®(P;) = Q; is dealt with in the same way.

If E < P, then I — E > P, . By Claim 4 and the above proof, we have (i)(l —E)=
[—®(E) > Q;. Hence ®(E) < 1 — Q) = Q>. The proof of the case E > P, is similar.

REMARK 2. If @ satisfies the assumption of Claim 6(1), then forany F € P(M)\

{0,I}, F < Q; implies o I(F) < P, and F > Q; implies o I(F) > P,. Similarly,
if @ satisfies the assumption of Claim 6(2), then for any F € Z(.#)\{0,1}, F < 0
implies ®~!(F) > Py and F > Q; implies ®~1(F) < P.

By Claim 6, we may extend the definition of ® to all of Z22(.#) by ®(0) =
0,&(1) =1 if & satisfies Claim 6(1), and ®(0) = I, (1) = 0 if ® satisfies Claim 6(2).

Up to now, we have proved that, if @ satisfies the assumption of Theorem 2.7,
then either Claim 6(1) or Claim 6(2) occurs. So we will prove Theorem 2.7 in two
cases.

Case 1. Assume that the case of Claim 6(1) occurs.

Claim 7. Let @ be a surjective 2-local *-Lie automorphism satisfying Claim 6(1).
Then q)(/%lj) = J%j, 1 < i;’é ] < 2.

We only prove the case of i = 1,j = 2. The proof of the case of i =2,j =1 is
similar. For any Ay € .2, noticing that Aj» = [A|2, P»], we have that

O(A12) =Dy, p, (A12) = Payy p, ([A12, P2]) = [@ay 1, (A12), Payy 2, (P2)]
=[D(A12),D(Py)"] = [@(A12),02] = Q1P(A12) 02 — 02 D(A12) 0.

Multiplied by Q> on the left and Q; on the right hand side of the above equality, we
obtain Q,®(A12)Q; = 0, which implies ®(.#5) C .A>.
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On the other hand, noticing that o1 =d! by Claim 3 and applying the same
argument to ®~!, we can prove that .4, C ®(.#1,). Hence AN15 = ®(.415).

Claim 8. Let .# be a semi-finite von Neumann algebra factor on a complex
Hilbert space with dimension of H greater than 3 and let ® be a surjective 2-local
x-Lie automorphism of .# satisfying Claim 6(1). Then there exists a homogeneous
map fi: M — C such that ®(A;;) — fi(Aii) € N, for all Ay in Mi,i = 1,2, and
fi is unique. Moreover, for each Bjj € N, there exists A;; € Mj; such that ®(A;;) =
Bii+ fi(Ai)l.

We only prove the case i = 1. The proof of the case i =2 is similar.
Let ®(Ay;) = Bj1 + Bia+ B1 + By, forany Ay € ;. Then

0=@uy, p ([A11,P1]) = [Pay,,p, (A1), Payy 1y (P1)] = [P(A11), @(P1)"] = [@(A11), 01
For the above equality, multiplied by Q; on the left and O, on the right, it follows that
01D(A11)Q, =0, and similarly, Q> ®(A;;)Q; = 0, which implies that Bj; = By; =0.
Thus ®(A;1) = B + B2y. On the other hand, for each E € Z(.#) with E < P,, by
Claim 6, we have ®(E) < Q. Notice that [A;,E] =0, then

0 =By, £([A11.E]) = [@a,, £(A11), Pay, £(E)*] = [@(A11), P(E)*] = [B11 + By, D(E))]
=([B2y, ®(E)).

That is, Bzgci)(E ) = Ci)(E )Bo, for all projections E € .# with E < P,. Combining
@(E) < Q, with Lemma 2.6, we have B,y € CQ;. Thus there exists fi(A11) € C such
that By, = f1 (AU)Qz. Hence,

D(A11) =Bi1+ fi(A11)Q2 =Bi1 — fi(A11) Q1 + fi(Au),

then ®(A11) — fi(A11)] € M.
We claim that f; is unique. Otherwise, for any A} € .#, suppose that

(A1) = fi(An)I +B11,P(A) =f1(A11)I+B,11.

Multiplied by Q> on one side of the two above equalities, we can get fi(A11)Q> =

f1(A11)Q2 and then fi(Ay1) = f, (A1) It follows that f; = f; .
It is obvious that f; is homogeneous. Indeed, let Aj; € .#; and A € C. Then

DA) - filAn)] € M1, P(AANL) — fi(AAL)] € M1

It follows that (f1(AA11) — A f1(A11)) € A1 by the homogeneity of ®. This forces
that fi(AA11) =4 f1(Anr).

Apply the preceding proof to ®~! for any By € .4{;. Thus for By| € A, there
exist Aj; and A € C such that ® ' (By;) = Ay + Al and then ®(A;; + Al) = By;.
By lemma 2.1 and Claim 1, we can get ®(A;;) = By; + ul for some u € C. Hence
®(Ay;) — ul € A1 . By the uniqueness of f;, we have that u = f(A;).

By the uniqueness of fi and f, in Claim 8, we can define amap ¥ : .# — .4 by

W(A) =37 21 P(Aij) — filAn)] — fo(Ap)I forany A =37, | Ajj € A .

Claim 9. For ¥ above, let A;j € M;j,1 <i,j <2. Then



2-LOCAL *-LIE AUTOMORPHISMS OF SEMI-FINITE FACTORS 755

(1) Y(Aij) = @A), 1 <i#j <

(2) Y(Aij) = ANj, 1,j=1,2;

(3) W(P)=0i,i=12;

(4) W(X7,1Aij) =37 =1 Y(A);

(5) ¥ is homogeneous and bijective;

(6) For any projection P € .My, \J. M2, ¥(P) = D(P).

(1) and (4) can be easily obtained. For (2), if 1 <i# j < 2, the equality is clear
by (1) and Claim 7. Otherwise, we only prove the case i = j = 1. Thecase i = j =2
is similar. Let Aj; € .#), by Claim 8, "P(All) = q)(AU) —fi (All)l € 1. On the
contrary, also by Claim 8, for any By; € 411, there exist Aj; € .# and u € C such
that ®(A;;) = By; + ul. Hence, by the uniqueness in Claim 8, W(A1;) = By .

For (3), by Claim 8, ®(P;) = W(P,) + fi(P;)I. On the other hand, by the definition
of ®, we have ®(P,) = ®(P) + Apl = Qi+ ApI. Noticing that Q; € .#j;, by the
uniqueness in Claim 8 , we get W(P;) = Q;,i = 1,2.

For (5), the homogeneity of ¥ can be obtained directly by the homogeneity of
@, fi and f,. We only need to prove that ¥ is injective. Let A,B € .# and W(A) =
Y(B). By the definition of ¥, we have

W(A) = (P(A11) — fi(An)]) + P(A12) + P(A21) + (P(A22) — f2(A)]),
and

¥(B) = (®(B11) — fi(Bi)I) + P(B12) + P(Ba1) + (P(B22) — f2(B22)I).
Multiplied by Q; on the left and Q> on the right of the above equalities, we get

01Y(A)Qr = 0Q1D(A12)02,01¥(B)02 = 01P(B12)0s.

Since "P(A) = lP(B), Ql (q)(Alz) (BIZ))Q2 0. By Claim 7 q)(Alz) q)(Blz) S
M2, and then ®(Ajp) — ®(By;) = 0. Since @ is bijective, A1y = Byp. Similarly,
A3 = Bp1. Multiplied by Q; on the two sides of the above equalities, we get

D(A11) — fi(A1)] = ®(B11) — fi(Bi)l.

Then ®(A;;) — ®(By;) = Al for some A € C. By Claim 1, ®(A;; — By;) = ul for
some pu € C. It follows that Aj; — By € CIN.#}; by Lemma 2.1. This forces that
All = Bll . Similarly, A22 = 322 . Hence A =B.

Finally, we prove that ¥ is surjective. Indeed, for any B € .#,B = B}| + B2 +
Bo1 + By, where B;j = Q;BQ; € .4;;. By Claim 8, for B;; € 47,i = 1,2, there exists
Aji € i such that ®(A;;) = B + fi(A;;)] and then B; = ®(A;;) — fi(Ai). For Bjj,
1 <i# j <2, there exists A;; € .#;; such that ®(A;;) =B;;. Let A=A +Ap+
Api +Ap € M by Claim 7. It follows that lP(A) = (q)(All) —fi (All)l) —|—q)(A12) +
®(Az1) + (P(A22) — f2(A22)]) = B11 + B2+ Bay + By = B.



756 X. FANG, X. ZHAO AND B. YANG

For (6), we only prove the case P € .#);. The case P € .#>; is similar. For
any projection P € .#,1, W(P) = ®(P) — f1(P)I = ®(P) + Al — f1(P)I for some A €
C. Then W(P) = ®(P) + ul for some u € C. We observe that W(P) € .47, thus
®(P)Qr = —uQ,. Noticing that P < Py, by Claim 6, ®(P) < Qy, then ®(P)Q, = 0.
It follows that i = 0. Hence ¥(P) = ®(P).

Claim 10. ¥ is linear.

By Claim 9 (4) and (5), we only need to prove that ¥ is additive on .#;; for
i,j=1,2.Let Ajp,B1» € #)>. By Claim 1 and Claim 9(1),(2), we have that

Y(Aj2+B12) —¥(A12) —¥(B12) = P(A12+Bia) —P(A12) —P(B12) = Al =Ci2

for some A € C and Cj, € #),. This forces A = 0, which implies W(Aj2 + B12) =
Y(A2) +W(B12). Hence W is additive on .#),. Similarly, ¥ is additive on .5, .
Let Aj; and Byy € .1, . By Claim 1 and Claim 9(2), we obtain that

W(Ai1+Bi)—Y(An)—¥Y(Bn)
=O(A11 +B11) — fi(A11 +B1)I—P(A1) + f1(A1) [ —D(By1) + fi(Bi) = Al =Cyy

for some A € C and Cy; € #),. This forces A = 0, which implies W(A;; + B11) =
W(Aj1)+¥(Bi1). Hence ¥ is additive on .. Similarly, ¥ is additive on .#>;.

Claim 11. W(A*) =W(A)* forany A € .# and ¥ preserves the commutativity.

First, we prove W(A*) =¥ (A)* forany A € .Z .

Indeed, by Claim 10, we only need to prove that ¥(A;;) = ¥(A;;)" for i,j =
1,2. Let A\, € #1>. By Lemma 2.3, q)Alsz’fz = +0 + 7, where 6 commutes with
. Notice that Ay is a commutator. Hence, we obtain that W(A},) = ®(4],) =
Dy, 41, (ATp) = 0(A]y) = 0(A12)" = Dy, a7, (A12)" = P(A12)" = ¥(A12)". Similarly,
Y(A3) =Y(Ax)".

Let Aj; € #1,. By Lemma 2.3, @y, 47, = +0+ T, where 6 commutes with .
Thus, q)(Aikl) —q)(All)* = T(ATI) —T(All)* € CI. It follows that \P(ATI) —\P(All)* =
T(ATI) — T(AU)* +f1(A11)I—f1(ATl)I e CI. Let "I’(A’lkl) —"I’(AU)* = Al =Cy; for
some A € C and Cy; € #,, This forces A = 0. Hence W(A},) =¥ (A;1)*. Similarly,
W(A3,) =¥(An)".

In the following, we prove that ¥ preserves the commutativity.

Let A,B € .# with AB=BA. Since W(A*) =¥ (A)* forany A € .# , then

0 =P 5+ ([A,B]) = [@a 5+ (A), Pap: (B")"] = [@(A), D(B")"] = [¥(A), ¥ (B")"]
=[¥(4),¥(B)]

which implies W(A)¥(B) = W(B)¥(A).

Claim 12. ¥ is a *-automorphism.
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Since VW is a bijective *-linear map preserving the commutativity, it follows from
[22, Theorem 2] that
Y=o0¢+1,

where o € C\ {0}, ¢ is an automorphism or anti-automorphism of ./, and 1, is a
linear map from .# to CI. Next, we shall prove the claim in three steps.
Step 1. We prove that oc = 1.

For i = 1,2, we have that

Qi =¥(P) = a¢(F) + B,

for some f3; € C. Noticing that Q; and ¢(P;) are idempotents, we have that

g (P) + il = (o +20B;) 6 (P) + B7L.

Thus,
(o —o® —20apB)9(P) = (B — B)I.

Noticing that ¢ (P) € 2 (.#) and ¢(P;) ¢ CI, we have o — o> — 20 =0 and B? —
Bi=0.Hence, a=1,=0,i=1,20rc=—1,B=1,i=1,2.

We claim that o« = 1,3; = 0,i = 1,2. Otherwise o0 = —Lﬁi =1,i=1,2. Let
E e 2(#)\{0,I} with E < P,. By Claim 6 and Claim 9(6), we obtain that

—0(E) + vl ="¥(E) = B(E) < D) =¥(P) = —¢(P) +1,
for some y € C. Noticing that ®(E),&(P,) € (.4 )\ {0,1}, we have that

(=0(E) +7D)(=9(Po) +1) = —¢(E) +7I.

By the simple computation, we can get that ¢ (E) = ¢(yP>). Thus E = yP5, which is a
contradiction. Hence o = 1,3, =0 and Q; = ¢(P;),i = 1,2.
Step 2. We will prove that ¢ is an automorphism.

Otherwise, let A be a non-zero element in .#),. If ¢ is an anti-automorphism,
then by Claim 9(2),

Y(An) =01Y(A12)0 = 0Q19(A12)02 = ¢(P1)9(A12) 02 = ¢(A12P1)02 =0

Thus Aj» = 0, which is a contradiction. Hence ¢ is an automorphism.

Up to now, we have proved that ¥ = ¢ + 7; and ¢(P) = Q;, where ¢ is an
automorphism of .# and 7, is a map from .# to CI.
Step 3. We will show that 7, =0.

Indeed, ¢(A;;) = ¢(P)9(Ai))9(P;) = Qid(Aij)Q; € A for all A;j € M0, j =
1,2. On the other hand, W(4;;) = ¢(Aij) +’L’1(Al )€ ,/1{1,17] 1,2. ThlS forces that
71(Aij) =0 forall A;; € #j,i,j=1,2. Then W(A) = ¢(A) foranyAeg///. It follows
that 7, =0.

Hence, YV is a x-automorphism.

Finally, we shall prove Theorem 2.7 in two cases.
Case 1. Assume that ® satisfies Claim 6(1).
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For any A € .# , we define 7(A) = ®(A) —¥(A). Then ® =¥+ 7. We get the
homogeneity of 7 directly by the the homogeneity of @ and ¥. Moreover, by the
definition of ¥, it follows that 7 is a map from .# into CI. In the following, we will
prove that T vanishes on very sum of commutators.

Since . is a semi-finite von Neumann algebra factor on a complex Hilbert space
H with dimension greater than 3, then there exist three non-trivial projections P;, P>, P; €
M suchthat Py+P,+P;=1 and PP, = P|P; = P,P;=0. Now let Py=P; +2P>+4P;
and let £ € .# be a sum of commutators. Then by the definition of 2-local *-Lie au-
tomorphism and Lemma 2.3, we have

O(E) = Pp, £(E) = 7p £ (E), P(Po) = Pp £ (Po) = 7R, £ (Ro) + A1

for some A € C, where Tp, £ 1s a *-automorphism or the negative of a *-anti-
-automorphism of .# . On the other hand,

O(E)=Y(E) +1(E),P(R) = ¥(P) + t(P),
where W is a *-automorphism and 7 is a homogeneous map from .# into CI. Thus,
"P(P()) + T(P()) = q)(P()) = 7TP,E(PO) —|—2,I,"P(E) + T(E) = q)(E) = 7'Ep07E(E).

If 7, £ is the negative of an anti-automorphism, taking the spectrum, we have ¢ (Py) =
—0o(PRy)+u forsome u € C, thatis, {1,2,4} ={—-1+u,—2+pu,—4+ u},whichis
a contradiction. So 7p, r must be an automorphism. Moreover, 6(E) +v = o(E),
where 7(E) = vI, which implies that v =0. Hence t(E) =0.

Up to now, we proved that 7 is a homogeneous map from .# into CI vanishing
on very sum of commutators.
Case 2. Assume that @ satisfies Claim 6(2). Then ® = —W¥ + 7, where WV is a linear
s -anti-automorphism of .Z , and 7 is a homogeneous map from . into CI vanishing
on very sum of commutators.

Similar arguments to those given in the proof of Case 1 are valid for the proof of
Case 2. Combining Case 1 with Case 2, we give the proof of Theorem 2.7.
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