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MAPS PRESERVING EQUIVALENCE BY PRODUCTS OF INVOLUTIONS

GORDANA RADIC

(Communicated by H. Radjavi)

Abstract. Let A (Z) be the algebra of bounded linear operators on a complex Banach space
2. Two operators A and B € #(Z") are said to be equivalent by products of involutions, if
A=TBS for T and S being a products of finitely many involutions. We will give description of
linear bijective maps ¢ on % (2") satisfying that ¢ (A) and ¢ (B) are equivalent (i.e. A=TBS
for some invertible 7, € % (2")) whenever A and B are equivalent by products of involutions.

1. Introduction and the main result

Let 2 be, if not stated otherwise, a complex Banach space of dimension at least
two, 2" its topological dual, ker f the kernel of f € 27, %(2") the algebra of all
bounded linear operators on 2" and .# (2") the ideal of all finite rank operators.

Over the past decades, there has been a considerable interest in the study of linear
or merely additive maps on operator algebras that leave certain relations invariant. A lot
of interest, among others, has been devoted to the similarity relation (operators A and
B are similar, if B = SAS~! for some invertible operator S) and to the classification of
similarity-preserving linear or additive maps ¢ (i.e. if operators A and B are similar,
then ¢ (A) and ¢ (B) are similar as well), for instance [2, 3, 4, 6, 7, 10, 11, 13, 16].
Although a lot of results regarding similarity relation exist, let us expose the result due
to Lu and Peng, [11]. They proved thatif 2" is an infinite-dimensional complex Banach
space and ¢ : B(Z") — B (X") is a surjective similarity-preserving linear map, then
there exist either a non-zero ¢ € C, an invertible T € #(2") and a similarity-invariant
linear functional & on % (2") with h(I) # —c such that

¢(X)=cTXT ' +h(X)I, forevery X € (%), (1)

or there exist a non-zero ¢ € C, invertible bounded linear operator T : 2/ — 2" and a
similarity-invariant linear functional # on % (2") with h(I) # —c such that

0(X)=cTX'T ' +h(X)I, foreveryX € B(Z), )
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where X' stands for the adjoint of the operator X, and a similarity-invariant functional
h means that i (A) = h(B) whenever A is similar to B. Qin and Lu, [19], modified the
problem and presented it in another way.

An operator J € % (2") is called an involution if J?> = I, the identity operator
on 2°. By P-Inv(Z") we denote the set of all finite products of involutions. Ob-
viously, P-Inv(2") is a subset of ¢ (2"), the multiplicative group of all invertible
operators in A (Z"). Moreover, due to Radjavi [15] it is known that P-Inv (2") =
{A € #(Z)| detA = £1} inthe case of finite dimensional space 2, and P-Inv (2") =
@ (Z) if 2 is an infinite-dimensional complex Hilbert space. In a general infinite-
dimensional complex Banach space £  the problem whether P-Inv(.2") coincides
with ¢ (Z2") is connected with the existence of a non-trivial multiplicative functional
feZ'. Asstatedin [1, 12, 17, 20] there exists a Banach space 2" having a non-trivial
multiplicative f € 27, so P-Inv(.2") can be a proper subset of ¢ (2").

Two operators A and B are called p-similar, if B = SAS ~1! for some S € P-Inv (2),
and a linear map ¢ : B(Z) — B(Z") is said to be p-similarity preserving if ¢ (A)
and ¢ (B) are similar whenever A is p-similar to B. Note that similarity preserving is
stronger assumption than p-similarity preserving with which Qin and Lu were occupied.
They proved that a linear bijection ¢ : B (2") — % (Z") being only a p-similarity pre-
serving is (as in the similarity-preserving case) either of the form (1) or of the form
(2).

We now define another equivalence relations on % (Z2"). Two operators A and
Be #(X) are said to be equivalent, denoted by A ~ B, if A =TBS for some T,S €
¢ (Z'), and are equivalent by products of involutions, denoted by A ~,, B, if A=TBS
for some 7,5 € P-Inv(.27).

The aim of this note is to refine the result stated in [14], where linear bijection
O :AB(X)— B(Z) with A~ B = ¢(A) ~ ¢ (B) were determined. It was proved
that in the case of 2~ being an infinite-dimensional reflexive complex Banach space
either there exist 7,5 € 4 (2") such that ¢ (X) = TXS forevery X € #(Z"), or there
exist bounded bijective linear operators T : 2/ — 2" and S: 2 — 2" such that
o (X)=TX'S forevery X € B(Z").

Our main result reads as follows.

THEOREM 1. Let Z be a complex Banach space of dimension at least two and
O0:B(L)— B(XL) asurjective linear map such that

A~pB = ¢(A)~¢(B),
Sorevery A,B € B(Z"). Then one and only one of the following statements holds.
(i) 9 (F)=0, forevery F € 7 (Z).
(ii) There exist invertible T,S € B (XZ") such that
¢ (X)=TXS, foreveryX € B(X).

(iii) There exist invertible bounded linear operators T : 2" — 2 and S : 2~ — 2’
such that
o (X)=TX'S, foreveryX € B(X),
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where X' stands for the adjoint of the operator X .
Case (iii) can only occur if 2" is reflexive.

Let us remark that the problem stated in Theorem 1 is not of any general type of
LPPs. We actually determine those surjective linear maps where from equivalence by
products of involutions of A and B follows that ¢ (A) is equivalent to ¢ (B) and not
equivalent by products of involutions as we would expect.

2. Preliminaries

Every rank-one operator can be written as x ® f for some non-zero vector x € 2
and some non-zero functional f € 27, and is defined by (x® f)z = f(z)x for every
€2, Ax®f)=Ax® f and (x® f)A =xRA'f forevery A € B(2"), where A’
stands for the adjoint operator of A; operator x® f is idempotent if f (x) =1 and it is
nilpotent if f (x) =0.

It is obvious that all rank-one operators are mutually equivalent. But, when we are
speaking about equivalence orbit of a rank-one operator under equivalence by products
of involutions, the problem is a little bit more complicated. With the following Propo-
sition and some subsequent Lemmas we will be able to determine all operators that are
equivalent by products of involutions to a fixed rank-one operator in A (2").

PROPOSITION 1. [19, Proposition 2.1] Let N € B(Z") be a non-zero finite-rank
operator with N*> = 0. Then I+ N is a product of two involutions.

LEMMA 1. Let 0 #Ax € 2 and 0# f € 2. Then x® f ~, y® [ for every
non-zeroy € 2.

Proof. Take any non-zero y € 2 . If y is linearly independent of x, then there
exist g1,g0 € 2" such that g; (x) =1 =g>(y) and g, (y) = 0 = g (x). Let it be
N=(x—y)® (g1 +g2). As N #0 and N> = 0, the operator I + N is a product of two
involutions by Proposition 1. Thus

YOf~p U+N) Y@ f) =T+ (x—y)@(g1+8))yQf=x8f, 3)

as desired. Next, let x and y be linearly dependent. As dim 2" > 2, there exists a non-
zero z € 2 such that x,z and y,z are linearly independent, respectively. Apply (3) to
get x® f~p 2@ f and y® f ~, z® f. By the transitivity we have x® f ~, y® f. [

LEMMA 2. Let 0 #x € 2 and 0 # f € 2. Then x® f ~, x®g for every
non-zero g € 2.

Proof. Take any non-zero g € 27/ If kerg = ker f, then g is linearly dependent
on f: g=of forsome o # 0. In turn we have

XQg=xRaf=0xQ f ~p, xR f,
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by Lemma 1. Otherwise, when kerg # ker f, there exist linearly independent y;,y, €

Z such that f(y;) =1=g(y2) and f(y2) =0=g(y1). By setting N = (y; +y2) ®
(f —g) we can see that N # 0 and N> = 0. Therefore, by Proposition 1, we obtain
x®g~p x@g)([+N)=x®f. O

PROPOSITION 2. All rank-one operators in B (Z") are mutually equivalent by
products of involutions.

Proof. Take any non-zero x,y € 2 and any non-zero f,g € 2. The straightfor-
ward consequence of Lemmas 1 and 2 is that x® f ~, y® f ~, y® g. By the transitivity
we complete the proof. [

Our first step will be reducing the problem to the case of rank-one preserving map,
ie. if A€ B(X) is of rank one, then ¢(A) is of rank one too. We will use a result due
to Kuzma regarding rank-one-non-increasing additive mappings.

THEOREM 2. [8, Theorem 2.3] Let ¢ : F (Z") — F (Z") be an additive map,
which maps rank-one operators to operators of rank at most one. Then one and only
one of the following statements holds.

(i) There exist an fy € 2" and an additive map ©: F (2) — X, such that
o (X)=1(X)® fo, foreveryX € 7 ().
(ii) There exist an xo € 2 and an additive map ¢ : F (X)) — X', such that
d(X)=x20(X), foreveryX € Z ().
(iii) There exist additive maps T : 2" — 2 and S : 2" — 2" such that

d(xf)=Tx®Sf, for every x € 2 and every f € 2.

(iv) There exist additive maps T : ' — 2 and S: X — 2 such that

O(x®f)=Tf®Sx, foreveryx€ 2 andevery f € 2.

REMARK 1. If ¢ is in addition linear, it is easy to verify that 7 and ¢ from (i)
and (ii) as well as T and S from (iii) and (iv) are linear maps.

We will close the section with two simple Lemmas applying invertible operators.

LEMMA 3. [18, Lemma3.3] Let x€ 2 and f € 2. Then I —x® f is invertible
in B(Z) ifand only if f (x) # 1.

LEMMA 4. [11,Lemma2.5] Let x,y€ 2 and f,g€ 2. Then [ —(xQ f+y R g)
is invertible if and only if (f(x)—1)(g(y)—1)# f(y)g(x).
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3. Proof of the main result

Let 2" be a complex Banach space with dim.2” >2 and ¢ : B(Z) — B(Z) a
surjective linear map such that A ~, B implies ¢ (A) ~ ¢ (B) forevery A,Be A (Z).

If 2" is finite-dimensional, then P-Inv (2") isequal to {A € # (%) |detA = £1}
and by [5, Theorem 4.1] the proof is completed. In the case of 2~ being an infinite-
dimensional, we set up the proof through several steps.

STEP 1. ¢ is rank-one-non-increasing linear map, i.e. rank ¢ (A) < 1 for every
rank-one A € B(Z).

Take any P € % (X) of rank one. By the surjectivity of ¢ there exists an A €
P (Z") such that

0(4) =P

If A is of rank one, then we have, by Proposition 2, A ~, E forevery E € Z(Z")
of rank one. Acting by ¢ on this relation implies P = ¢ (A) ~ ¢ (E). Thus ¢ (E) is of
rank one for every E € A (%) of rank one. In other words, ¢ is rank-one preserving.

In the other case, if A is not of rank one, there exist linearly independent x;,x, €
2 such that Ax; and Ax; are linearly independent too. Choose linearly independent
fi.fr € Z"" such that N (xl) =1=f ()CQ) and f} (XQ) =0=/f (xl). Set

N=(x1—x)®(fi + f2) #0.

As N2 =0 and (—N)? =0, the operators I+N and I —N € P-Inv(.2") by Proposition
1. From the relation A ~, A(I£N) = A+ AN we get

P=¢(A) ~ ¢ (A+AN) =P+ ¢ (AN).

It follows that both P+ ¢ (AN) as well as P — ¢ (AN) are of rank one. Since Axj,Axs
and f1,f> are linearly independent, respectively, the operator AN = (Ax; —Axy) ®
(f1 + f2) is of rank one and either

O(AN)=0 or ¢ (AN)#0.

Firstly assume that ¢ (AN) = 0. Then, by Proposition 2, we have ¢ (E;) = 0 for every
E; € #(Z) of rank one. Using the fact that every finite-rank operator F € .% (Z")
can be written as a sum of rank-one operators, it is obvious that ¢ (% (:2")) = 0. But,
if there exists at least one finite-rank operator in % (%) which is not mapped to zero
operator, then ¢ (AN) # 0. Thus, by [14, Lemma 2.2], the operator ¢ (AN) is of rank
one. As we have found one operator of rank one which is mapped to an operator of
rank one, ¢ (E;) is of rank one for every rank-one E; € Z(2).

Taking both possibilities into consideration, we conclude that ¢ is rank-one-non-
increasing map.
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By the proof of STEP 1 we have seen that either ¢(.% (Z7)) =0 or ¢ is rank-one
preserving. Hence, from now on we can and we will assume that ¢ is rank-one pre-
serving.

STEP 2. ¢ is injective.

By the surjectivity of ¢ take an A € (Z") such that ¢ (A) =0. If A 0, then
there exists an x € 2 with Ax # 0. Choose any non-zero f € 2~ with f(x) =0
and, by Lemma 1, the operator / +x® f is a product of two involutions. Acting by ¢
on the relation A ~, A(I+x® f) =A+Ax®@ f weget 0=¢ (A) ~ ¢ (A+Ax® f) =
¢ (Ax® f) which further implies ¢ (Ax® f) =0, a contradiction with the rank-one pre-
serving property. So, A = 0 which proves the claim.

STEP 3. Either there exist linearmaps T : 2" — 2" and S : 2" — 2" such that
O(x®f)=TxQSf, for every x € Z and every f € 2, or there exist linear maps
T:2'"— 2 and S: X — 2" such that ¢ (x® f) =T fQSx, for every x € 2" and
every f e 2.

Since ¢ is rank-one preserving, we can apply Theorem 2. Assume firstly that
¢ (X)=1(X)®go for some non-zero gy € £ and some linear map 7:.% (2°) — 2.
Choose any non-zero y € 2" and any g; € 2" linearly independent of gy. By the
surjectivity of ¢ there exists a non-zero A € % (2") such that

0(A)=y®gr.

It is obvious that A is not of rank one, thus there exist linearly independent x,x, € 2
such that Ax; and Ax, are linearly independent too. For each i = 1,2 choose f; € 2
with f; (x;) = 1. Then it is easy to verify that the operator [ —2x; ® f; is involutive, so
acting by ¢ on the relation A ~, A ([ —2x;® fi) = A —2Ax; ® f; implies y® g1 ~y®
21— T(2Ax;® f;) ® go, for i = 1,2, and consequently y® g — 27 (Ax; ® f;) ® go is of
rank one for i = 1,2. Hence, both 7 (Ax; ® f1) as well as T (Ax, ® f) are scalars multi-
plied of y. It follows that there exists & € C such that T (Ax; ® f1) = 0T (Ax, ® f>) and
in turn ¢ (Ax; ® f1) = ¢ (¢Ax, @ f>). By the injectivity of ¢, Ax| ® f1 = €A, ® f>,
a contradiction with linear independency of Ax;, Ax, and f;, f», respectively.
Therefore (i), and similarly (ii), from Theorem 2 cannot occur.

We will assume that there exist linear maps 7 : 2" — 2" and S: 2" — 2" such
that

O (x®f)=Tx®Sf, for every x € 2 and every f € 2.

STEP 4. T and S are bijective.

The injectivity of T and S follows immediately from the bijectivity of the map ¢.
The surjectivity of T will be proved by a contradiction, so let us assume that 7 is not
surjective. Then there exists a non-zero y € 2~ such that y is not contained in the range
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of T. Choose any non-zero g € 2”'. Since ¢ is surjective, there exists an A € Z(2")
such that

P(A)=y®g.

Obviously, A # 0. Hence, there exists an x € 2~ such that Ax # 0. Take linearly inde-
pendent fi, f» € 2" with fi (x) =0 = f> (x). According to Proposition 1, the operator
I+x® fi € P-Inv(Z), for i = 1,2. Acting by ¢ on the relation A ~, A(I+x® f;) =
A+ Ax® f; we obtain

yREg~YRg+TAX®SS;, fori=1,2,

which further implies that y® g + TAx® Sf; is of rank one. Observe that TAx® S f; #
0. Since y and TAx are linearly independent, the linear functionals Sf; and Sf, are
scalars multiplied of g. Therefore, Sf; and Sf, are linearly dependent and, by the
injectivity of S, f; and f, are linearly dependent, a contradiction.

By the same method we can see that S is surjective as well.

STEP 5. Let ¢ (A) =1 for some non-zero A € B(Z"). Then there exist non-zero
u,v € C such that

(S)(TAx) =puf(x)  and  (SA'f)(Tx) =vf (x), (4)

forevery x € 2" and every f € 2. Consequently, A and A’ are injective.

Choose any non-zero xg € 2" and any non-zero fy € 2" such that fy (xp) = 0.
By Proposition 1, the operator I+ Aoxp ® fy € P-Inv(2") for every Ay € C. From the
relation A ~, A (14 Aoxo ® fo) = A+ AoAxo ® fp it follows

I~ T+ ATAxy RS fo, for every Ay € C.

Thus, I+ AgTAxo ® Sfy is invertible, so Ao (Sfy) (TAxp) # —1 for every Ay € C by
Lemma 3. Therefore,

(Sfo) (TAxp) =0, for every nilpotent xo @ fo € #(2).

Following the steps similar to those used in [ 16, Remark after Proposition 3.1] we prove
that there exists a i € C such that

(Sf)(TAx) = puf(x), for every x € 2" and every f € 2.

Next we want to see that u # 0. To do this, let us assume the contrary, u = 0. By
the surjectivity of S we have g (TAx) =0 forevery g € 2", which implies TAx =0 for
every x € 2 . The injectivity of T forces that Ax = 0 for every x € 2", a contradiction
with A # 0.

If we started the proof of this Step by A ~,, (I+ Apxo® fy)A instead of A ~,
A (I+ Apxo ® fo) and then continuing the proof in the same way, we would get the sec-
ond equality of (4). To show that A and A’ are injective is then an elementary exercise.
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STEP 6. T and S are continuous.

We are essentially following the lines of the proof of Step 4 of Theorem 3.3 in
[14]. For the sake of completeness, the proof is included.

Firstly we will prove the continuity of the operator TA. Let (x,),.y — 0 and
(TAxn),ey — y € 2 . Applying (4) gives (Sf) (y) =0 forevery f € 2. As § is sur-
jective, we obtain y = 0. By the Closed graph theorem, the operator TA is continuous.

By the bijectivity of S and according to (4) once again we have (S7'f) (x) =
u~'f (TAx) forevery x € 2 and every f € 2. Then

[(S7U) )] = [u="f (TAx)| < w7 LI TAL ] (5

forevery x € 2. Hence || S~ f|| <|u~!|-||TA||-|| ]| forevery f € 2. It turns out
that |1 < |u~!|-||TA||,so S~! as well as S is continuous.

In the same way, from (SA'f) (x) = vf (T~ 'x), forevery x® f € (Z"), yields
the continuity of the operator SA’. As a consequence, 7! and T are continuous too.

Observe that the injectivity of A’ immediately implies that A has dense range.
After that choose any non-zero x € 2. Because S is bijective, there exists an f, € 2/
such that [[S7!fi|| =1 and (S™'f:) (x) = |/x||. From the first property it follows
| £l = 1SS~ £ |l < |IS||. By the same approach as in (5), the second property of f
provides

x|l = |(S*11fx) )] = 7" [ (TAD) < 7 A TA]|
<[ul IS [1 A

As x was arbitrary, the operator A having dense range is bounded below. Thus, it is
invertible. Therefore, TA is invertible and in turn, (TA)" as well.
By (4) it is obvious that pf (x) = ((TA)'Sf) (x), for every x € 2" and every

fe€ 2. Hence ul = (TA)'S and consequently, S = i ((TA)’)_1 . Now we can replace
¢ by the map X — u~!'T~1¢ (X)TA, which is clearly bijective and satisfies: ¢ (B;) ~
¢ (B2) whenever By ~, By, for B,By € (X"). Moreover,

O(xRf)=xf, forevery x € 2 and every f € 2.

Let us remark that supposing the alternate form of ¢ (i.e. ¢ (x® f) =T f ® Sx for
every x € 2" and every f € 2”) the proof of invertibility of linear maps 7 : 2"/ — 2~
and S: 2" — 2" goes through similarly. Then it is obvious that T’ is invertible
too. By denoting ¢! (I) = A we can see that there exists a 0 # u € C such that
wf(x) = (SAx) (Tf) = (T'SAx)(f), for every x € 2" and every f € 2. As for
every non-zero x € 2" exists an f, € 2”7 with || fi|| =1 and f; (x) = || x|, it follows
that [|x|| < [u|=')| 77| ||S||-||Ax|| for every x € 2 . Then it is easy to verify that
A is invertible. Therefore i = u~'7’SA is bijective, where i : 2~ — 2" is canonical
isometric embedding of 2. In other words, 2~ is reflexive. Now we can replace ¢ by
the map X — p~'S7!¢ (X) SA. Note that 2" is reflexive too and so j: 2~/ — 2"
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is bijective canonical isometric embedding of .2”". In this special case we can obtain
i’ = j~!. For this reason we have

O(x@f) = 1S (TF© S A= 'S 15x @ (SAY (T1)"
=,u71x® (‘uT/fll-)/T//f// :x®i’(f”) =x®f,

forevery x € 2 and every f € 2", and then we continue in the same way.
STEP 7. ¢ (A) =A forevery Ac CI+ % (XZ).

By the linearity of ¢, it is sufficient to prove that ¢ (I) = I. Denote ¢ ' (I) = J.
Now, we may and we do assume that T and S are identities on 2 and 2, respec-
tively. So, apply (4) to get existence of such 0 # o € C that af (x) = (Sf) (TJx) =
f(Ux) forevery x€ 2" andevery f € 2. Consequently, J = o and thus ¢ (of) =1.

In order to see that oo = 1, choose linearly independent x,x; € 2" and linearly
independent fi, f> € 2" suchthat f; (x;) =1= f5(x2) and fi (x2) =0 = f5(x1). By
Proposition 1 it is easy to see that I+ A4 (x; +x2) ® (fi — f2) € P-Inv(2") for every
A € C. Moreover, I —2x; ® f| is an involution. Hence

ol ~pod (I+ 24 (x1 +%2) @ (fi — f2) (I —2x1® f1)

and thus
ol ~, ol —ad (x;1+x2) @ (fi + f) —20x @ fi,

forevery A € C. Acting by ¢ on this relation implies
I~ 1 — (oA (x14x2) @ (fi 4 fo) +20x1 @ fi) .

Therefore, the operator I — (oA (x] +x2) ® (f1 + f2) +20x; ® f1) is invertible for ev-
ery A € C. From Lemma 4 it follows

(@A (fi+ f2) (1 +x2) = 1)- 2afi (x1) — 1) # 20 (fi + f2) (x1) - @A fi (x1 +x2)

which yields (2a? —2a) A + (1 —2¢) # 0 for every A € C. Consequently, 20 —
200=0. As ot # 0, we get o = 1, as desired.

STEP 8. If A ¢ CI+ .F (Z), then there exists an oy € C depending on A such
that ¢ (A) =A+oul.

Let us suppose A € (Z") is not a member of CI+ .7 (Z") and denote
¢(A) =B
Without loss of generality we can assume that B is invertible. If it is non-invertible,

then there exists a non-zero y € C such that B+ yI becomes invertible. In this case,
replace A by A+ 7.
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Choose any non-zero x € 2" and any non-zero f € 2" such that f(x) =0 and
f(B7'x) =0. By Lemma [ it is obvious that / + Ax® f € P-Inv(.2") forevery A € C.
Then from A ~), (I+Ax® f)A =A+Ax@A'f it follows

B~B+Ax@A'f =B(I+AB 'x@A'f).

As B is invertible, B+ Ax®A’f and in turn I+ AB~'x® A’f are invertible too.
By Lemma 3 we have —1 # A (A'f) (B~'x) = Af (AB~'x) for every A € C. So,
f(AB™'x) =0. As x and f were arbitrary with f (x) = f (B~ 'x) =0, we can obtain
that AB~!, I and B~! are linearly dependent by [9, Lemma 2.4]. Hence, there exists
oy, 0,03 € C, not all zero, such that 0yAB~! + apl + o3B! = 0, which is equivalent
to qA+ 0pB+ o3I =0. Since A ¢ CI it is obvious that o # 0. Thus

¢ (A) =B = oA+ Pal, (6)

for some scalars o4 and B4. In order to see that oy = 1, take any C € .% (X) such
that A, C and [ are linearly independent. Obviously, A+C ¢ CI+.% (%) and by
applying (6) we get ¢ (A +C) = oa+c (A+C)+ Ba+cl. On the other hand, ¢ (A+C) =
¢ (A)+ ¢ (C) = opA+ Bal + C. Therefore

(0tarc — o)A+ (ourc — 1) C+ (Basc — Ba) 1 = 0.

As A, C and [ are linearly independent, o4 = 041 c = 1.
STEP9. ¢ (A) =A forevery Ac B(XZ).

We will prove this by a contradiction, so let us assume, by STEP 9, that there exists
an A ¢ CI+.7 (2") with
(0] (A) =A+ oul,

for some non-zero a4 € C. Choose any x € 2" and any f € 2" such that f (x) =0.
According to Lemma 1, the operator [+ Ax® f € P-Inv (%) for every A € C. From

A—opl ~p (A=) (I+AxR f) = (A—oul) + A (A—aul)x® f,
being valid for every A € C and by the action of ¢ it follows
A~vA+A(A—opl)x® f,
forevery A € C. If A is invertible, then
A+A(A—onD)x@ f=A(T+A(I—ouA ) x® f)

is invertible too. Thus /+A (I—oaA~')x® f is invertible for every A € C and by
Lemma 3 we have Af (x— oA ~'x) # —1 for every A € C. Consequently, 0 =
fx—ouA™lx) =—anf (A7'x). As o #0 it follows f (A~'x) =0 forevery f € 27
with f(x) =0. Hence, A~!x and x are linearly dependent. Since x € .2~ was arbitrary,
there exists a non-zero ; € C such that Al = i1, a contradiction.
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Therefore, A is non-invertible. But then there exists a non-zero 3 € C such that

A+ BI is invertible. By the method used above, we get (A+B1)~" = w1 for some
U € C, a contradiction. [
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