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LYAPUNOV PROPERTY OF POSITIVE C0 –SEMIGROUPS

ON NON–COMMUTATIVE Lp SPACES

T. PRAJAPATI ∗ , K. B. SINHA AND S. SRIVASTAVA

(Communicated by T. S. S. R. K. Rao)

Abstract. That the growth bound of a positive C0 -semigroup on classical Lp -space coincides
with the spectral bound of its generator, is a well known result in classical semigroup theory. In
this paper we study this result in the non-commutative setting.

1. Introduction

Let {T (t)}t�0 be a C0 -semigroup on a Banach space X with a generator A . Set
s(A) := sup{Reλ : λ ∈ σ(A)} and w(T ) := inf{λ ∈ R : ∃ M � 1 such that ‖T (t)‖ �
Meλ t ∀t � 0} , where σ(A) is the spectrum of A . If dimX < ∞ , then the spectral bound
s(A) is equal to the growth bound w(T ) and this implies that the solution u(t) = T (t)x0

of the initial value problem in X :

u′(t) = Au(t), u(0) = x0

decays exponentially to zero if s(A) < 0. The equality between s(A) and w(T ) is
not true, in general, for C0 -semigroups if dimX = ∞ . However, the spectral mapping
theorem implies that s(A) � w(T ) in general. It is also known that the said equality (we
shall call it the Lyapunov property of the semigroup T ) is true for every holomorphic
semigroup and there are examples of violation of Lyapunov property for C0 -semigroups
even on Hilbert spaces (see [1, Section 5.1]).

On the other hand, the additional assumption of positivity, in situations where it
makes sense, often verifies the Lyapunov property. For example, this is true for classical
Lp -spaces, L -spaces, von-Neumann algebras, C(Ω) and C0(Ω) [1, 11]. For positive
C0 -semigroups on classical Lp spaces, the fact that the Lyapunov property holds, was
proven first (i) for p = 1 by Derdinger in 1980 [4], (ii) for p = 2 in 1983 by Greiner-
Nagel [5] (iii) for all 1 � p < ∞, with some additional conditions, in [16] and [7] and
finally (iv) for all positive C0 semigroups on Lp,1 � p < ∞ by Weis [17] in 1995.
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This article studies Lyapunov property for C0 -semigroups defined on non commu-
tative Lp spaces. We show directly, using Datko’s theorem, that s(A) = w(T ) for a pos-
itive C0 -semigroup defined on non-commutative L1(M ,τ) or L2(M ,τ) space, where
M is a von-Neumann algebra with a normal, semifinite, faithful trace τ . Moreover,
following Voigt [16], where a similar result is proven in the commutative setting, we
prove that the equality holds for C0 -semigroups defined on non-commutative Lp(M ,τ)
spaces for 1 � p < ∞ , provided some additional conditions hold. We also show that
the Lyapunov property holds for consistent families of positive C0 -semigroups defined
on a special class of non-commutative Lp spaces - the Schatten classes.

2. Preliminaries

We briefly recall the definition of non-commutative Lp -spaces, referring the reader
to [3, 14] for details. Let M be a von-Neumann algebra with a normal, semifinite,
faithful trace τ . Let S+ be the set of all positive x ∈ M such that τ(x) < ∞ and
S be linear span of S+ . Then Lp(M ,τ) is the completion of S with respect to the
norm ‖x‖p = τ(|x|p)1/p , for 1 � p < ∞ . Lp(M ,τ) can also be described as a space
of unbounded operators x affiliated to M in a certain sense such that τ(|x|p) < ∞ . We
set L∞(M ,τ) = M equipped with the operator norm. The trace τ can be extended as
continuous linear functional on L1(M ,τ) with |τ(x)| � ‖x‖1 .

The usual Hölder inequality extends to the non-commutative setting. Let 1 �
r, p, q � ∞ be such that 1/r = 1/p + 1/q and x ∈ Lp(M ,τ) , y ∈ Lq(M ,τ) , then
xy ∈ Lr(M ,τ) and

‖xy‖r � ‖x‖p‖y‖q. (2.1)

In particular, if r = 1, that is, 1/p+ 1/q = 1, then for x ∈ Lp(M ,τ) , y ∈ Lq(M ,τ) ,
we have that xy ∈ L1(M ,τ) and

|τ(xy)| � ‖xy‖1 � ‖x‖p‖y‖q. (2.2)

This defines a natural duality between Lp(M ,τ) and Lq(M ,τ) such that 〈x,y〉 =
τ(xy∗) . Then for any 1 � p < ∞ , 1/p+1/q = 1, we have

Lp(M ,τ)∗ = Lq(M ,τ). (2.3)

Thus L1(M ,τ) is the predual of M and Lp(M ,τ) is reflexive for 1 < p < ∞ . The
space L2(M ,τ) is a Hilbert space with respect to the scalar product (x,y) ↪→ 〈x,y∗〉 . It
is known that M ∩L1(M ,τ) is dense in Lp(M ,τ) for 1 < p < ∞.

Throughout this article, we will assume that M is a von-Neumann algebra with a
normal, faithful, semifinite trace τ unless otherwise stated.

Consider a C0 -semigroup T = {T (t)}t�0 with generator A . Setting T ′(t) =
e−wtT (t) for some w ∈ R , it is clear that the generator A−w satisfies s(A−w) =
s(A)− w and ‖T ′(t)‖ � Me(w(T )−w)t . If we can show that s(A)− w < 0 implies
(w(T )−w) < 0, then w(T ) � s(A) , which combined with the earlier observation would
imply the Lyapunov property. Since w is arbitrary, it suffices to prove that s(A) < 0
implies w(T ) < 0.
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The following useful criterion for w(T ) < 0 is very well known.

THEOREM 2.1. [1, Datko’s theorem]: The following are equivalent:

(i) w(T ) < 0 ,

(ii)
∫ ∞
0 ‖T (t)x‖p

X dt < ∞ for all x ∈ X , and some p ∈ [1,∞) .

We note that each of the non-commutative Lp -spaces is a normal ordered Banach space
[13], and if T is a semigroup of positive maps on X , then there is a simplification to
the above theorem.

LEMMA 2.2. Let X = Lp(M ,τ),1 � p < ∞ and T = {T (t)}t�0 be a C0 -semigroup
on X . The following are equivalent,

(i ′ ) w(T ) < 0 ,

(ii ′ )
∫ ∞
1 ‖T (t)x‖p

X dt < ∞ for all x ∈ X+, the positive cone of X , and for some p ∈
[1,∞) .

Proof. Only the implication (ii′) ⇒ (i′) needs to be proven and for that it suffices
to show that (ii′) ⇒ (ii) of Theorem because continuity of T implies that ‖T (t)‖ � M
for all t ∈ [0,1] . Let x ∈ X be a self adjoint element, such that x = x+ − x− and
x+,x− ∈ X+ . Then by triangle inequality

‖Tp(t)x‖p = ‖Tp(t)x+−Tp(t)x−‖p � ‖Tp(t)x+‖p +‖Tp(t)x−‖p.

Thus by the Minkowski inequality, one has that(∫ ∞

1
‖Tp(t)x‖p

p dt

)1/p

�
(∫ ∞

1
‖Tp(t)x+‖p

p dt

)1/p

+
(∫ ∞

1
‖Tp(t)x−‖p

p dt

)1/p

< ∞.

Now let x ∈ X be arbitrary. Then x = x1 + ix2 , where x1,x2 are self adjoint elements
of X . Again by using the triangle inequality, we get

‖Tp(t)x‖p = ‖Tp(t)x1 + iTp(t)x2‖p � ‖Tp(t)x1‖p +‖Tp(t)x2‖p

and an identical reasoning gives the required result. �
We shall need the following technical result in the sequel.

LEMMA 2.3. Let 1 � p < ∞ and Tp := {Tp(t)}t�0 be a positive C0 -semigroup
on Lp(M ,τ) . For x ∈ Lp(M ,τ)+ and α > max{0,w(Tp)} , set

Gα(s,t) :=

{
e−α(t−s)Tp(t)x (0 � s � t)
0 (t < s).

(2.4)

Then ∫ ∞

1
‖Tp(t)x‖p

p dt �
(

α
1− e−α

)p

τ
(∫ ∞

0

(∫ ∞

0
Gα(s,t) ds

)p

dt

)
. (2.5)
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Proof. For a fixed t ∈ R+∫ ∞

0
Gα(s, t) ds =

∫ t

0
e−α(t−s)Tp(t)x ds =

(∫ t

0
e−α(t−s)ds

)
Tp(t)x

=
(

1− e−αt

α

)
Tp(t)x ∈ Lp(M ,τ)+,

since Tp(t)x ∈ Lp(M ,τ)+ due to positivity of Tp(t).
Thus (

∫ ∞
0 Gα(s, t)ds)p ∈ L1(M ,τ)+ for all t � 0, so that,

0 � τ
(∫ ∞

0
Gα(s,t) ds

)p

< ∞.

Thus

τ
(∫ ∞

0

(∫ ∞

0
Gα(s,t)ds

)p

dt

)
= τ

(∫ ∞

0

(
1− e−αt

α

)p

(Tp(t)x)
p dt

)

� τ
(∫ ∞

1

(
1− e−αt

α

)p

(Tp(t)x)
p dt

)

�
(

1− e−α

α

)p

τ
(∫ ∞

1
(Tp(t)x)p dt

)

=
(

1− e−α

α

)p ∫ ∞

1
τ (Tp(t)x)p dt

=
(

1− e−α

α

)p ∫ ∞

1
‖Tp(t)x‖p

p dt.

Hence,

∫ ∞

1
‖Tp(t)x‖p

p dt �
(

α
1− e−α

)p

τ
(∫ ∞

0

(∫ ∞

0
Gα(s,t)ds

)p

dt

)
. �

Throughout the rest of this article, we will assume that M is a von-Neumann
algebra with a normal faithful semifinite trace τ unless otherwise stated.

3. The case when p = 1,2

In the next theorem, we give a direct proof of the fact that the Lyapunov property
holds for all C0 -semigroups on L1(M ,τ). This result may also be deduced indirectly,
from the facts that for such spaces, the norm is additive on the positive cone, these
spaces are normal, ordered Banach spaces [14], and some spectral bounds of the gener-
ator of C0 -semigroups defined on such spaces coincide ( see [1, Section 5.3] ).

THEOREM 3.1. Let T1 := {T1(t)}t�0 be a positive C0 -semigroup on L1(M ,τ) ,
with generator A1 . Then

s(A1) = w(T1).
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Proof. Let {T1(t)} and A1 be as above and suppose that s(A1) < 0. In view of
Lemma 2.2, Theorem 2.1 and the discussion preceeding it, it suffices to show that∫ ∞
1 ‖T1(t)x‖1dt < ∞, for all x ∈ L1(M ,τ)+ . Let α > max{0,w(T1)} , x ∈ L1(M ,τ)+

and Gα be as in Lemma 2.3. Due to Lemma 2.2 and Lemma 2.3, it is enough to show
that

τ
(∫ ∞

0

(∫ ∞

0
Gα(s,t)ds

)
dt

)
< ∞ for all x ∈ L1(M ,τ)+. (3.1)

Note that the positivity of T1(t) implies that e−α(t−s)T1(t)x ∈ L1(M ,τ)+ for all t,s ∈
R+. Changing the order of integration in the expression on the left hand side of (3.1),
we get

τ
(∫ ∞

0

(∫ ∞

0
Gα(s,t)ds

)
dt

)
= τ

(∫ ∞

0

(∫ ∞

s
e−α(t−s)T1(t)xdt

)
ds

)
, (3.2)

and on setting t− s = u in the expression on RHS of 3.2, we have

τ
(∫ ∞

0

(∫ ∞

s
e−α(t−s)T1(t)xdt

)
ds

)
= τ

(∫ ∞

0

(∫ ∞

0
e−αuT1(s+u)xdu

)
ds

)

= τ
(∫ ∞

0

(∫ ∞

0
e−αuT1(s)T1(u)xdu

)
ds

)

= τ
(∫ ∞

0
T1(s)

(∫ ∞

0
e−αuT1(u)xdu

)
ds

)

= τ
(∫ ∞

0
T1(s)(φα(x)) ds

)
= τ (R(0,A1)φα(x)) ,

where φα (x) :=
∫ ∞
0 e−αuT1(u)x du ∈ L1(M ,τ)+ since α > w(T1). Therefore, for all

x ∈ L1(M ,τ)+ , we have

τ
(∫ ∞

0

(∫ ∞

0
G(s,t) ds

)
dt

)
= τ (R(0,A1)φα (x)) � ‖R(0,A1)‖‖φα(x)‖1 < ∞.

Therefore one has
∫ ∞
1 ‖T1(t)x‖1 dt < ∞ , which implies the same conclusion for∫ ∞

0 ‖T1(t)x‖1 dt < ∞ and hence by Lemma 2.2, the result follows. �

THEOREM 3.2. Let T2 := {T2(t)}t�0 be a positive C0 -semigroup on L2(M ,τ) ,
which is symmetric, that is, 〈T2(t)x,y〉 = τ ((T2(t)x)y∗) = 〈x,T2(t)y〉 for all x,y ∈
L2(M ,τ) and for all t � 0 , with generator A2 . Then

s(A2) = w(T2).

Proof. Suppose s(A2) < 0. Let α > max{0,w(T2)} , x ∈ L2(M ,τ)+ and Gα be
as in Lemma 2.3. It is sufficient to show in view of Lemma 2.3, that

τ

(∫ ∞

0

(∫ ∞

0
Gα(s,t)ds

)2

dt

)
< ∞.
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We note that Gα(.,t) : [0,1]−→ L2(M ,τ) is continuous and hence(∫ ∞

0
Gα(s, t)ds

)2

=
(∫ ∞

0
Gα(s,t)ds

)(∫ ∞

0
Gα(s′,t)ds′

)
=
∫∫

I1∪I2

Gα(s,t)Gα (s′,t)dsds′,

where I1 :=
{
(s,s′) ∈ R2

+ : 0 � s � s′ � t
}

and I2 :=
{
(s,s′) ∈ R2

+ : 0 � s′ � s � t
}

.
Also ∫∫

I1∪I2

Gα(s,t)Gα (s′,t)dsds′ =
∫∫

I1∪I2

e−α(2t−s−s′)(T2(t)x)2 dsds′.

Now using symmetry in (s,s′) , we get∫∫
I1∪I2

e−α(2t−s−s′)(T2(t)x)2dsds′ = 2
∫∫
I2

e−α(2t−s−s′)(T2(t)x)2 dsds′

= 2

(∫ t

0

(∫ s

0
e−α(2t−s−s′)(T2(t)x)2 ds′

)
ds

)

= 2

(∫ t

0
e−α(2t−s)(T2(t)x)2

(∫ s

0
eαs′ ds′

)
ds

)

=
2
α

(∫ t

0
e−α(2t−s)(T2(t)x)2 (eαs −1) ds

)

� 2
α

(∫ t

0
e−2α(t−s)(T2(t)x)2 ds

)
.

Thus on evaluating the trace, we get that

τ

(∫ ∞

0

(∫ ∞

0
G(s,t)ds

)2

dt

)
� τ

(∫ ∞

0

(
2
α

(∫ t

0
e−2α(t−s)(T2(t)x)2 ds

))
dt

)

=
2
α

(∫ ∞

0

(∫ t

0
e−2α(t−s)τ(T2(t)x)2 ds

)
dt

)

=
2
α

∫ ∞

0

∫ ∞

0
χ[0,t](s)e

−2α(t−s)τ(T2(t)x)2 dsdt

=
2
α

∫ ∞

0

∫ ∞

0
χ[s,∞](t)e

−2α(t−s)τ(T2(t)x)2 dt ds

=
2
α

(∫ ∞

0

(∫ ∞

s
e−2α(t−s)τ(T2(t)x)2 dt

)
ds

)

=
2
α

(∫ ∞

0

(∫ ∞

0
e−2αuτ(T2(s+u)x)2 du

)
ds

)

=
2
α

(∫ ∞

0

(∫ ∞

0
e−2αuτ(T2(s)T2(u)x)2 du

)
ds

)

=
2
α

(∫ ∞

0

(∫ ∞

0
e−2αuK(s,u)du

)
ds

)
, (3.3)
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where

K(s,u) := 〈T2(s)T2(u)x,T2(s)T2(u)x〉 = 〈T2(u)x,T2(2s)T2(u)x〉,
due to the symmetry and semigroup property of {T2(t)}t�0 .

Hence, by a change of order of integration, which is justified by the positivity of
the integrand, we have that the expression in (3.3) above

=
2
α

(∫ ∞

0
e−2αu

〈
T2(u)x,

(∫ ∞

0
(T2(2s)ds

)
T2(u)x

〉
du

)
.

Since s(A2) < 0, 0 is in ρ(A2) and in such a case R(0,A2) is self adjoint and one has
that the above expression

=
1
α

(∫ ∞

0
e−2αu 〈T2(u)x,R(0,A2)T2(u)x〉 du

)
� ‖R(0,A2)‖

α

∫ ∞

0
e−2α u‖T2(u)x‖2 du,

which is finite since α > w(T2) . �

REMARK 3.3. We note that L2(M ,τ) is a Hilbert space which is also an or-
dered Banach space with normal cone [13]. Therefore, for positive C0 -semigroups
on L2(M ,τ) the Lyapunov property holds in view of [1, Theorem 5.3.1 and Theorem
5.2.1]. In Theorem 3.2 above, we give a different and direct proof of the fact that the
Lyapunov property holds for positive symmetric semigroups defined on L2(M ,τ) .

4. Lyapunov property for consistent families of C0 - semigroups

In this section we show that the Lyapunov property holds for consistent families
of positive C0 -semigroups under certain conditions.

By a consistent family of C0 -semigroups defined on the non-commutative Lp

spaces we shall mean a family {Tp : 1 � p < ∞} of semigroups such that for each
p,Tp := {Tp(t)}t�0 is a C0 -semigroup defined on Lp(M ,τ) and for all t � 0, p,q ∈
[1,∞),

Tp(t)x = Tq(t)x, for all x ∈ Lp(M ,τ)∩Lq(M ,τ). (4.1)

REMARK 4.1. It has been shown in [3] that every C0 -semigroup {T2(t)}t�0,
defined on L2(M ,τ) which is symmetric and Markov (that is, 0 � T2(t)x � 1 for
0 � x � 1 ), extends to a consistent family of C0 -semigroups on Lp(M ,τ),1 � p < ∞.

We recall that the Schatten classes form a major example of non-commutative Lp

spaces. Given a Hilbert space H,1 � p < ∞, the Schatten class Sp(H) is defined as

Sp(H) := {A ∈ B(H) : Tr(|A|p) < ∞}, (4.2)

where |A| := (A∗A)1/2 and Tr is the usual operator trace.
The following result is the key to proving the Lyapunov property for consistent

families of C0 -semigroups on these spaces.
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LEMMA 4.2. [10, Lemma 1.1] For x ∈ Sp(H)∩Sq(H),1 � q � p < ∞,

‖x‖p � ‖x‖q.

Using Lemma 4.2 we are able to establish the following relation between spectral
bounds of the generators of consistent C0 -semigroups.

THEOREM 4.3. Let T := {Tr : 1 � r < ∞} be a consistent family of positive C0 -
semigroups on the non commutative spaces Sr(H) and suppose that s(Aq) < 0 for
some 1 � q < ∞. Then s(Ap) < 0 and R(0,Aq)x = R(0,Ap)x for all p � q and for all
x ∈ Sp(H)∩Sq(H) .

Proof. Let q < p < ∞ and x ∈ Sp(H)∩ Sq(H). Since T represents a consistent
family, therefore Tp(t)x = Tq(t)x. Moreover, since s(Aq) < 0, it follows that R(0,Aq)
exists as a bounded operator on Sq(H) and from [1, Theorem 5.3.1] we have that

R(0,Aq)x =
∫ ∞

0
Tq(t)x dt, ∀ x ∈ Sq(H). (4.3)

Since
∫ ∞
0 Tq(t)x dt exists in Sq(H), Lemma 4.2,

∫ ∞
0 Tp(s)x ds exists in Sp(H). More-

over, ∫ ∞

0
Tp(s)x ds =

∫ ∞

0
Tq(s)x ds = R(0,Aq)x. (4.4)

Denseness of Sp(H)∩ Sq(H) in Sp(H) now implies that the map y �→ ∫ ∞
0 Tp(s)yds

exists as a bounded linear operator on Sp(H) and hence coincides with R(0,Ap). Thus,
s(Ap) < 0. That the resolvents agree on Sp(H)∩Sq(H) is just the equation (4.4). �

THEOREM 4.4. Suppose {Tp : 1 � p < ∞} is a consistent family of positive C0 -
semigroups on Sp(H). Then s(Aq) = w(Tq) for all q ∈ [1,∞).

Proof. Fix q ∈ (1,2). Suppose s(Aq) < 0. Then by Theorem 4.3, s(A2) < 0. But
the Lyapunov property holds for positive semigroups on Hilbert spaces which are also
normal ordered Banach spaces, and hence also for S2(H) (see Remark 3.3). Thus
s(A2) = w(T2) < 0. Again, using Lemma 4.2 we have that for p : 1/p+1/q = 1,

‖Tp(t)x‖ � ‖T2(t)x‖ for all t � 0

and for all x ∈ S2(H)∩ Sp(H) as p > 2. Hence w(Tp) � w(T2) < 0. Due to duality,
‖Tq(t)‖ = ‖(Tq(t))∗‖ = ‖Tp(t)‖ for all t � 0 whence w(Tq) < 0. Thus s(Aq) = w(Tq)
for all q∈ (1,2) and by duality for all q∈ (1,2)∪(2,∞). Combining this with Theorem
3.1 and Remark 3.3, we have our result. �

It is well known that the non-commutative Lp spaces associated with a semifinite
von-Nuemann algebra form an interpolation scale both with respect to the complex and
real interpolation methods [14]:

Lp(M , τ) = (Lp0(M , τ),Lp1(M , τ))θ (with equal norms), (4.5)
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Lp(M , τ) = (Lp0(M , τ),Lp1(M , τ))θ ,p (with equivalent norms), (4.6)

where 1 � p0, p1 � ∞, 0 < θ < 1, p = (1− θ )/p0 + θ/p1 and where (·, ·)θ ,(·, ·)θ ,p

denote respectively the complex and real interpolation methods. Non-commutative ver-
sion of the Reisz Thorin interpolation Theorem [14] also holds. In the following, we use
these facts to obtain some relations between spectral and growth bounds of consistent
families of semigroups on the non commutative Lp spaces.

THEOREM 4.5. Let T := {Tr : 1 � r < ∞} be a consistent family of C0 -semigroups
on Lp(M ,τ),1 � p < ∞. Suppose that

∫ ∞
0 ‖T1(t)x‖1 dt < ∞, for all x ∈ L1(M ,τ) and

also that
∫ ∞
0 ‖T2(t)x‖2

2 dt < ∞, for all x ∈ L2(M ,τ) . Then for each p ∈ [1,∞),∫ ∞

0
‖Tp(t)x‖p

p dt < ∞, for all x ∈ Lp(M ,τ). (4.7)

Equivalently,

w(Ti) < 0, i = 1,2 implies that w(Tp) < 0, for all p ∈ [1,∞).

Proof. Define a map T1 : L1(M ,τ) −→ L1(R+,L1(M ,τ)) as x ↪→T1x such that
(T1x)(t) = T1(t)x . Then T1 is a linear map. We claim that T1 is a closed map. Let
xn −→ x in L1(M ,τ) such that T1xn −→ y for some y ∈ L1(R+,L1(M ,τ)) . There-
fore,

∫ ∞
0 ‖T1(t)xn− y(t)‖1 dt −→ 0, which in turn implies that T (t)xnk −→ y(t) almost

everywhere for some subsequence (xnk) of (xn) . On the other hand, boundedness
of T1(t) implies that T1(t)xn −→ T (t)x . Thus y(t) = T (t)x for almost all t . Since
y ∈ L1(R+,L1(M ,τ)), this implies that T1x ∈ L1(R+,L1(M ,τ)) . Therefore T1 is a
closed map defined on L1(M ,τ) . Now the closed graph theorem implies that T1 is a
bounded linear map.

Similarly, T2 : L2(M ,τ) −→ L2(R+,L2(M ,τ)) defined by (T2x)(t) = T2(t)x is
a bounded linear map.

By interpolation, we have that for 1 � p � 2, the linear operator

Tp : Lp(M ,τ) −→ Lp(R+,Lp(M ,τ))

as x ↪→ Tpx such that (Tpx)(t) = Tp(t)x , is bounded with ‖Tpx‖p,p � Cp‖x‖p for all
x ∈ Lp(M ,τ) and for some Cp ∈ R+ , where

‖Tpx‖p
p,p =

∫ ∞

0
‖Tp(t)x‖p

p dt, for all x ∈ Lp(M ,τ).

Hence (4.7) holds. Datko’s theorem 2.1 gives the equivalent form of the statement
of the theorem for 1 < p < 2. For 2 < p < ∞, the conclusions follow by a duality
argument. �

As an immediate consequence of Theorem 4.5 we have the following result.

COROLLARY 4.6. Let T := {Tr : 1 � r < ∞} be a consistent family of C0 -semi-
groups on Lp(M ,τ),1 � p < ∞ with Ap the generator of the semigroup {Tp(t)}t�0. If
s(A1) < 0 and s(A2) < 0 , then s(Ap) < 0 for all p ∈ [1,∞).
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Proof. Fix p ∈ (1,∞). From Theorem 3.1 and Remark 3.3 respectively we have
that w(T1) < 0 and w(T2) < 0. Theorem 4.5 now gives w(Tp) < 0. Hence s(Ap) �
w(Tp) < 0. �

Under the additional assumption of independence of the growth bound of the C0 -
semigroup {Tp(t)}t�0, of the parameter p the Lyapunov property can be shown to hold
for consistent family of positive C0 -semigroups on the non-commutative Lp spaces.
For the classical case this has been proven by Voigt [16], and we shall adapt that proof
to our setting. Recall that for a C0 -semigroup {T (t)}t�0 with generator A the uniform
spectral bound s0(A) is defined as

s0(A) := inf{α ∈ R : Hα ⊂ ρ(A) and sup
λ∈Hα

‖R(λ ,A)‖ < ∞}, (4.8)

where Hα := {λ : Reλ > α}.
For the generator A of a positive C0 -semigroup defined on an ordered Banach

space with normal cone it is known that (see [1, Theorem 5.3.1] ) s(A) = s0(A).

THEOREM 4.7. Let Tp := {Tp(t)}t�0 be a C0 -semigroup on Lp(M ,τ) with gen-
erator Ap , for p ∈ [p0, p1] , p0 < p1 , and p0, p1 ∈ [1,∞) . Assume

Tp(t) = Tq(t) ∀x ∈ Lp(M ,τ)∩Lq(M ,τ), (4.9)

and for all p,q ∈ [p0, p1] , t � 0 .
Then for r ∈ [0,1] , if p(r) is given by 1/p(r) := (1− r)/p0 + r/p1 , then we have

s0(Ap(r)) � (1− r)s0(Ap0)+ rs0(Ap1).

Proof. We assume, without loss of generality that s0(Ap0) � s0(Ap1) . By hypoth-
esis, for all x ∈ Y := Lp0(M ,τ)∩Lp1(M ,τ) we have for sufficiently large z :

R(z,Ap)x = R(z,A0)x = R(z,A1)x.

Now we shall show that s0(Ap) � s0(Ap1) . For this it is sufficient to show that if
s0(Ap1) < δ then s0(Ap) < δ . Suppose s0(Ap1) < δ . Then, s0(Ap0) � s0(Ap1) < δ ,
implies that

Hδ ⊂ ρ(Ap0) and sup
λ∈Hδ

‖R(λ ,Ap0)‖p0 < ∞, (4.10)

Hδ ⊂ ρ(Ap1) and sup
λ∈Hδ

‖R(λ ,Ap1)‖p1 < ∞. (4.11)

Now for ξ ∈Hδ , R(ξ ,Ap0) is a bounded linear map on Lp0(M ,τ) and so is R(ξ ,Ap1)
on Lp1(M ,τ) and the bounded operators agree on Y . Thus,

R(ξ ,Ap0) : Y −→ Lp0(M ,τ),
R(ξ ,Ap1) : Y −→ Lp1(M ,τ),
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with ‖R(ξ ,Ap0)‖p0 � M0 , and ‖R(ξ ,Ap1)‖p1 � M1 . Complex interpolation now yields,
for θ ∈ [0,1] , and 1/p = (1−θ )/p0 + θ/p1 , that

R(ξ ,Ap) : Y −→ Lp(M ,τ)

and ‖R(ξ ,Ap)‖p � M0
1−θ M1

θ . Because of denseness of Y in Lp(M ,τ) , we can
extend R(ξ ,Ap) to all of Lp(M ,τ) . Thus we get that R(ξ ,Ap) is a bounded linear
map and sup

ξ∈Hδ

‖R(ξ ,Ap)‖p < ∞ , for all ξ ∈ Hδ . Therefore s0(Ap) < δ . We also have

that

R(z,Ap0)x = R(z,Ap)x = R(z,Ap1)x, (4.12)

for all z with Rez > s0(Ap1) and for all x ∈ Y .
Now we shall show that s0(Ap(r)) � (1− r)s0(Ap0)+ rs0(Ap1) . It is sufficient to

show that if r̂ ∈ (0,1), α j > s0(Apj ), ( j = 0,1), α0 < α1 , then

s0(Ap(r̂)) � (1− r̂)α0 + r̂α1.

Define F(z)x := (z−Ap0)
−1x, for x ∈ Y , and for α0 � Rez � α1 . Then F is analytic

on α0 < Rez < α1 and continuous on its boundary {z ∈ C : Rez = α0 or Rez = α1} .
From (4.12), we have F(z) := (z−Ap1)

−1x for all x ∈ Y and for Rez = α1 , and by
definition of s0(Tp) , we have that

max

(
sup

Rez=α0

‖F(z)‖p0 , sup
Rez=α1

‖F(z)‖p1

)
< ∞.

Let

M := max

(
sup

Rez=α0

‖F(z)‖p0 , sup
Rez=α1

‖F(z)‖p1

)
.

In view of (4.5) and [9, Theorem 2.7] we have that

‖F((1− r)α0 + rα1)+ iy)‖p(r) � M,

for all r ∈ [0,1] , y ∈ R . In particular, for r̂ � r � 1, we have

‖F((1− r)α0 + rα1)+ iy)‖p(r̂) � M.

Therefore,

‖F(z)‖p(r̂) � M,

for all z with (1− r̂)α0 + r̂α1 � Rez � α1 . Thus R(z,Ap(r̂)) can be extended as a
bounded holomorphic function to the strip α0 < Rez < α1 . Now by using (4.12), for
Rez > s0(Tp(r̂)) , we have that s0(Ap(r̂)) � (1− r̂)α0 + r̂α1 . Hence the result. �

COROLLARY 4.8. Suppose that {Tp(t)}t�0 is a positive C0 -semigroup on
Lp(M ,τ) for all p ∈ [p0, p1] , satisfying (4.9).
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(i) Then for all r ∈ [0,1] , we have

s(Ap(r)) � (1− r)s(Ap0)+ rs(Ap1).

(ii) Assume that p0 < 2 < p1 , and that w(Tp) is independent of p ∈ [p0, p1] . Then
for all p ∈ [p0, p1] , we have

s(Ap) = w(TP).

Proof.

(i) Since {Tp(t)}t�0 is a positive C0 -semigroup on Lp(M ,τ) which is an ordered
Banach space with normal cone, s0(Ap) = s(Ap) . Hence by Theorem 4.7, we
have

s(Ap(r)) � (1− r)s(Ap0)+ r s(Ap1).

(ii) Let w0 := w(Tq) for all q ∈ [p0, p1]. Suppose w0 > s(Ap) for some p ∈ [p0,2) .
Then there exists r ∈ (0,1) such that p(r) = 2, where 1/p(r) := (1− r)/p +
r/p1. Thus part (i) applied to [p, p1] implies that s(A2)� (1−r)s(Ap)+rs(Ap1).
Hence, using Remark 3.3 we have that

w0 = s(A2) � (1− r)s(Ap)+ r s(Ap1) < w0,

which is a contradiction. The case when w0 > s(Ap) for some p∈ (2, p1) can be
dealt with similarly. �
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