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a—FREDHOLM OPERATORS RELATIVE TO INVARIANT SUBSPACES

S. SANCHEZ-PERALES*, S. PALAFOX AND S. V. DJORDJEVIC

(Communicated by R. Curto)

Abstract. Let T be a bounded linear operator on a Hilbert space H and let W be a closed
T — invariant subspace of H. Then T has a matrix representation on the space W & W+ by

T = {18 g] . In this paper, the relationships between the o— Fredholm properties of 7' and

those of the pair of operators A and B are studied.

1. Introduction

Let H be a complex Hilbert space of dimension & > X and let & be a cardinal
number such that 1 < o < . A linear subspace K of H is called or— closed if there is
a closed linear subspace E of H such that £ C K and

dim(KNE+) < a.

This concept, introduced by G. Edgar et al. in [8], allowed to generalize the defi-
nition of a Fredholm operator. For a bounded linear operator T € B(H), let N(T) and
R(T) the null space and the range, respectively, of the mapping 7. Also, let n(T) =
dimN(T) and d(T) = dimR(T)*. If the range R(T) of T € B(H) is a:—closed and
n(T) < a (respectively, d(T) < a), then T is said to be an upper semi o— Fredholm
(respectively, a lower semi o.— Fredholm) operator and we denote T € @, (H) (respec-
tively T € ®,(H)). If T € ®,(H)N®,,(H) then we say that T is an o.— Fredholm
operator (in notation T € @ (H)). This notion is of interest only when o > X, since
X — Fredholm operators are Fredholm operators.

For each o, Xo < o < &, let %, denote the two-sided ideal in B(H) of all
bounded linear operators such that dimR(7) < o and let .#; denote the norm clo-
sure of Z, in B(H). The closed two-sided ideal ., of B(H) permits consider the
quotient space B(H)/.%y as a complex unital Banach algebra. The operators which
are left (resp. right) invertible modulo .#, are precisely the upper (resp. lower) semi
o.— Fredholm operators. See [8],[9]. This implies that @, (H) and ®, (H) are open
sets in B(H) forall a > X. See, for example, Theorem 2.7.

Corresponding spectra of an operator 7 € B(H) are defined as:

Mathematics subject classification (2010): 47A53.
Keywords and phrases: o.— closed subspaces, o.— Fredholm operators, invariant subspaces.
* Corresponding author.

© &1€P€N’ Zagreb 921
Paper OaM-13-65


http://dx.doi.org/10.7153/oam-2019-13-65

922 S. SANCHEZ-PERALES, S. PALAFOX AND S. V. DJIORDJEVIC

the upper semi o— Fredholm spectrum:

Ouu(T) ={A €C|A—T ¢ @y (H)},
the lower semi o— Fredholm spectrum:

0u(T) ={A €C|A-T ¢y (H)},
the a— Fredholm spectrum:

0o(T)={ALeC|A-T &Dy(H)}.

All of these spectra are non-empty compact subsets of the complex plane.

Let W be a closed subspace of H. We shall use Z (H) to denote the set of all
bounded operators T : H — H for which W is T—invariant. If T € % (H) then T
has on W @ W+ the matrix representation

AC
r=[os)

where A=T|w, B=QT|,. and C = PT|,. ; here P is the projection of H on W and
Q is the projection of H on W. In the present paper the relationships between the
oa—Fredholm properties of T and those of the pair of operators A and B are studied.
This work has been influenced by the work of Bruce A. Barnes in [4].

The results obtained are applied to show that the o—Fredholm spectrum of T,
A and B form ([10]) a “love knot”, namely each is a subset of union of the other two.
Also, we make a similar observation about the continuity of the oc— Fredholm spectrum

Oy : a — Og(a), from B(Y) to the collection of all non-empty compact subsets of C,
foreach a € {T,A,B} and each Y € {H, W, W~} .

2. Preliminary results

The goal of this section consists in establishing some preliminary results which
will be needed in the sequel.

PROPOSITION 2.1. [11,LemmaZ2.4]. If H,K are Hilbert spaces and T € B(H,K)

then dimR(T) < dimH.

PROPOSITION 2.2. Let H,K be Hilbert spaces. If there exists an injective bounded
linear operator T : H — K then dimH < dimK.

Proof. Let {v;}jc; be an orthonormal basis for K. Observe that if (x,7*v;) =0
for all j € J, then x = 0. Indeed, suppose that x # 0, then since T is injective, Tx #
0. Thus there exists j € J such that (Tx,v;) # 0 and hence (x,7*v;) # 0 which is
a contradiction. Consequently, {7*v;};c; is a complete system in H. This implies
that H = span({T*v;};es). On the other hand, R(T*) = span({T*v;}es), thus by
Proposition 2.1, dimH = dimspan({T*v,} je;) = dimR(T*) < dimK. 0O
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PROPOSITION 2.3. If L and Y are closed subspaces of H such that H=L&*Y
then dimL+ = dimY .

Proof. For each [ € L, there exist unique s; € L and #; € Y such that [ = s; +
t;. Define the linear operator U : L+ — Y as U(l) =¢. Since L L Y it follows that
UMD = |la]]> < |lsil]? + ||]|> = ||]|?, therefore U is bounded. Let Iyl € L* such
that U(ly) = U(Lp), then I} —s;, =, —s;, and so [; —l, = s, —s;, € LNL"*, hence
Iy =1. Now, let y € Y then there exist unique u, € L and wy € L such that y =
uy +wy. This implies that 0@y =y = uy +wy = (uy + sw,) D1y, and hence y =1, .
Thus U(wy) =t,, =y. Consequently U is bijective.

From Proposition 2.1, dimY = dimU(L') < dimL*. And by Proposition 2.2,
dimLt <dimY. O

PROPOSITION 2.4. If E,F,Y are closed subspaces of H such that E,F are con-
tained in Y then
dim[(ENF):NF] <dim(Y NEL).
Proof. Since E = (E+*NY)*NY, it follows that
(ENF)Y'NF=[((E*nY) ! nY)nFIrnF =[(E*nY)nF]*nF
=[E*NY +FHHYnF=ELny +FinFH

Moreover, since F- C F-+ELNY, from [8, Lemma 2.2] we obtain that

ELNY +FLnF** = [ELny +FLnFLL.

Consequently,

(ENF)YNF =[ELNY +FLNF. 2.1)
On the other hand, observe that
H=F&F"*

and
F=(ENF)®[(ENF):NF].

This implies that for each z € Y NE L there exist unique u; € ENF, v, € (EN
F)YNF and w, € F* such that z=u, ®v, ®w,. Define S:YNE+ — (ENF)*NF
as S(z) =v,. Clearly S is a bounded linear operator. Let f € [E*NY +FY]NF,
then by (2.1), f € (ENF)*NF, also there exist e* € EXNY and w* € F* such that
f=e"+w". Therefore ¢* =0@ f® (—w*) € [ENF]@[(ENF)-NF] @ F* and so
S(e*) = f. Consequently, [E-NY +F+]NF CR(S). Thus by (2.1),

R(S)=(ENF):nF.

Finally, by Proposition 2.1, dim[(ENF)-NF] =dimR(S) <dimY NE+. O

It is well known that if T € B(H) and S € B(H) are a.— Fredholm operators then
ST is an o— Fredholm operator, see [3, Lemma 3.1]. The following theorem shows a
similar result for upper and lower semi o.— Fredholm operators.
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THEOREM 2.5. Let o be a cardinal number such that Xo < o« < h. For every
S,T operators in B(H) the following statements hold:

(1) if T€®}(H) and S € ®}(H), then TS € O} (H);
(2) if T€e®,(H) and S€ O, (H), then TS € ®,(H);
(3) if ST € ®L(H), then T € ®L(H);

(4) if ST € dy(H), then S € Dy (H).

Proof. We only prove (1) and (4).

(1) By [8, Theorem 2.6], the operators T,S are left invertible modulo .%,, hence
there exist U,V € B(H) such that (U+ %) (T + ) =14+ Iy and (V4 I)(S+
Fo) =1+ Fo. This implies that UT — [, VS —1 € .#,. Now, since %, is a two-
sided ideal of B(H), it follows that VUTS — VS € ., . Thus

VUTS —1—(VS—D)]+ (VS—1I) € Iy,
hence VUTS -1 € ¥,,1i.e.,
(VU+ Io)(TS+ Iy) =1+ Fy.
Therefore, by [8, Theorem 2.6], TS € @}, (H).

(4) Since ST € @, (H), by [9, Theorem 4], it follows that ST is right invertible
modulo Z, i.e., there exists U € B(H) such that (ST 4+ .%4)(U + %) =1+
F - Therefore (S+ Fo)(TU + Fy) = [+ Fy, i.e. S is right invertible modulo
Fo . Thus, again by [9, Theorem 4], S € @, (H). O

PROPOSITION 2.6. Let o be a cardinal number such that Xo < o < h. For every
operator T € B(H) the following assertions hold:

(1) Te®,(H) ifand only if T* € ®,(H);

(2) Te®,(H) ifand only if T* € ®},(H).

Proof. By [9, Theorem 2], R(T) is o.—closed if and only if R(T*) is a— closed.
Thus the conclusion of the proposition holds, because n(T) = dimN(T) = dimR(T*)* =

d(T*) and d(T) = dimR(T)* = dimR(T)  =dimN(T*) = n(T*). O
In [3, Lemma 2.1] was observed that @, (H) is an open set. We show in the next
theorem that @} (H) and @, (H) are also open sets.

THEOREM 2.7. Let o be a cardinal number such that ®o < o0 < h. Then ®f(H),
@, (H) and Oy (H) are open sets in B(H).



o.— FREDHOLM OPERATORS RELATIVE TO INVARIANT SUBSPACES 925

Proof. Let ¢ the set of all left invertible elements in B(H)/.#,. From [6, The-
orem], ¥ is an open set in B(H)/.%y. Take T € ®/,(H), then by [8, Theorem 2.6],
T+ %y €% Thus, there exists r > 0 such that if ||U+ #, — (T + #4)|| < r then
U+ 4 €%. Let S € B(H) such that ||S—T|| < r. Since ||S+ o — (T + H)|| <
|S—T]|, it follows that S+ .%, € ¢, and so by [8, Theorem 2.6], S € ®/,(H). The
other cases are analogous. [

3. o—Fredholm properties of 7 involving its diagonal

Throughout this paper, given a bounded operator T € %y (H) we shall denote by
A the restriction T'|w , by B the operator OT |, and by C the operator PT |y, . , where
P is the projection of H on W and Q is the projection of H on W+.

PROPOSITION 3.1. Let o be a cardinal number such that Xy < o < h. Let U €
B(W), V € B(W') and Uy,V; be bounded operators defined on W @ W+ as

Uuo 10
Ul:|:0 I] and VIZ[OV]'

Then, the following conditions hold:
(1) R(U) is o— closed if and only if R(Uy) is o.— closed;
(2) n(Uy) =n(U) and d(Uy) =d(U).

A similar statements hold if we replace U,Uy by V, V.

Proof.

(1) Suppose that R(U) is a—closed, namely there exists a closed linear subspace
Z of W such that Z C R(U) and dim[R(U)N(Z+-NW)] < ot. We set E=Z @
W+, then E is a closed linear subspace of H such that E C R(U;) and R(U;)N
Et =RU)NZeWH: =RU)NZ*NW =R(U)N(Z-NW). Therefore
dim(R(Uy)NE+) =dim(R(U)NZE-NW) < o, thus R(U;) is o.—closed.

Now, suppose that R(U;) is o—closed. Then there exists a closed linear sub-

space E of H suchthat E CR(U;) and dimR(U;)NEL- < a.Let D=ENR(U),
so D is a closed linear subspace of W and

D=ENR(U) CRU,)NW =R(U).

By [8, Lemma 2.2], R(U) "D+ = R(U)N D*. Then by Proposition 2.4,

dimR(U)ND* =dim[(ENR(U))* NR(U)| < dim[R(U;) NE*]
=dimR(U;)NEL < a.
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(2) It is clear that n(U;) = dimN(U;) = dim[N(U) & {0}] = dimN(U) = n(U).
Moreover, d(U;) =dimR(U;)* = dim[R(U) @ W]+ =dim[R(U)*NW] =d(U).
The statements with respect to the operators V and V)| are proved in a similar
way. O

REMARK 3.2. As consequence of Proposition 3.1, we have that:
(1) Uy € D, (H) ifand only if U € @ (W);
(2) Uy € ®}(H) ifand only if U € ®F(W).
Also,
(3) Vi €®,(H) ifand only if V € @y (W);

(4) Vi € ®(H) ifand only if V € DL (W),

THEOREM 3.3. Let o be a cardinal number such that Xy < o« < h. For every
T € Fw(H) we have:

(1) if A€ DL (W) and B € ®L(W), then T € ®(H);

(W)

(2) if A€ Dy (W) and B € ®y (W), then T € ®y(H);

(3) if T € ®f(H), then A € DL (W);
(H)

(4) if T € @y (H), then B€ ®,(W).

Proof. We only prove (1)and (3). Let A;,B; and C; be bounded operators defined
on Wp W as

A0 10 1C
A1=|:OI:|, Bl:|:OB:| and C1=|:OI:|.

Then T = B,C;A; and C) is invertible. Assume first that A € @} (W) and B €
@} (W). From Remark 3.2 (2) and (4), we have A;,B; € ®}(H), so by Theorem 2.5
(1), T = B|C1A, € DY (H).

Now, suppose that (B1C;)A; =T € ®}(H). From Theorem 2.5 (3), we have that
A € @} (H) and, this implies by Remark 3.2 (2), that A € ®F(W). O

As an immediate consequence of parts (/) and (2) of Theorem 3.3 we have the
following corollary.

COROLLARY 3.4. Let o be a cardinal number such that Xy < o < h. For every
T € Fw(H) we have:

(1) Gocu(T) C Gau(A) U Gau(B) ;

(2) 0u(T)C 0w (A)Uoy(B).
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LEMMA 3.5. Let T € Fw(H). If there exists a closed linear subspace E of H
such that E C R(T), then

d(A) < n(B)+dim[R(T)NE*] +d(T).

Proof. Suppose that E is a closed linear subspace of H such that E C R(T). From

R(A)* C (R(A)NE)™:, it follows that
d(A) = dim[R(A)* NW] < dim[(R(A)NE)" NW]. (3.1)
Consider the decompositions

W= (ENW)®[(ENW)-NW]

and
ENW = (ENR(A)) @ [(ENR(A)): N(ENW)].

Then
W =(ENRA)® |[(ENRA): N(ENW)]& [(EﬁW)lﬁW]} ,
s0 by Proposition 2.3,
dim[(ENR(A))* NW] = dim[(ENR(A))* N(ENW)] +dim[(ENW):NW]. (3.2)

From Proposition 2.4, dim[(ENW)+NW] < dim(HNE*) = dimE!. Moreover,
since R(T) =E®[E*NR(T)], it follows that H =R(T) ®R(T)* =E®[(R(T)NE*)®
R(T)*]. Consequently by Proposition 2.3, dimE+ = dim(R(T) N E*) +dimR(T)* =
dim(R(T)NE*) +d(T).

Therefore

dim[(E W) NW] < dim(R(T) NEL) +d(T). (3.3)

We prove that dim[(ENR(A))* N (ENW)] < dimN(B). Let
Y =N(T)'*nT YE). (3.4)

Then, Y is a closed linear subspace of H and T|y is bounded below. Indeed, take
u € E, so there exists x € H such that u = Tx. Consider the representation x = x| G
x2, where x; € N(T) and x, € N(T)*, thus Tx, = Tx = u which implies that x, €
T~ Y (E)NN(T)*(=Y) and hence u € T(Y). This shows that E C T(Y)(C E). On the
other hand, since N(T)NY = {0}, it follows that N(T|y) = {0}. Therefore, T|y is
bounded below.

Then, for each y € ENW, there exists an unique x, € ¥ such that y = Tx,. Also,
there are unique wy, € W and v, € W such that x, = wy & vy. From [Aw, + Cv] &
Bvy, = Tx, =y € W, it follows that v, € N(B). Define U : (ENR(A))* N(ENW) —
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N(B) as U(y) = v,. This operator is linear and bounded. Indeed, since T'|y is bounded
below, there exists M > 0 such that || Tx|| > M||x|| for all x € Y. Then

1 1
U= Moyl < Hwy A wyll = [yl < 37 ITx00 = 71yl

Let y1,y2 € (ENR(A))-N(ENW) be such that U(y;) = U(y>). Then x,, —wy, =
Vy, = Vy, = Xy, — Wy, which implies that x,, —x,, = wy, —w,, and hence y; —y, =
T (xy, —xy,) =T (wy, —wy,) € [R(A)NE]N (ENR(A))*" = {0}. Thus y; =y, ie U
is injective. Therefore, by Proposition 2.2,

dim[(ENR(A))* N (ENW)] < dimN(B). (3.5)
Consequently, by (3.1), (3.2), (3.3) and (3.5),
d(A) < n(B)+dim[R(T)NE*]|+d(T). O

LEMMA 3.6. Let T € Py (H). If there exists a closed linear subspace F of W
such that F C R(A), then

n(B) < n(T)+dim[R(A) N F*]+d(A).

Proof. Take a closed linear subspace F' of W such that F C R(A). Note that N(B)
is contained in the pre-image 7-!(W) = {h € H | Th € W}, thus

dimN(B) < dimT~'(W)nw+. (3.6)

In similar way to (3.4), it follows that A is bounded below on ¥ = [N(A)* nW]N
ATY(F). Let x& T"Y(W)NW+ be arbitrary, then Tx € W and so there exist unique
fe € F(CR(A)) and g, € F-NW such that Tx = f, @ g,. Take an unique y, € ¥
such that f, = Ty,, then T(x —y,) = g, € F*NW. Define V:T'(W)nw+ —
T Y (F-NW) as V(x) =x—y,. Itis clear that V is a linear operator. In order to prove
that V is bounded, consider M > 0 such that ||Ax|| > M||x|| for all x € Y. Then for
every x€ T ' (W)nW+,

1 1
|4 - —Vx g X < —||A x|| — —— IlJx
IV G = lle = yall < lell + [l3ell < Nl =+ 7 Ayl = [lxll + 7Ll

T
I8 .

Thus V is bounded. Moreover V is injective, because if x;,x, € T~ H(W)NW= are
such that V(x;) = V(x2) then x| —yyx, = X2 — Yy, and s0 x] — X2 = yy, —yx, € WENW
i.e. x] = xp. Therefore, by Proposition 2.2,

1 1
S el 57 1+ gall = llell + 7 1Tl < (14

dim7-'(W)nwt < dimT ' (F-nw). (3.7)
On the other hand, since N(T) C T~!(F-NW) it follows that
dim7 ' (FXnW) =dimN(T) +dim[N(T)* N T~ Y F-NW)] < n(T) 4 dim(F- nw),

(3.8)
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where the last inequality is because the application T : N(T)*NT~-Y(F-nW) — Ftn
W is bounded and injective. From the equalities

W =R(A) & [R(A)"NW]

and
R(A)=F ©[F* NR(A)]

we obtain that W = F @ [(R(A) N F) @ (R(A)* NW)] and so by Proposition 2.3,
dim[F+ NW] = dim[R(A) N F1] +d(A). (3.9)
Consequently by (3.6), (3.7), (3.8) and (3.9),
n(B) < n(T)+dim[R(A)NF*]+d(A). O

As an immediate consequence of Lemmas 3.5 and 3.6 we obtain the next theorem.

THEOREM 3.7. Let o be a cardinal number such that Xg < x < h andlet T €
Fw(H). The following conditions hold:

(1) if T € ®,(H) and n(B) < a, then d(A) < a;
(2) if T € ®f(H) and d(A) < «, then n(B) < «.

Proof.
(1) It is an immediately consequence of Lemma 3.5.

(2) If T € ®f(H) then n(T) < o, and from Theorem 3.3 (3), A € ®;(W). Thus
there exists a closed linear subspace F of W such that F C R(A) and dim
[R(A)N(F+NW)] < o. From [8, Lemma2.2], R(A) N (F-NW)=R(A)N(F*+n
W). Consequently by Lemma 3.6,

n(B) <n(T)+dim[R(A) N F*|4+d(A)=n(T)+R(A)N(F-NW)+d(A)<a. O
The following corollary is a version of [4, Theorem 8] for ot— Fredholm operators.

COROLLARY 3.8. Ler T € Zw(H) and let o be a cardinal number such that
No < a < h. The following statements are equivalent:

(1) T € ®y(H) and n(B) < o;
(2) TeDy(H) and d(A) < o,
(3) A€ ®y(W) and B € Dy (WH).
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Proof. (1) = (2) It follows from Theorem 3.7 (1).
(2) = (3) From Theorem 3.3 (3) and (4), we have that A € ®},(W) and B € ®,(W1).
Since d(A) < a, it follows by Theorem 3.7 (2), that n(B) < ot. Therefore A € Oy (W)
and B € ®y(WH).
(3) = (1) By Theorem 3.3 (1) and (2), T € @, (H). Obviously, by hypothesis, n(B) <
. O

Of this corollary it follows that the o¢— Fredholm spectrum of 7', A and B form a
“love knot”.

COROLLARY 3.9. If T € Zw(H) then:
(1) 0a(T) C 0a(A)Uou(B);
(2) 0a(A) C 0a(T)Uou(B);
(3) Oa(B) C 0a(T)U0Cu(A).

Moreover,
(4) (00(A)U0u(B))\ 04(T) C 0u(A)N0u(B);
(5) (0a(T)U0u(B))\ 0u(A)
(6) (0a(T)U0ow(A))\ 0a(B)

N

0u(T)Nou(B);

N

0a(T)N 0o (A).

THEOREM 3.10. Let Dy € B(W), D, € B(W') and « be a cardinal number such
that Ro < o < h. If for every D € B(IW W), Mp is defined on W W by

_|D1 D
Mp = [0 DJ ’
then
n 0a(Mp) 2 0au(D1)U 0w (D)UY,
DEB(WL W)

where W ={A € C|n(A—D,) #d(A —Dy) and at least one these cardinals is greater
than or equal to o/} .

Proof. From Theorem 3.3 (3) and (4), it follows that for every D € B(W+, W),
C\ 6¢(Mp) C C\ (Gou(D1)U 0g1(D2)).

Consequently, gy (D1)U 6y (D2)) C 64 (Mp) forall D€ B(W,W). Let A € # and
suppose that A & 6(Mp) for some D € B(WL,W). Then A —Mp € ®y(H). This
implies that n(A —Mp) < o, d(A —Mp) < a and there exists a closed linear subspace
E of H such that E C R(A —Mp) and dimR(A —Mp)NEL < o. Also, by Theorem
3.3 (3), there exists a closed linear subspace F of W such that F C R(A — D;) and
dimR(A —D;) N (F-NW) < a. Therefore by Lemmas 3.5 and 3.6, we have that

d(A —Dy) < n(A —Ds) +dim[R(A — Mp) NE*] +d(A — Mp)



o.— FREDHOLM OPERATORS RELATIVE TO INVARIANT SUBSPACES 931

and
n(A —Dy) < n(A —Mp) +dim[R(A — Dy) N (FXNW)] +d(A —Dy).
Consequently,
dA—D))<n(A—Dy)+a (3.10)
and
n(A—D,) <d(A—Dj)+a. (3.11)
If n(A —D,) > o and d(A — Dy) > o then, by inequalities (3.10) and (3.11),
n(A —D;) =d(A — Dy). This contradicts the fact that n(A — D;) # d(A — D). Now,
if n(A —D,) < a then by inequality (3.10), d(A —D;) < o which is a contradiction,
because at least one the cardinals n(A — D) or d(A — Dy) is greater than or equal
to o. Finally, if d(A — D;) < o then by inequality (3.11), n(A — D,) < o, again a
contradiction. In any case we have a contradiction. Therefore A € c,(Mp) for all
DeBWHW). O
In similar way to [4, Proposition 7] we have the following theorem for arbitrary
dimensions.

THEOREM 3.11. Let T € %y (H), then the following assertions hold:
(1) n(T) < n(A)+n(B); moreover, if R(A) = R(T)NW, then n(T) =n(A) +n(B);

(2) d(T)<d(A)+d(B); moreover, if R(A)=R(T)NW, then d(T)=d(A)+d(B).
Proof.
(1) Consider the decomposition
N(T) =N(A) ® [N(A)* NN(T)). (3.12)

Let Y =N(A)X NN(T). Foreach y € Y, there exist unique wy € W and v, € W+
such that y = wy & vy. Observe that

-

o= """ loB||vw|"| By |

thus v, € N(B). Define U : Y — N(B) by U(y) = vy. Itis clear that U is a
continuous linear operator. Let y;,y» € Y be such that U(y;) = U(y,), then
Vy, = Vy,. This implies that y; —y> = wy, —wy, + vy, — vy, = wy, —w,, and
hence y; —yy € W. Thus A(y; —y2) =T (y1 —y2) = Ty; — Ty, = 0. Therefore
y1 —y2 € N(A)NN(A)*(={0}),i.e. y; = y2, which implies that U is injective.
Consequently, by (3.12) and Proposition 2.2,

n(T) =n(A) +dimY < n(A) +n(B).

Now, suppose that R(A) = R(T) W . Take z € N(B), then

e8] ][5 -reo-ce
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Therefore Tz € R(T)NW (= T(W)), thus Tz = Tw for some w € W. This im-
plies that z—w € N(T'), and so by (3.12), there exist x € N(A) and y € Y such
that z —w = x®y. Finally, since y= —w—x+z, —-w—x€ W and z€ W+,
it follows that U(y) = z, which implies that U is surjective. Consequently, by
Proposition 2.1, dimN(B) = dimU(Y) < dimY, and hence

n(T) =n(A) +dimY > dimN(A) + n(B).

From the inclusion R(T) C W @ R(B), it follows that W NR(B)* C R(T)*
Thus,

R(T): = (W-NRB)F) @ [(W-NR(B) ) NR(T)*].
Moreover, observe that (W NR(B)Y)*NR(T)* = (W +R(B))NR(T)" . There-
fore

d(T) = dim[W* NR(B)*] +dim[(W + R(B)) NR(T)™]. (3.13)
For each y € R(A)- NW, there exist unique r, € R(T) and sy € R(T)* such that
y = ry@sy. Let us consider the operator S defined on R(A)=-NW as S(y) = sy.
Clearly S is linear and bounded. We prove that

R(S) = (W+R(B))NR(T)*.

First note that (W +R(B)) NR(T)* = W +R(T) N R(T)*, and by [8, Lemma
2.2], W+R(TYNR(T)* = (W +R(T))NR(T)*. Thus

(W +R(B))NR(T)* = (W +R(T))NR(T)*. (3.14)

Let y € R(A)-NW, then S(y) =s, =y —ry € [W+R(T)|NR(T)*. Therefore,
R(S) € (W +R(T))NR(T)"*. On the other hand, let s € (W+R( ))NR(T)*L,
then there exist w € W and r € R(T) such that s = w+r. Also, there exist
u € R(A) and v € R(A)- NW such that w =u+v. Thus, v=(—u—r)+s€
R(T)®R(T)* and so S(v) =s. Therefore (W +R(T))NR(T)* C R(S), which

implies that
R(S) = (W +R(T)) NR(T)*.

Consequently by (3.14), R(S) = (W +R(T))NR(T)+ = (W +R(B)) NR(T)*
Thus by Proposition 2.1,

dim[(W +R(B)) NR(T)*] = dimR(S) < dim[R(A)* NW].

Therefore by (3.13), d(T) < d(B)+d(A).

Now, suppose that R(A) = R(T)NW . Let y;,y; € € R(A)*NW such that S(y;) =
S(y2). Then y; —ys =ry, —ry, € WNR(T) (= R(A)). So that y; —y, € R(A)N
R(A)*,i.e. y; = ya, which proves that S is injective. Consequently, by Proposi-
tion 2.2,

dim[R(A)* NW] < dim[(W 4+ R(B)) NR(T)*].
Thus by (3.13),

d(A)+d(B) < dim[(W +R(B)) NR(T)*]+d(B) =d(T). O
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In the same way that L. A. Coburn defined the Weyl spectrum, B. S. Yadav and S.
C. Arora in [14] did it for the ac— Weyl spectrum of a weight o, Xy < o < h, for an
operator T € B(H), as
T)= n T+K). 3.15
wu(T) = 1 o(T+K) (3.15)

L. Burlando in [5] defined the 8 —index of an operator T : H — H for Rg < B < h

as
n(T)—d(T), ifeither B = Xporf > Xgand
indg (T) = max{n(T),d(T)} > B;
0, if B > R and max{n(T),d(T)} < B.

With this index S. V. Djordjevi¢ and F. Hernandez-Diaz in [7] presented a
Schechter’s manner to introduce oc— Weyl operators. An operator T € B(H) is said
o— Weyl operator, for some cardinal ¢, 8o < oo < h,if T is an a— Fredholm operator
with indg (T) =0, for all cardinals B, Xy < B < o. They proved, see [7, Theorem 3],
that the Weyl spectrum of a weight o may be characterized as the following set

0(T)={A € C| A —T isnot an oo — Weyl operator}
={A€C|A €0u(T)orindg(A —T)#0, for some Xog < B < a}.

Let us now consider the set

Ny (H) = {T e Zw(H) |R(A —A)=R(A—T)NW and

R(A—A)=R(A—T)NW forall A € (C\{O}}.

THEOREM 3.12. Let o be a cardinal number such that Xo < oo < h. If T €
Nw(H), then

0o (T) C 0y (A) Uwy(B).

Proof. Take A ¢ (w4 (A)U @y (B)),then A —A and A — B are oc— Weyl operators,
so by [7, Theorem 5], d(A —A) =n((A —A)*) =n(A —A) < o and d(A —B) =n((A —
B)")=n(A—B) < a. Since T € My (H), it follows by Theorem 3.11, that

n(A—T)=n(A—A)+n(A—B)
and
dA—T)=d(A—A)+d(A—B).

Therefore n(A —T) =n(A —A)+n(A —B) =d(A—A)+d(A—B)=d(A—-T) =
n((A —T)*). On the other hand, A —A and A — B are o.— Fredholm operators, hence
by Corollary 3.8, A — T is an a— Fredholm operator, consequently by [7, Theorem 5],
A —T is an o.— Weyl operator. Thus A & (7). O
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4. Application to spectral v— continuity

Let o/ be a complex Banach algebra with identity e. A sequence (a,) in < is
said to be norm convergent to a (in notation a, — a), if ||a, — al| — 0. Recently, M.
Ahues in [1] introduced a new mode of convergence on B(X), named v— convergence.
This type of convergence can be generalized in the same way to complex unital Banach
algebras. Indeed, a sequence (a,) in < is said to be v—convergent to a, denoted
by a, — a, if (||ay]|) is bounded, ||(a, —a)a|| — 0 and ||(a, — a)a,|| — 0. This con-
vergence is a pseudo-convergence in the sense that it is possible to have a, Y a and
a, Y b but a # b, see for instance [12, Example 1]. There is a connection between
norm convergence and v—convergence as follows: if a, — a then q, Y a, also, if
an — a and a is right invertible then a,, — a. Investigation of the v— continuity of the
spectrum on the space B(X) is relatively new, some results on this topic we can find for
example in [1], [2], [12] and [13].

A function 7, defined on <7, whose values are non-empty compact subsets of C
is said to be v—upper (resp. v—lower) semi-continuous at a, if a, Ya implies that
limsupt(a,) C t(a) (resp. T(a) Climinft(a,)). If 7 is both v—upper and v—lower
semi-continuous at «a, then 7 is said to be v— continuous at a.

For a € o7, let 6(a) :=={A € C | Ae —a isnotinvertible in &7}, the spectrum
of a. It is well known that o(a) is a non-empty compact subset of C and o(a) C
B(0,]|a||). From this it follows the next proposition.

PROPOSITION 4.1. © is V—continuous at a if and only if 6(a,) — o(a) in the
. \%
Hausdorff metric for every a, — a.

Proceeding exactly as in the proof of [, Corollary 2.7] we obtain the next result.

THEOREM 4.2. Foreach a € o/, G is V—upper semi-continuous at a.

As an immediate consequence of the previous theorem for <7 = B(H)/.#,, is that
the o— Fredholm spectrum, viewed as a function from B(H) into the space of non-
empty compact sets, iS V— upper semi-continuous.

COROLLARY 4.3. Let o be a cardinal number such that Xy < oo < h. For each
T € B(H), Oy is v—upper semi-continuous at T .

Proof. Let (T;,) be a sequence in B(H) such that T, - T. Consider the natural
homomorphism 7 : H — B(H)/.% defined by n(T) = T 4 .%,. Then n(T,,) - n(T)
and so by Theorem 4.2, limsup o (7(7,,)) € o(m(T)). On the other hand, for each n €
N, 64(Ty) = o(n(Ty)), and 04(T) = o(n(T)). Thus limsupoy(T,) C 6x(T). O

THEOREM 4.4. Let o be a cardinal number such that X < x < h andlet T €
Fw(H). Suppose that one of the following conditions holds:

(i) 0a(A)N0Ow(B)=0;



(ii)
(iii)
Then

(1)
(2)
(3)

(D

2

3)
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60(T) N 0y(A) =0;
6(T) N 0y (B) = 0.

if 0¢ is V—continuous at A and B, then oy, is Vv— continuous at T ;

if 0y is V—continuous at T and A, then Gy is V— continuous at B;

if for each {A,} in BIW) with A, > A, A,C — AC, and if G, is V— continuous
at T and B, then Gy is V—continuous at A.

Proof. We suppose that 6 (A) N oy (B) = 0.

Let {7,} be a sequence in .Zw(H) such that T, Y, T. Each T, has the fol-
. . . . A, C,
lowing 2 x 2 upper triangular operator matrix representation: 7, = 0B |
Since ||A,|| < |||l and ||B,|| < ||T;||. it follows that A, <> A and B, — B. Let

A € 6¢(T), from Corollary 3.9 (1), A € 64(A) U 0(B).

We may suppose without loss of generality that A € 6,(A). Since that oy is
v—lower semi continuous at A, A € liminf ©64(A,). Thus there exists a se-
quence {A,} in C such that A, — A and A, € 04(A,) for all n € N. Sup-
pose that there exists a subsequence {A,,} of {A,} such that 4, & 0u(T,,).
Since Ay, € [0a(An,) U 0u(By, )|\ 0a(Ty,) it follows by Corollary 3.9 (4) that
Ay, € 6 (Ap,) NOg(By,). Therefore A € limsup oy (B,) and so, by v—upper
semi continuity of 6, at B, A € 04(B), which implies that A € 64(A) N0y (B),
a contradiction. Consequently, there exists a natural number n( such that for
every n = ng, Ay € 0¢(Ty), thus A € liminf 64(7},).

Let {B,} be a sequence in B(W') such that B, > B. Consider the sequence
{T,} where each operator is defined by 7, = g g } . Itis clear that {7, } is a se-

n
quence in .Fw (H), moreover, observe that ||(T,, — T)T|| = ||(B. — B)B||, ||(T, —
T)T|| = || (Bx—B)Ba|| and ||T,|| < [max{2max{||A|1%,||C|[*}, ||B4|[*}]'/*. Thus
T, > T. Let A € 04(B), then by Corollary 3.9 (3), A € 6,(T) and so A €
liminf 6, (7,), on the other hand, liminfoy(7,) C liminf{oy(A) U 04 (By)] C
0o (A) U [liminf oy (By)], hence A € liminfoy(B,).

Let {A,} be a sequence in B(W) such that A, — A. By hypothesis, A,C — AC.
. _[A.C
Consider T,, = 0 Bl n € N. Then

(T, —T)T|| = [2max{|| (4, — A)A[, [ (A, — A)C|?}]/2

and
(T, = T)T, || = [2max{]| (Ay — A)A4|1%, | (An — A)C| P}/,
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Therefore T, A T, thus

00(A) C 0o(T) Climinfoy(7,) C [liminfoy(A,)]U oy (B).

Consequently, 04(A) C liminfog(4,). O
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