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ISOLATED EIGENVALUES, POLES AND COMPACT

PERTURBATIONS OF BANACH SPACE OPERATORS

BHAGWATI PRASHAD DUGGAL

Abstract. Given a Banach space operator A , the isolated eigenvalues E(A) and the poles Π(A)
(resp., eigenvalues Ea(A) which are isolated points of the approximate point spectrum and the
left ploles Πa(A) ) of the spectrum of A satisfy Π(A) ⊆ E(A) (resp., Πa(A) ⊆ Ea(A) ), and
the reverse inclusion holds if and only if E(A) (resp., Ea(A) ) has empty intersection with the
B-Weyl spectrum (resp., upper B-Weyl spectrum) of A . Evidently Π(A) ⊆ Ea(A) , but no such
inclusion exists for E(A) and Πa(A) . The study of identities E(A)= Πa(A) and Ea(A)= Π(A) ,
and their stability under perturbation by commuting Riesz operators, has been of some interest
in the recent past. This paper studies the stability of these identities under perturbation by (non-
commuting) compact operators. Examples of analytic Toeplitz operators and operators satisfying
the abstract shift condition are considered.
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Basel Volume 32(1988), 113–158.

[12] H. G. HEUSER, Functional Analysis, John Wiley and Sons (1982).
[13] YOU QING JI, Quasitriagular + small compact = strongly irreducible, Trans. Amer. Math. Soc.

351(1999), 4657–4673.

c© � � , Zagreb
Paper OaM-13-67

http://dx.doi.org/10.7153/oam-2019-13-67


956 B. P. DUGGAL

[14] K. B. LAURSEN AND M. M. NEUMANN, Introduction to Local Spectral Theory, Clarendon Press,
Oxford, 2000.

[15] C. G. LI AND T. T. ZHOU, Polaroid type operators and compact perturbations, Studia Math.
221(2014), 175–192.
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