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ISOLATED EIGENVALUES, POLES AND COMPACT
PERTURBATIONS OF BANACH SPACE OPERATORS

BHAGWATI PRASHAD DUGGAL

Abstract. Given a Banach space operator A, the isolated eigenvalues E(A) and the poles T1(A)
(resp., eigenvalues E“(A) which are isolated points of the approximate point spectrum and the
left ploles T1“(A)) of the spectrum of A satisfy TI(A) C E(A) (resp., I1*(A) C E“(A)), and
the reverse inclusion holds if and only if E(A) (resp., E“(A)) has empty intersection with the
B-Weyl spectrum (resp., upper B-Weyl spectrum) of A. Evidently I1(A) C E“(A), but no such
inclusion exists for E(A) and I1(A). The study of identities E(A) =T1*(A) and E*(A) =TI(A),
and their stability under perturbation by commuting Riesz operators, has been of some interest
in the recent past. This paper studies the stability of these identities under perturbation by (non-
commuting) compact operators. Examples of analytic Toeplitz operators and operators satisfying
the abstract shift condition are considered.
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