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ISOLATED EIGENVALUES, POLES AND COMPACT

PERTURBATIONS OF BANACH SPACE OPERATORS

BHAGWATI PRASHAD DUGGAL

(Communicated by R. Curto)

Abstract. Given a Banach space operator A , the isolated eigenvalues E(A) and the poles Π(A)
(resp., eigenvalues Ea(A) which are isolated points of the approximate point spectrum and the
left ploles Πa(A) ) of the spectrum of A satisfy Π(A) ⊆ E(A) (resp., Πa(A) ⊆ Ea(A) ), and
the reverse inclusion holds if and only if E(A) (resp., Ea(A) ) has empty intersection with the
B-Weyl spectrum (resp., upper B-Weyl spectrum) of A . Evidently Π(A) ⊆ Ea(A) , but no such
inclusion exists for E(A) and Πa(A) . The study of identities E(A)= Πa(A) and Ea(A)= Π(A) ,
and their stability under perturbation by commuting Riesz operators, has been of some interest
in the recent past. This paper studies the stability of these identities under perturbation by (non-
commuting) compact operators. Examples of analytic Toeplitz operators and operators satisfying
the abstract shift condition are considered.

1. Introduction

Let B(X ) (resp., B(H )) denote the algebra of operators, equivalently bounded
linear transformations, on a complex infinite dimensional Banach (resp., Hilbert) space
into itself. For an operator A∈B(X ) , let σ(A) , isoσ(A) , σp(A) , σa(A) and isoσa(A)
denote, respectively, the spectrum, the set of isolated points of σ(A) , the point spec-
trum, the approximate point spectrum and the set of isolated points of σa(A) . Let
asc(A) (resp., dsc(A)) denote the ascent (resp., descent) of A , A−λ denote A−λ I ,
α(A− λ ) = dim(A− λ )−1(0) , and let E(A) , E0(A) , Ea(A) , Ea

0 (A) , Π(A) , Π0(A) ,
Πa(A) and Πa

0(A) denote, respectively the sets E(A) = {λ ∈ isoσ(A) : λ ∈ σp(A)} ,
E0(A) = {λ ∈ E(A) : α(A−λ ) < ∞} , Ea(A) = {λ ∈ isoσa(A) : λ ∈ σp(A)} , Ea

0(A) =
{λ ∈ Ea(A) : α(A− λ ) < ∞} , Π(A) = {λ ∈ σ(A) : asc(A− λ ) = dsc(A− λ ) < ∞} ,
Π0(A) = {λ ∈Π(A) : α(A−λ ) < ∞} , Πa(A) = {λ ∈σa(A) : asc(A−λ )= d < ∞,(A−
λ )d+1(X ) is closed} and Πa

0(A) = {λ ∈ Πa(A) : α(A− λ ) < ∞} . The sets Π(A) ,
Πa(A) , E(A) and Ea(A) satisfy the inclusions Π(A) ⊆ Πa(A) ⊆ Ea(A) and Π(A) ⊆
E(A) ⊆ Ea(A) . The reverse inclusions in general do not hold. The reverse inclusions,
in particular the properties

(P1) : E(A) = Πa(A) and (P2) : Ea(A) = Π(A)

Mathematics subject classification (2010): 47A10, 47A55, 47A53, 47B40.
Keywords and phrases: Banach space operator, isolated eigenvalues, left poles, poles, compact pertur-

bations, SVEP, Fredholm operator, Toeplitz operator, abstract shift condition.

c© � � , Zagreb
Paper OaM-13-67

955

http://dx.doi.org/10.7153/oam-2019-13-67


956 B. P. DUGGAL

and their stability under perturbations by commuting Riesz operators, have been studied
in a number of papers in the recent past, amongst them [2, 3, 4, 8, 9, 17, 18, 20, 21]. It
is easily seen that A ∈ B(X ) satisfies property (P1) , A ∈ (P1) , if and only if E(A) =
Πa(A) = Π(A) and A ∈ (P2) if and only if Ea(A) = Π(A) = Πa(A) = E(A) (thus:
(P2) =⇒ (P1)). Letting σBw(A) and σuBw(A) denote, respectively, the B-Weyl and
the left (or, upper) B-Weyl spectrum of A ∈ B(X ) , it is seen that A ∈ (P1) if and only
if E(A)∩σuBw(A) = /0 and A ∈ (P2) if and only if Ea(A)∩σBw(A) = /0 : Left polaroid
operators (i.e., operators A for which λ ∈ isoσa(A) implies λ ∈ Πa(A)) satisfy (P1)
and a-polaroid operators (i.e., operators A for which λ ∈ isoσa(A) implies λ ∈ Π(A))
satisfy (P2) [9]. The isolated points of (the Weyl spectrum σw(A) and) the left (or,
upper) Weyl spectrum σaw(A) of A play an important role in determining the stability
of properties (P1) and (P2) under perturbation by commuting Riesz operators R ∈
B(X ) . Thus, if isoσaw(A) = /0 , and isoσa(A + R) = isoσa(A) , then A ∈ (Pi) ⇐⇒
A+R∈ (Pi) ; i = 1,2 [9, Theorem 8.5].

This paper considers the preservation of properties (P1) and (P2) , and their finite
dimensional kernel versions

(P1)′ : E0(A) = Πa
0(A) and (P2)′ : Ea

0 (A) = Π0(A),

under perturbation by (non-commuting) compact operators. We give a number of ex-
amples to show that neither of the properties (P1) , (P1)′ , (P2) and (P2)′ travels
well from A to A + K under perturbation by compact operators K ∈ B(X ) . It is
proved that if isoσa(A+K) = isoσa(A) and either isoσw(A)∩{σ(A)\σBw(A)}= /0 or
isoσaw(A)∩{σa(A)\σuBw(A)} = /0 , then A ∈ (P1) =⇒ A ∈ (P1)′ , and A ∈ (P1) =⇒
A + K ∈ (P1)′ , if and only if E0(A + K) ⊆ E0(A) ; A ∈ (P2) =⇒ A ∈ (P2)′ , and
A ∈ (P2) =⇒ A + K ∈ (P2)′ , if and only if Ea

0(A + K) ⊆ Ea
0 (A) . For A,K such

that isoσa(A + K) = isoσa(A) , σBw(A) \σuBw(A) = σBw(A + K) \ σuBw(A + K) and
isoσa(A)∩{σBw(A + K) \σBw(A)} = /0 , a sufficient condition for A ∈ (Pi) implies
A+ K ∈ (Pi) , i = 1,2, is that isoσa(A)∩σuBw(A) = /0 . Analytic Toeplitz operators
A ∈ B(H2(∂D)) , and operators A ∈ B(X ) satisfying the abstract shift condition (such
that A is non-quasinilpotent and non-invertible), satisfy properties (P1) and (P2) . We
prove that a sufficient condition for A+K ∈ (P1)∨(P2) is Ea(A+K)∩σw(A) = /0 , and
a necessary and sufficient condition for A+K ∈ (P1)∨ (P2) is σa(A+K)∩{σw(A)\
σaw(A)} = /0 .

The plan of this paper is as follows. After introducing (most of) our notation and
terminology in Section 2, we prove some complementary results on polaroid type op-
erators, and a functional calculus for such operators, in Section 3. Section 4 is devoted
to proving our main results, and Section 5 considers examples of analytic Toeplitz op-
erators and operators which satisfy the abstract shift condition.

2. Notation and terminology

In addition to the (explained) notation and terminology already introduced, we
shall use the following further notation and terminology.We shall use C to denote the
complex plane, and SC to denote the complement of the subset S of C in C . (Thus
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σw(A)C = C \σw(A) .) We use D(0,r) to denote the open disc (in C )) of radius r
centered at 0, D to denote (the open) unit disc, D to denote the closure of D and
∂D to denote the boundary of D . An operator A∈ B(X ) has SVEP, the single-valued
extension property, at λ0 ∈ C if for every open disc Dλ0

centered at λ0 the only analytic
function f : Dλ0

−→ X satisfying (A− λ ) f (λ ) = 0 is the function f ≡ 0. Every
operator A has SVEP at points in its resolvent set ρ(A) = C\σ(A) and on the boundary
∂σ(A) of the spectrum σ(A) . We say that T has SVEP on a set S if it has SVEP at
every λ ∈ S . The ascent of A , asc(A) (resp. descent of A , dsc(A)), is the least non-
negative integer n such that A−n(0) = A−(n+1)(0) (resp., An(X ) = An+1(X )): If no
such integer exists, then asc(A) , resp. dsc(A) , = ∞ . It is well known that asc(A) < ∞
implies A has SVEP at 0, dsc(A) < ∞ implies A∗ (= the dual operator) has SVEP
at 0, finite ascent and descent for an operator implies their equality, and that a point
λ ∈ σ(A) is a pole (of the resolvent) of A if and only if asc(A−λ ) = dsc(A−λ ) < ∞
(see [1, 12, 14, 19]).

The operator A ∈ B(X ) is: left semi–Fredholm at λ ∈ C , denoted λ ∈ Φ+(A) or
A−λ ∈ Φ+(X ) , if (A−λ )X is closed and the deficiency index α(A−λ ) < ∞ ; right
semi–Fredholm at λ ∈ C , denoted λ ∈ Φ−(A) or A− λ ∈ Φ−(X ) , if β (A− λ ) =
dim(X /(A−λ )(X )) < ∞ . A is semi–Fredholm, λ ∈ Φs f (A) or A−λ ∈ Φs f (X ) , if
A−λ is either left or right semi–Fredholm, and A is Fredholm, λ ∈ Φ(A) or A−λ ∈
Φ(X ) , if A−λ is both left and right semi–Fredholm. The index of a semi–Fredholm
operator is the integer, possibly infinite, ind(A) = α(A)− β (A) . Corresponding to
these classes of one sided Fredholm operators, we have the following spectra: The left
Fredholm spectrum σae(A) of A defined by σae(A) = {λ ∈ σ(A) : A−λ /∈ Φ+(X )} ,
and the right Fredholm spectrum σse(A) of A defined by σse(A) = {λ ∈ σ(A) : A−λ /∈
Φ−(X )} . The Fredholm spectrum σe(A) of A is the set σe(A) = σae(A)∪σse(A) .
A ∈ B(X ) is Weyl (resp. a-Weyl) if it is Fredholm with ind(A) = 0 (resp., if it is
left Fredholm with ind(A) � 0). It is well known that a semi- Fredholm operator A
(resp., its dual operator A∗ ) has SVEP at a point λ if and only if asc(A− λ ) < ∞
(resp., dsc(A− λ ) < ∞) [1, Theorems 3.16, 3.17]; furthermore, if A− λ is Weyl ,
i.e., if λ ∈ Φ(A) and ind(A−λ ) = 0 , then A has SVEP at λ implies λ ∈ isoσ(A)
with asc(A−λ ) = dsc(A−λ ) < ∞ (resp., if A−λ is a-Weyl , i.e., if λ ∈ Φ+(A) and
ind(A−λ ) � 0 , then A has SVEP at λ implies λ ∈ isoσa(A) with asc(A−λ ) < ∞).
The Weyl (resp., the left or approximate Weyl) spectrum of A is the set

σw(A) = {λ ∈ σ(A) : λ /∈ Φ(A) or ind(A−λ ) 
= 0}
(σaw(A) = {λ ∈ σa(A) : λ /∈ Φ+(A) or ind(A−λ ) > 0}).

A generalization of Fredholm and Weyl spectra is obtained as follows. An operator
A ∈ B(X ) is semi B-Fredholm if there exists an integer n � 1 such that An(X ) is
closed and the induced operator A[n] = A|An(X ) , A[0] = A , is semi Fredholm (in the
usual sense). It is seen that if A[n] ∈ Φ±(X ) for an integer n � 1, then A[m] ∈ Φ±(X )
for all integers m � n , and one may unambiguously define the index of A by ind(A) =
α(A)− β (A) (= ind(A[n])) (see [7] and [4] for relevant references). Upper (or, left)
semi B-Fredholm, lower (or, right) semi B-Fredholm and B-Fredholm spectra of A are
then the sets σuB f (A) = {λ ∈ σ(A) : A−λ is not upper semi B-Fredholm} , σlB f (A) =
{λ ∈ σ(A) : A−λ is not lower semi B-Fredholm} , and σBe(A) = σuB f (A)∪σlB f (A) .
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Letting σBw(A) = {λ ∈ σ(A) : λ ∈ σBe(A) or ind(A−λ ) 
= 0}, σuBw(A) = {λ ∈
σa(A) : λ ∈ σuB f (A) or ind(A−λ ) 
� 0}, σlBw(A) = {λ ∈ σs(A) : λ ∈ σlB f (A) or
ind(A−λ ) 
� 0} denote, respectively, the B-Weyl, the upper B-Weyl and the lower B-
Weyl spectrum of A , we have σBw(A) = σuBw(A)∪σlBw(A) , and σuBw(A) = σlBw(A∗) .
Just as in the case of Weyl and a-Weyl operators, if A has SVEP at λ ∈ σ(A) and A−λ
is B-Weyl, then asc(A−λ ) = dsc(A−λ ) < ∞ and λ ∈ isoσ(A) (resp., if A has SVEP
at λ ∈ σa(A) and A−λ is upper B-Weyl, then asc(A−λ ) < ∞ and λ ∈ isoσa(A)) [7].

We say in the following that A ∈ B(X ) is polaroid (resp., finitely polaroid) if
isoσ(A) ⊆ Π(A) (resp., isoσ(A) ⊆ Π0(A)), left polaroid (resp., finitely left polaroid)
if isoσa(A)⊆ Πa(A) (resp., isoσa(A)⊆ Πa

0(A)), a-polaroid (resp., finitely a-polaroid)
if isoσa(A) ⊆ Π(A) (resp., isoσa(A) ⊆ Π0(A)). It is clear that a-polaroid operators
are polaroid, Π0(A) ⊆ Πa

0(A) ⊆ Πa(A) and Π0(A) ⊆ Π(A) ⊆ Πa(A) [4, 7, 15].

3. Polaroid operators and compact perturbations

Given operators A,K ∈ B(X ) with K compact, it is clear that

A+K is finitely polaroid ⇐⇒ isoσ(A+K)⊆ Π0(A+K)
⇐⇒ isoσ(A+K)∩σw(A) = /0;

A+K is finitely left polaroid ⇐⇒ isoσa(A+K) ⊆ Πa
0(A+K)

⇐⇒ isoσa(A+K)∩σaw(A) = /0; and

A+K is finitely a-polaroid ⇐⇒ isoσa(A+K) ⊆ Π0(A+K)
⇐⇒ isoσa(A+K)∩σw(A) = /0.

A version of these observations extends to polaroid, left polaroid and a-polaroid opera-
tors. Recall from [9, Section 3] that

σBw(A) = σw(A)\Φiso
Bw(A) and σuBw(A) = σaw(A)\Φiso

uBw(A),

where

Φiso
Bw(A) = isoσw(A)∩σBw(A)C and Φiso

uBw(A) = isoσaw(A)∩σuBw(A)C .

Recall also that for every λ ∈ isoσ(A + K) , either λ ∈ σw(A + K) = σw(A) or λ ∈
σw(A+K)C = σw(A)C (similary, for every λ ∈ isoσa(A+K) , either λ ∈σaw(A+K)=
σaw(A) or λ ∈ σaw(A+K)C = σaw(A)C ). Hence, since σw(A+K)C ∩σBw(A+K) =
/0 = σaw(A+K)C ∩σuBw(A+K) ,

isoσ(A+K)∩σBw(A+K) = {isoσ(A+K)∩σw(A+K)}∩σBw(A+K)
⊆ isoσw(A+K)∩σBw(A+K)
= isoσw(A)∩σBw(A+K)

and

isoσa(A+K)∩σuBw(A+K) = {isoσa(A+K)∩σaw(A+K)}∩σuBw(A+K)
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⊆ isoσaw(A+K)∩σuBw(A+K)
= isoσaw(A)∩σuBw(A+K).

The following theorem, which gives a necessary and sufficient condition for the
perturbation of an operator by a compact operator to be polaroid (left polaroid,
a-polaroid), improves [6, Theorem 6.4]. Let [isoσw(A)]K and [isoσaw(A)]K denote,
respectively, the sets

[isoσw(A)]K = {λ ∈ isoσw(A) = isoσw(A+K) : λ ∈ isoσ(A+K)}

and

[isoσaw(A)]K = {λ ∈ isoσaw(A) = isoσaw(A+K) : λ ∈ isoσa(A+K)}.

Clearly, isoσ(A + K) ∩ σBw(A + K) = /0 ⇐⇒ [isoσw(A)]K ∩ σBw(A + K) = /0 and
isoσa(A+K)∩σuBw(A+K) = /0 ⇐⇒ [isoσaw(A)]K ∩σuBw(A+K) = /0 .

THEOREM 3.1. If A,K ∈ B(X ) , then:

(i)

A+K is polaroid ⇐⇒ isoσ(A+K)∩σBw(A+K) = /0

⇐⇒ [isoσw(A)]K ∩σBw(A+K) = /0;

(ii)

A+K is left polaroid ⇐⇒ isoσa(A+K)∩σuBw(A+K) = /0

⇐⇒ [isoσaw(A)]K ∩σuBw(A+K) = /0;

(iii)

A+K is a-polaroid ⇐⇒ isoσa(A+K)∩σBw(A+K) = /0.

Proof. Start by observing that

Π(A+K) = Π0(A+K)∪Π∞(A+K)

and
Πa(A+K) = Πa

0(A+K)∪Πa
∞(A+K),

where
Π∞(A+K) = isoσ(A+K)∩{σw(A+K)\σBw(A+K)}

and
Πa

∞(A+K) = isoσa(A+K)∩{σaw(A+K)\σuBw(A+K)}.
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(i) We have:

isoσ(A+K) = {isoσ(A+K)∩σw(A+K)C }∪{isoσ(A+K)
∩(σw(A+K)\σBw(A+K))}∪{isoσ(A+K)∩σBw(A+K)}

= Π0(A+K)∪Π∞(A+K)∪{isoσ(A+K)∩σBw(A+K)}
= Π(A+K)∪{isoσ(A+K)∩σBw(A+K)}
= Π(A+K)∪{[isoσw(A)]K ∩σBw(A+K)},

which implies

isoσ(A+K) = Π(A+K)⇐⇒ isoσ(A+K)∩σBw(A+K) = /0

⇐⇒ [isoσw(A)]K ∩σBw(A+K) = /0.

(ii) Again:

isoσa(A+K) = {isoσa(A+K)∩σaw(A+K)C }∪{isoσa(A+K)
∩(σaw(A+K)\σuBw(A+K))}∪{isoσa(A+K)∩σuBw(A+K)}

= Πa
0(A+K)∪Πa

∞(A+K)∪{isoσa(A+K)∩σuBw(A+K)}
= Πa(A+K)∪{isoσa(A+K)∩σuBw(A+K)}
= Πa(A+K)∪{[isoσaw(A)]K ∩σuBw(A+K)},

which implies

isoσa(A+K) = Πa(A+K)⇐⇒ isoσa(A+K)∩σuBw(A+K) = /0

⇐⇒ [isoσaw(A)]K ∩σuBw(A+K) = /0.

(iii) Finally

isoσa(A+K) = {isoσa(A+K)∩σw(A+K)C }∪{isoσa(A+K)
∩(σw(A+K)\σBw(A+K))}∪{isoσa(A+K)∩σBw(A+K)}

= Π0(A+K)∪Π∞(A+K)∪{isoσa(A+K)∩σBw(A+K)}
= Π(A+K)∪{isoσa(A+K)∩σBw(A+K)},

which implies

isoσa(A+K) = Π(A+K)⇐⇒ isoσa(A+K)∩σBw(A+K) = /0.

This completes the proof. �

REMARK 3.2. Commuting Riesz operators. Translated to operators A ∈ B(X )
and Riesz operators R ∈ B(X ) such that [A,R] = AR−RA = 0 and σBw(A + R) =
σBw(A) (resp., σuBw(A+R) = σuBw(A)) Theorem 3.1 implies that: A+R is polaroid if
and only if isoσ(A)∩σBw(A) = /0 , equivalently if and only if A is polaroid (resp., A+R
is left polaroid if and only if isoσa(A)∩σuBw(A) = /0 , equivalently if and only if A is left
polaroid). An important example of a class of operators satisfying the above spectral
hypotheses is that of operators F ∈ B(X ) satisfying [A,F] = 0 and Fn is finite rank
for some natural number n [9, Proposition 3.3].
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Functional calculus Given A ∈ B(X ) , let Holo(σ(A)) denote the set of func-
tions f which are holomorphic in a neighbourhood of σ(A) , and let Holoc(σ(A))
denote those f ∈Holo(σ(A)) which are non-constant on the connected components of
σ(A) . If we let σD(A) denote the Drazin spectrum of A ,

σD(A) = {λ ∈ σ(A) : asc(A−λ ) 
= dsc(A−λ )},

then σD(A) satisfies the spectral mapping theorem

σD( f (A)) = f (σD(A)), f ∈ Holoc(σ(A));

the left Drazin spectrum σlD(A) of A ,

σlD(A) = {λ ∈ σa(A) : there does not exist an integer p � 1

such that asc(A−λ ) � p and (A−λ )p+1(X ) is closed},

also satisfies a similar spectral mapping theorem:

σlD( f (A) = f (σlD(A)), f ∈ Holoc(σ(A))

[16]. It is straightforward to see that: A is polaroid if and only if isoσ(A)∩σD(A) = /0 ;
A is left polaroid if and only if isoσa(A)∩σlD(A) = /0 , and A is a-polaroid if and only
if isoσa(A)∩σD(A) = /0 . It is well known (see, for example, [5, Lemma 4.1]) that if
f ∈ Holoc(σ(A)) , then isoσ( f (A)) = f (isoσ(A)) . Hence, for f ∈ Holoc(σ(A)) ,

f (A) is polaroid ⇐⇒ isoσ( f (A))∩σD( f (A)) = /0

⇐⇒ f (isoσ(A))∩ f (σD(A)) = f (isoσ(A)∩σD(A)) = /0

⇐⇒ A is polaroid.

(See [5] for other alternative arguments.) This argument does not extend to left po-
laroid operators (for the reason that the spectral mapping theorem fails for isoσa(A)).
However, given a λ ∈ isoσa( f (A)) for an f ∈ Holoc(σ(A)) , there always exists a
μ ∈ isoσa(A) such that f (μ) = λ . Hence

A is left polaroid =⇒ f (isoσa(A)∩σlD(A)) = /0

⇐⇒ { f (μ) : μ ∈ (isoσa(A)}∩ f (σlD(A)) = /0

⇐⇒ {λ ∈ isoσa( f (A) : λ = f (μ),μ ∈ isoσa(A)}∩σlD( f (A)) = /0

=⇒ isoσa( f (A))∩σlD( f (A)) = /0 ⇐⇒ f (A) is left polaroid.

For the reverse implication, a hypothesis guaranteeing f (isoσa(A)) = isoσa( f (A)) ,
such as f is injective or isoσa(A)⊆ isoσ(A) , is required. It is clear that A is a-polaroid
implies isoσa(A) = isoσ(A) . Hence

A is a-polaroid =⇒ f (A) is polaroid =⇒ A is polaroid.

Combining with Theorem 3.1, we have:
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COROLLARY 3.3. Given operators A,K ∈ B(X ) with K compact, and an f ∈
Holoc(σ(A)) :

(i) f (A+K) is polaroid if and only if [isoσw(A)]K ∩σD(A+K) = /0 ;

(ii) if f is injective, then f (A + K) is left polaroid if and only if [isoσaw(A)]K ∩
σD(A+K) = /0 ;

(iii) if f is injective, then f (A+K) is a-polaroid if and only if isoσa(A+K)∩σD(A+
K) = /0 .

Proof. The proof is immediate from Theorem 3.1 once one observes that if an
operator T has SVEP at a point λ , then λ ∈ σBw(T ) (resp., λ ∈ σuBw(T )) if and only
if λ ∈ σD(T ) (resp., λ ∈ σlD(T )). �

4. Properties (P1) , (P2) and compact perturbations

Neither of the properties (P1) and (P2) , or their finite kernel versions

(P1)′ E0(A) = Πa
0(A) and (P2)′ Ea

0 (A) = Π0(A),

travels well from A ∈ B(X ) to its perturbation by a compact operator K ∈ B(X ) .

EXAMPLE 4.1. If we let A = U ⊕Q ∈ B(H ⊕H ) , where U is the forward uni-
lateral shift and Q is an injective compact quasinilpotent operator, then

σw(A) = σBw(A) = D ,σaw(A) = ∂D ∪{0} = σuBw(A), isoσw(A) = /0,

isoσaw(A) = {0} and E(A) = Πa(A) = /0 = Ea(A) = Π(A).

Let K ∈B(H⊕H ) be the compact operator K = 0⊕−Q. Then the perturbed operator
A+K = A⊕0 satisfies

σw(A+K) = σBw(A+K) = D ,σaw(A+K) = ∂D ∪{0},
σuBw(A+K) = ∂D and isoσa(A+K) = isoσa(A);

hence
E(A+K) = /0 
= Πa(A+K),Ea(A+K) = {0} 
= Π(A+K) = /0.

EXAMPLE 4.2. Let A = U ⊕ I ∈ B(�2 ⊕ �2) and K = 0⊕F ∈ B(�2 ⊕ �2) , where
U ∈B(�2) is the forward unilateral shift and F is the compact operator F(x1,x2,x3, · · ·)
= (− x1

2 ,0,0, · · ·) . Then

isoσw(A) = isoσaw(A) = /0, isoσa(A) = /0 
= {1
2
} = isoσa(A+K)

and

E0(A) = Πa
0(A) = /0 = Ea

0 (A) = Π0(A),
Π0(A+K) = Π(A+K) = E(A+K) = E0(A+K) = /0,

Πa
0(A+K) = Πa(A+K) = Ea(A+K) = Ea

0(A+K) = {1
2
}.
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EXAMPLE 4.3. If we let A = U ⊕ 0 ∈ B(�2 ⊕ �2) , where (as before) U is the
forward unilateral shift, then

σw(A) = σBw(A) = D ,σaw(A) = ∂D ∪{0} 
= σuBw(A) = ∂D ,

isoσw(A) = /0 
= isoσaw(A) = {0}
and

E0(A) = Πa
0(A) = /0 = Ea

0(A) = Π0(A).

Let K ∈ B(�2 ⊕ �2) be the compact operator K = 0⊕Q, where Q is the compact
operator Q(x1,x2,x3, ...) = (0, x2

2 , x3
3 , · · ·) . Then

σw(A+K) = σBw(A+K) = D ,σaw(A+K) = ∂D ∪{0} = σuBw(A+K),
E(A+K) = E0(A+K) = Π0(A+K) = Π(A+K) = /0,

Πa
0(A+K) = Πa(A+K) = {1

2
,
1
3
, ...},Ea

0(A+K) = E(A+K) = {0,
1
2
,
1
3
, · · ·}.

Evidently,

E0(A+K) 
= Πa
0(A+K),E(A+K) 
= Πa(A+K),

Ea
0 (A+K) 
= Π0(A+K) and Ea(A+K) 
= Π(A+K).

The above examples show that neither of the hypotheses isoσa(A) = isoσa(A + K) ,
σBw(A) = σBw(A + K) , σuBw(A) = σuBw(A +K) , isoσw(A) = /0 , isoσaw(A) = /0 and
(even) [A,K] = 0 is sufficient to guarantee the transfer of either of the properties (P1) ,
(P1)′ , (P2) and (P2)′ from A to A+K . Recalling, [9], σBw(A) = σw(A)\Φiso

Bw(A) and
σuBw(A) = σaw(A)\Φiso

uBw(A) , where Φiso
Bw(A) = isoσw(A)∩σBw(A)C and Φiso

uBw(A) =
isoσaw(A)∩σuBw(A)C , we have

Φiso
Bw(A) = Φiso

Bw(A+K) =⇒ σBw(A) = σBw(A+K), and

Φiso
uBw(A) = Φiso

uBw(A+K) =⇒ σuBw(A) = σuBw(A+K).

Furthermore, if also isoσa(A) = isoσa(A+K) , then

Π(A) = isoσ(A)∩σBw(A)C = isoσa(A)∩σBw(A)C = isoσa(A+K)∩σBw(A+K)C

= Π(A+K),

and

Πa(A) = isoσa(A)∩σuBw(A)C = isoσa(A+K)∩σuBw(A+K)C = Πa(A+K).

This, however, is not enough to warranty the passage of properties (P1) and (P2) from
A to A+K .

EXAMPLE 4.4. Choose A = Q1 ⊕Q2 ∈ B(H ⊕H ) , where Q1 is an injective
compact quasinilpotent operator and Q2 is an injective quasinilpotent such that Qn

2(H )
is non-closed for all natural numbers n. Then

σw(A) = σBw(A) = σuBw(A) = σaw(A) = {0}, isoσw(A) = isoσaw(A) = /0
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(=⇒ Φiso
Bw(A) = Φiso

uBw(A) = /0),E(A) = Ea(A) = Πa(A) = Π(A) = /0.

Now let K ∈ B(H ⊕H ) be the compact operator K =−Q1⊕0 . Then A+K = 0⊕Q2

satisfies

isoσa(A+K) = isoσa(A),σw(A+K) = σBw(A+K) = σuBw(A+K)
= σaw(A+K) = {0}, isoσw(A) = isoσaw(A) = {0}(=⇒ Φiso

Bw(A+K) = Φiso
uBw(A+K)

= /0),E(A+K) = Ea(A+K) = {0} 
= Πa(A+K) = Π(A+K) = /0.

REMARK 4.5. We note for future reference that the hypothesis Φiso
Bw(A) = /0 im-

plies σBw(A) = σw(A) and the hypothesis Φiso
uBw(A) = /0 implies σuBw(A) = σaw(A) .

Furthermore, the hypothesis Φiso
uBw(A) = /0 also implies σBw(A) = σw(A) , as the fol-

lowing argument proves. Evidently

Φiso
uBw(A) = /0 =⇒ isoσaw(A)∩σuBw(A)C = /0 =⇒ isoσaw(A) ⊆ σuBw(A) ⊆ σBw(A).

Take a λ /∈ σBw(A) . Then

λ ∈ σBw(A)C ⊆ σuBw(A)C = σaw(A)C =⇒ λ ∈ σw(A)C

(since λ ∈σBw(A)C implies ind(A−λ )= 0, hence λ /∈σaw(A) implies (A−λ )(X ) is
closed and ind(A−λ ) = 0). Thus λ /∈ σw(A) , consequently σw(A)⊆ σBw(A) (implies
σw(A) = σBw(A)).

THEOREM 4.6. Given operators A,K ∈B(X ) , K compact, such that isoσa(A)=
isoσa(A+K) , if either Φiso

Bw(A) = /0 = Φiso
Bw(A+K) , or Φiso

uBw(A) = /0 = Φiso
uBw(A+K) ,

then:

(i) A ∈ (P1) =⇒ A ∈ (P1)′ and A ∈ (P1) =⇒ A+K ∈ (P1)′ if and only if E0(A+
K) ⊆ E0(A);

(ii) A ∈ (P2) =⇒ A ∈ (P2)′ and A ∈ (P2) =⇒ A+K ∈ (P2)′ if and only if Ea
0 (A+

K) ⊆ Ea
0 (A) .

Proof. The hypothesis Φiso
Bw(A) = /0 = Φiso

Bw(A+K) implies

σw(A) = σBw(A) = σBw(A+K) = σw(A+K)

and hence

Π(A) = isoσ(A)∩σBw(A)C = isoσ(A)∩σw(A)C = Π0(A);

furthermore, if also isoσa(A) = isoσa(A+K) , then

Π(A+K) = isoσ(A+K)∩σBw(A+K)C = isoσ(A+K)∩σw(A+K)C = Π0(A+K)
= isoσa(A+K)∩σBw(A+K)C = isoσa(A)∩σBw(A)C = Π(A)
= isoσa(A)∩σw(A)C = Π0(A).
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(Thus Π(A+K)= Π0(A+K)= Π0(A)= Π(A) .) Similarly, if Φiso
uBw(A)= /0 = Φiso

uBw(A+
K) and isoσa(A) = isoσa(A+K) , then

σaw(A) = σuBw(A) = σuBw(A+K) = σaw(A+K)

and

Πa(A+K) = isoσa(A+K)∩σuBw(A+K)C = isoσa(A+K)∩σaw(A+K)C

= Πa
0(A+K) = isoσa(A)∩σuBw(A)C = Πa(A) = isoσa(A)∩σaw(A)C

= Πa
0(A).

(Thus Πa(A+K) = Πa
0(A+K) = Πa

0(A) = Πa(A) .)

(i) If Φiso
Bw(A) = /0 = Φiso

Bw(A+K) , then

A ∈ (P1) ⇐⇒ E(A) = Πa(A) = Π(A) =⇒ E0(A) = Πa
0(A) = Π0(A)

( ⇐⇒ A ∈ (P1)′) ⇐⇒ E0(A) = Πa
0(A) = Π0(A) = Π0(A+K),

and this since

Πa
0(A+K) = isoσa(A+K)∩σaw(A+K)C = isoσa(A)∩σaw(A)C = Πa

0(A)
= Π0(A) = Π0(A+K)

implies

A ∈ (P1) =⇒ A ∈ (P1)′ =⇒ E0(A) = Πa
0(A+K) = Π0(A+K) ⊆ E0(A+K).

Again, if Φiso
uBw(A) = /0 = Φiso

uBw(A+K) , then (σw(A) = σBw(A) = σBw(A+K) =
σw(A+K) , and)

A ∈ (P1) ⇐⇒ E(A) = (Πa(A) = Π(A) =)Πa
0(A) =⇒ E0(A) = Πa

0(A)
( ⇐⇒ A ∈ (P1)′) ⇐⇒ E0(A) = Π0(A) = Πa

0(A) = Πa
0(A+K),

and this since

Πa
0(A+K) = Π0(A) = isoσa(A)∩σw(A)C = isoσa(A+K)∩σw(A+K)C

= Π0(A+K)

implies

A ∈ (P1) =⇒ A ∈ (P1)′ =⇒ E0(A) = Πa
0(A+K) = Π0(A+K) ⊆ E0(A+K).

Hence, in either case, A ∈ (P1) =⇒ A ∈ (P1)′ and A ∈ (P1) =⇒ A+K ∈ (P1)′
if and only if E0(A+K)⊆ E0(A) .



966 B. P. DUGGAL

(ii) If Φiso
Bw(A) = /0 = Φiso

Bw(A + K) , then (since Π(A) = Π0(A) , Πa(A) = Π0(A) ⊆
Πa

0(A) and Πa
0(A) ⊆ Ea

0 (A) ⊆ Ea(A))

A∈ (P2)⇐⇒Ea(A)= Π(A)= Πa(A)=⇒Ea
0(A)= Π0(A)= Πa

0(A)⇐⇒A∈ (P2)′

implies
Ea

0 (A) = Π0(A) = Π0(A+K)⊆ Ea
0 (A+K).

If, instead, Φiso
uBw(A) = /0 = Φiso

uBw(A+K) , then σBw(A) = σw(A) implies Π(A) =
Π0(A) = Π0(A+K) , Πa(A) = Πa

0(A) and Πa
0(A) ⊆ Ea

0 (A) ⊆ Ea(A) . Hence

A∈ (P2)⇐⇒Ea(A)=Π(A)=Πa(A)⇐⇒Ea
0(A)=Π0(A)=Πa

0(A)(⇐⇒A∈ (P2)′)

implies

Ea
0(A) = Π0(A+K) = Πa

0(A) = Πa
0(A+K)⊆ Ea

0 (A+K).

In either case, A ∈ (P2) =⇒ A ∈ (P2)′ and A ∈ (P2) =⇒ A+K ∈ (P2)′ if and
only if Ea

0 (A+K)⊆ Ea
0 (A) . �

The hypotheses of the theorem are not sufficient to guarantee E(A+K) = E0(A+
K) , or, Ea(A + K) = Ea

0 (A + K) (see Example 4.4). A sufficient condition ensuring
E0(A +K) ⊆ E0(A) in (i) and (ii) above is that the operator A is finitely a-polaroid.
This follows since λ ∈ E0(A + K) or λ ∈ Ea(A + K) implies λ ∈ isoσa(A) , and the
hypothesis A is finitely a-polaroid implies λ ∈ Π0(A) (= E0(A) in case (i) and =
Ea

0(A) in case (ii)). Observe that the hypothesis isoσa(A)∩σw(A) = /0 guarantees both
Φiso

Bw(A) = /0 and A is a-polaroid, and the hypothesis isoσaw(A) = /0 guarantees both
Φiso

uBw(A) = /0 and A is left polaroid.
Hypotheses isoσa(A)= isoσa(A+K) and Φiso

uBw(A) = Φiso
uBw(A+K) , where A,K ∈

B(X ) and K is compact, imply

σBw(A)\σuBw(A)=σw(A)\σaw(A)=σw(A+K)\σaw(A+K)=σBw(A+K)\σuBw(A+K)

and

isoσa(A)∩{σBw(A+K)\σBw(A)} = isoσa(A)∩{σw(A+K)\σw(A)} = /0.

Observe here that if A ∈ (P2) and Ea(A + K) ⊆ Ea(A) , then Ea(A) = isoσa(A) ∩
σuBw(A)C and hence λ ∈ Ea(A +K) implies λ /∈ σuBw(A) . The following theorem
is an analogue of Theorem 4.6 for operators A ∈ (P1) or (P2) such that A+K ∈ (P1)
or (respectively) (P2) .

THEOREM 4.7. Given operators A,K ∈ B(X ) with K compact, if isoσa(A) =
isoσa(A + K) , σBw(A)∩ σuBw(A)C = σBw(A + K) ∩ σuBw(A + K)C and isoσa(A) ∩
{σBw(A+K)\σBw(A)} = /0 , then a sufficient condition for

A ∈ (Pi) =⇒ A+K ∈ (Pi), i = 1,2,

is that isoσa(A)∩σuBw(A) = /0 .
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Proof. Since A ∈ (P1) if and only if E(A) = Πa(A) = Π(A) , and A ∈ (P2) if and
only if Ea(A) = Π(A) = Πa(A) , the hypothesis A ∈ (Pi) , i = 1,2, implies Πa(A) =
Π(A) . Hence, if isoσa(A) = isoσa(A + K) and σBw(A)∩σuBw(A)C = σBw(A + K)∩
σuBw(A+K)C , then

/0 = Πa(A)\Π(A) = {isoσa(A)∩σuBw(A)C }∩{isoσa(A)∩σBw(A)C }C

= {isoσa(A)∩σuBw(A)C ∩ isoσa(A)C }∪{isoσa(A)∩σuBw(A)C ∩σBw(A)}
= isoσa(A)∩{σBw(A)\σuBw(A)} = isoσa(A+K)∩{σBw(A+K)\σuBw(A+K)}
= {isoσa(A+K)∩σuBw(A+K)C }∩{isoσa(A+K)∩σBw(A+K)C }C

= Πa(A+K)\Π(A+K),

i.e., Πa(A+K)⊆ Π(A+K) . Since Π(A+K)⊆ Πa(A+K) always,

Π(A+K) = Πa(A+K).

Again, since

Π(A)\Π(A+K) = Π(A)∩{isoσa(A+K)∩σBw(A+K)C }C

= {isoσa(A)∩σBw(A)C }∩{isoσa(A)∩σBw(A+K)C }C

= isoσa(A)∩{σBw(A+K)\σBw(A)} = /0,

we must have
Π(A) ⊆ Π(A+K).

Consider now a λ ∈ E(A + K) . If isoσa(A)∩σuBw(A) = /0 , then A is left polaroid,
hence λ ∈ E(A+K) implies

λ ∈ isoσa(A)∩σuBw(A)C = Πa(A) = Π(A) =⇒ E(A+K)⊆ E(A)

and, since Π(A+K)⊆ E(A+K)⊆ E(A) = Π(A) ⊆ Π(A+K) ,

E(A+K) = Πa(A+K)⇐⇒ A+K ∈ (P1).

Considering, instead, a λ ∈ Ea(A+K) , the above argument implies

λ ∈ Πa(A) = Π(A) ⊆ Π(A+K)

and hence, since Π(A+K) = Πa(A+K)⊆ Ea(A+K) ,

Ea(A+K) = Π(A+K)⇐⇒ A+K ∈ (P2).

This completes the proof. �
If A∈ (P1) , then the hypotheses of Theorem 4.7 imply E(A)= Πa(A)= Π(A)⊆Π(A+
K) = Πa(A+K) ⊆ E(A+K) ; similarly, if A ∈ (P2) , then the hypotheses of Theorem
4.7 imply Ea(A) = Π(A) = Πa(A) ⊆ Π(A+K) = Πa(A+K) ⊆ Ea(A+K) . Hence a
necessary and sufficient condition for A ∈ (P1) implies A+K ∈ (P1) (resp. A ∈ (P2)
implies A+K ∈ (P2)) in Theorem 4.7 is that E(A+K) ⊆ Π(A) (resp., Ea(A+K) ⊆
Πa(A)).
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COROLLARY 4.8. If A,K ∈ B(X ) satisfy the hypotheses of Theorem 4.7, then

A ∈ (P1) =⇒ A+K ∈ (P1) ⇐⇒ E(A+K)∩σBw(A) = /0, and

A ∈ (P2) =⇒ A+K ∈ (P2) ⇐⇒ Ea(A+K)∩σuBw(A) = /0.

Proof. A straightforward consequence of the facts that E(A+K) ⊆ Π(A) if and
only if E(A + K)∩σBw(A) = /0 and Ea(A + K) ⊆ Πa(A) if and only if Ea(A + K)∩
σuBw(A) = /0 . �

We conclude this section with a remark on Hilbert space operators.

REMARK 4.9. Given a Hilbert space operator A ∈ B(H ) , there always exists a
compact operator K ∈ B(H ) such that σp(A+K) = Φ+

s f (A) = {λ ∈ σ(A) : A−λ is

semi-Fredholm of ind(A−λ )> 0}= Φ+
s f (A+K) [11, Proposition 3.4]. Consider a λ ∈

E(A+K) = σp(A+K)∩ isoσ(A+K) , or, λ ∈Ea(A+K) = σp(A+K)∩ isoσa(A+K) .
Since A+K has SVEP at λ ∈ Φs f (A+K) implies ind(A+K−λ ) � 0 [1], we have
E(A+K)= Ea(A+K) = /0 . Hence E(A+K) = Π(A+K) = Πa(A+K) = Ea(A+K) =
/0 , and A+K ∈ (P1)∧ (P2) . Conclusion: Given a Hilbert space operator A ∈ B(H ) ,
there always exists a compact operator K ∈ B(H ) such that A+K ∈ (P1)∧ (P2) .

In the absence of similar results for perturbed Banach space operators, a corresponding
remark does not seem possible for Banach space operators.

5. Examples: Analytic Toeplitz operators and operators satisfying the abstract
shift condition

If we let Ω denote the normalized arc length measure on ∂D and let H2 =
H2(∂D) denote the Hardy space of analytic square summable (with respect to Ω) func-
tions, then the Toeplitz operator Tf with symbol f is the operator in B(H2) defined
by

Tf (g) = P( f g), g ∈ H2,

where P is the orthogonal projection of L2(∂D ,Ω) onto H2 . The operator Tf is
analytic Toeplitz if f ∈ H∞(∂D) . (We assume in the following that f 
= a constant.)

If A ∈ B(H2) is an analytic Toeplitz operator, then σ(A) = σw(A) is a connected
set, A (satisfies Bishop’s property (β ) and so) has SVEP [14], and A has no eigenval-
ues [10, Page 139]. Hence

E(A) = Ea(A) = Πa(A) = Π(A) = /0 =⇒ A ∈ (P1)∧ (P2).

The connected property of σw(A) implies that A + K is polaroid for all compact op-
erators K ∈ B(H2) [6, Theorem 6.4]; the connected property of σw(A) also implies
that

σw(A) = σBw(A) = σBw(A+K) = σw(A+K)

(consequently, Π(A+K) = Π0(A+K)) for all compact K ∈ B(H2) .
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For A,K ∈ B(H2) , A analytic Toeplitz and K compact, assume that E(A+K) 
= /0
and consider a λ ∈ E(A+K) . Since A+K is polaroid, λ ∈ Π(A+K)−Π0(A+K) and
hence (since Π(A+K) ⊂ E(A+K) always) E(A+K) = E0(A+K) = Π0(A+K) =
Π(A+K) . Recall that Πa

0(A+K) = Π0(A+K) if and only if isoσa(A+K)∩{σw(A+
K)\σaw(A+K)} = isoσa(A+K)∩{σw(A)\σaw(A)} = /0 . Hence, if we now assume
that isoσa(A) = isoσa(A+K) , then

λ ∈ isoσa(A+K)∩{σw(A)\σaw(A)} =⇒ λ ∈ Ea
0(A)∩σw(A),

a contradiction since A has no eigenvalues. Conclusion: Given operators A,K ∈
B(H2) , with A analytic Toeplitz and K compact, if isoσa(A) = isoσa(A + K) , then
A+K ∈ (P1)′ . We do not know if the hypothesis isoσa(A) = isoσa(A+K) is suffi-
cient to guarantee A+K ∈ (P2)′ .

{Added 12.12.2018: The hypothesis isoσa(A) = isoσa(A + K) guarantees A +
K ∈ (P2)′ as the following argument shows. Evidently, Π0(A+K)⊆ Ea

0 (A+K) . Since
λ ∈ Ea

0 (A + K) implies λ ∈ isoσa(A) , and since isoσaw(A) = /0 (see P. Aiena, Fred-
holm and Local Spectral Theory II, Lecture Notes in Mathematics 2235, Springer 2018;
Theorem 4.99),

λ ∈ Ea
0 (A+K) =⇒ λ ∈ isoσa(A),λ /∈ σaw(A) =⇒ λ ∈ isoσa(A)∩Φaw(A)

=⇒ λ ∈ Πa
0(A) = Π0(A), since A ∈ (P2)′

=⇒ λ ∈ isoσa(A+K)∩Φw(A+K) = Π0(A+K).}

A hypothesis guaranteeing A+K ∈ (P1)∧ (P2) is given by the following:

THEOREM 5.1. If A,K ∈ B(H2) , where A is analytic Toeplitz and K is compact,
satisfy Ea(A+K)∩σw(A) = /0 , then A+K ∈ (P1)∧ (P2) .

Proof. It is clear from the above that if A is analytic Toeplitz and K is compact,
then σBw(A+K)= σw(A+K) = σw(A)= σBw(A) and E(A+K)= Π(A+K)= Π0(A+
K)= E0(A+K) . Since Π0(A+K)⊆Πa

0(A+K)⊆Ea
0(A+K) and Π0(A+K)⊆E0(A+

K) ⊆ Ea
0(A+K) , it follows that E0(A+K) = Π0(A+K) = Πa

0(A+K) = Ea
0 (A+K) =

Ea(A+K) if and only if Ea(A+K)\Π0(A+K) = /0 . We have:

Ea(A+K)\Π0(A+K)=Ea(A+K)∩{isoσa(A+K)∩σw(A+K)C }C =Ea(A+K)∩σw(A),

which implies

Ea(A+K)\Π0(A+K) = /0 ⇐⇒ Ea(A+K)∩σw(A) = /0.

This completes the proof. �
The sufficient condition of the theorem is necessary too: For if A+K ∈ (P1)∧ (P2) ,
then Ea(A+K)= Π(A+K)= Π0(A+K)= Ea

0(A+K) , and hence Ea(A+K)\Π0(A+
K) = Ea(A+K)∩{isoσa(A+K)∩σw(A+K)C }C = Ea(A+K)∩σw(A) = /0 .

Operators satisfying the “abstract shift condition” A ∈ B(X ) satisfies the ab-
stract shift condition, A ∈ (ASC) , if A∞(X ) = ∩∞

n=1A
n(X ) = {0} [14]. Operators
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A ∈ (ASC) satisfy the properties that σ(A) is connected (so that either isoσ(A) = /0 ,
or, σ(A) = {0} in which case A is quasinilpotent), α(A− λ ) = 0 for all non-zero
λ ∈ σ(A) (so that A has SVEP) and σ(A) = σw(A) [1, 14]. If we let r(A) denote the
spectral radius of A and define i(A) by

i(A) = lim
n→∞

{κ(An)} 1
n = sup

n→∞
{κ(An)} 1

n ,

where
κ(A) = inf{||Ax|| : x ∈ X , ||x|| = 1}

denotes the lower bound of A , then D(0, i(A)) ⊆ σ(A) . We assume henceforth that
A is not quasinilpotent and i(A) = r(A) for operators A ∈ (ASC) . Given a compact
operator K ∈ B(X ) , we prove in the following that A+K ∈ (P1)∨ (P2) (‘inclusive’
or) if and only if isoσa(A+K)∩η ′σaw(A) = /0 , where η ′σaw(A) denotes the bounded
component of the complement of σaw(A) in σw(A) .

An important subclass of (ASC) operators is that of weighted right shift operators
A , A ∈ (WRS) , in B(�p) ; �p = �p(N),1 � p < ∞ . It is well known (see [1, 14] and
some of the argument above) that

σ(A) = σw(A) = σBw(A) = D(0,r(A)), E(A) = Ea(A) = /0,

σa(A) = σaw(A) = σuBw(A) = ∂D(0,r(A))

for operators A ∈ (ASC) (recall: A is non-quasinilpotent and i(A) = r(A)), and

σ(A) = σw(A) = σBw(A) = D(0,r(A)), E(A) = Ea(A) = /0,

σa(A) = σaw(A) = σuBw(A) = {λ : i(A) � |λ | � r(A)}

for operators A ∈ (WRS) . It is clear that A ∈ (P1)∧ (P2) for operators A ∈ (ASC)∨
(WRS) .

THEOREM 5.2. Given an operator A ∈ (ASC)∨ (WRS) , and a compact operator
K such that K ∈ B(X ) if A ∈ (ASC) and K ∈ B(�p) if A ∈ (WRS) , A+K ∈ (P1)∨
(P2) , inclusive or, if and only if isoσa(A+K)∩{λ : 0 � |λ | < i(A)} = /0 .

Proof. If A∈ (ASC)∨(WRS) , then isoσw(A) = isoσaw(A) = /0 implies that A+K
is both polaroid and left-polaroid (see Theorem 3.1). Consequently,

λ ∈ E(A+K) =⇒ λ ∈ Π(A+K), hence E(A+K) = Π(A+K)

and

λ ∈ Ea(A+K) =⇒ λ ∈ Πa(A+K), hence Ea(A+K) = Πa(A+K).

Thus

A+K ∈ (P1)∨ (P2) ⇐⇒ Πa(A+K) = Π(A+K)



ISOLATED EIGENVALUES, POLES AND COMPACT PERTURBATIONS 971

⇐⇒ Πa(A+K)⊆ Π(A+K)⇐⇒ Πa(A+K)\Π(A+K)= /0

⇐⇒ isoσa(A+K)∩{σBw(A+K)\σuBw(A+K)}= /0

⇐⇒ isoσa(A+K)∩{σw(A+K)∩σaw(A+K)C }
= isoσa(A+K)∩{λ : 0 � |λ | < i(A)} = /0

(where i(A) = r(A) if A ∈ (ASC)). �
Operators f (A) Let f ∈ Holoc(σ(A)) , where A ∈ (ASC) or (WRS) or A is

an analytic Toeplitz operator. (Recall: If A ∈ (ASC) , then i(A) = r(A) and A is not
quasinilpotent.) Since A has SVEP (everywhere) and σw(A) = σ(A) ,

σ( f (A))= f (σ(A))= f (σw(A))=σw( f (A)); f (A) is polaroid and E( f (A))=Π( f (A)).

Recall that σp(A) = /0 : We claim that σp( f (A)) = /0 . For suppose there exists a λ ∈
σp( f (A)) . Then there exists a μ ∈ σ(A) such that

f (A)−λ = f (A)− f (μ) = (A− μ)α p(A)g(A),

for some integer α > 0, a polynomial p(z) such that p(μ) 
= 0 and an analytic function
g(z) which does not vanish on σ(A) . But then ( f (A)−λ )x = 0, x 
= 0, implies μ ∈
σp(A) – a contradiction. This proves our claim. The fact that σp( f (A)) = /0 implies
Ea( f (A)) = /0 ensures (since Π( f (A)) ⊆ Πa( f (A)) ⊆ Ea( f (A))) that

E( f (A)) = Π( f (A)) = Πa( f (A)) = Ea( f (A)) ⇐⇒ f (A) ∈ (P1)∧ (P2).

Consider now operators A,K ∈ B(H2) such that A is analytic Toeplitz and K is com-
pact. Given f ∈ Holoc(σ(A)) , isoσ(f(A)) = isof(σ(A)) , f (A +K) is polaroid and
hence

E( f (A+K)) = Π( f (A+K)).

Assume further that f is injective and isoσa(A+K) = isoσa(A) . Then isoσa(f(A+
K)) = isoσa(f(A)) , hence (since A has no eigenvalues)

isoσa(f(A+K))∩{σw(f(A+K))\σaw(f(A+K))}
= f (isoσa(A+K)∩{σw(A+K)\σaw(A+K)})
= f (isoσa(A)∩{σw(A)\σaw(A)}) = f(Πa

0(A)∩σw(A)) = /0

(since Πa
0(A) = Π0(A)). Thus:

PROPOSITION 5.3. If f ∈ Holoc(σ(A)) is injective, then f (A + K) ∈ (P1) for
analytic Toeplitz operators A ∈ B(H2) perturbed by a compact operator K ∈ B(H2)
such that isoσa(A+K) = isoσa(A) .

The following theorem, an analogue of Theorem 5.1, gives a necessary and suffi-
cient condition for f (A+K) ∈ (P1)∧ (P2) .

THEOREM 5.4. Given operators A,K ∈ B(H2) , where A is analytic Toeplitz and
K is compact, and an injective function f ∈ Holoc(σ(A)) , f (A+K) ∈ (P1)∧ (P2) if
and only if Ea(A+K)∩σw(A) = /0 .
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Proof. If the operators A,K and the function f are as in the statement of the
theorem, then isoσx(f(A +K)) = isoσx(f(A)) , σx = σ or σa , f (A +K) is polaroid
(hence E( f (A+K)) = Π( f (A+K)) = f (Π(A+K))) and f (A+K) is left polaroid (so
that Πa( f (A +K)) = f (Πa(A+ K))). Consequently, f (A +K) ∈ (P1)∧ (P2) if and
only if

E( f (A+K)) = Π( f (A+K)) = Πa( f (A+K)) = Ea( f (A+K))
⇐⇒ Ea( f (A+K))\Π( f (A+K)) = Πa( f (A+K))\Π( f (A+K)) = /0.

Recalling that σBw(A+K) = σw(A+K) = σw(A) , we have

f (A+K) ∈ (P1)∧ (P2) ⇐⇒ Πa( f (A+K))\Π( f (A+K)) = /0

⇐⇒ f (Πa(A+K)\Π(A+K)) = /0

⇐⇒ f (Πa(A+K)∩σBw(A+K)) = /0

⇐⇒ f (Ea(A+K)∩σw(A)) = /0 ⇐⇒ Ea(A+K)∩σw(A) = /0.

This completes the proof. �
For operators A∈ (ASC)∨(WRS) , isoσa(A+K) = isoσa(A) (= /0) implies f (A+K)∈
(P1)∧(P2) for all injective f ∈Holoc(σ(A)) : The hypothesis isoσa(A+K) = /0 may
be relaxed.

THEOREM 5.5. Given operators A and K , where A ∈ (ASC)∨ (WRS) and K is
compact, and an injective f ∈ Holoc(σ(A)) , f (A + K) ∈ (P1)∨ (P2) if and only if
isoσa(A+K)∩{λ : 0 � |λ | < i(A)} = /0 .

Proof. The injective hypothesis on f ∈ Holoc(σ(A)) implies

isoσx(f(A+K)) = f(isoσx(A+K)),σx = σ or σa,

and A+K (alongwith being polaroid) is left polaroid. Since

σBw( f (A+K)) = σw( f (A+K)) = f (σw(A+K)) = f (σBw(A+K))

and

σuBw( f (A+K)) = σaw( f (A+K)) = f (σaw(A+K)) = f (σuBw(A+K)),

we have

E( f (A+K)) = Π( f (A+K)) and Ea( f (A+K)) = Πa( f (A+K)).

Thus

f (A+K) ∈ (P1)∨ (P2)⇐⇒ Πa( f (A+K)) ⊆ Π( f (A+K))
⇐⇒ isoσa(f(A+K))∩ f{σBw(A+K)\σuBw(A+K)} = /0

⇐⇒ f (isoσa(A+K)∩{σw(A+K)\σaw(A+K)}) = /0

⇐⇒ isoσa(A+K)∩{σw(A)∩σaw(A)C } = /0

⇐⇒ isoσa(A+K)∩{λ : 0 � |λ | < i(A)} = /0.

(Recall: i(A) = r(A) for A ∈ (ASC) .) �
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