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GREEN’S FUNCTION OF THE PROBLEM OF BOUNDED SOLUTIONS

IN THE CASE OF A BLOCK TRIANGULAR COEFFICIENT

VITALII G. KURBATOV AND IRINA V. KURBATOVA

Abstract. It is well known that the equation x′(t) = Ax(t)+ f (t) , t ∈ R , where A is a bounded
linear operator, has a unique bounded solution x for any bounded continuous free term f , pro-
vided the spectrum of the coefficient A does not intersect the imaginary axis. This solution can
be represented in the form

x(t) =
∫ ∞

−∞
G (s) f (t− s)ds.

The kernel G is called Green’s function. In this paper, the case when A admits a representation
by a block triangular operator matrix is considered. It is shown that the blocks of G are sums of
special convolutions of Green’s functions of the diagonal blocks of A .
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