
Operators
and

Matrices

Volume 13, Number 4 (2019), 1003–1022 doi:10.7153/oam-2019-13-70

THE QUINTIC COMPLEX MOMENT PROBLEM

H. EL-AZHAR, A. HARRAT, K. IDRISSI AND E. H. ZEROUALI

(Communicated by H. Bercovici)

Abstract. Let γ(m) ≡{γi j}0�i+ j�m be a given complex-valued sequence. The truncated complex
moment problem (TCMP in short) involves determining necessary and sufficient conditions for
the existence of a positive Borel measure μ on C such that γi j =

∫
ziz jdμ for 0 � i+ j � m .

The TCMP has been completely solved only when m = 1,2,3 and 4 .
We provide in this paper a concrete solution to the, almost all, quintic TCMP (that is,

when m = 5). We also study the cardinality of the minimal representing measure. Based on
the bi-variate recurrence sequences properties with some Curto-Fialkow’s results. Our method
intended to be useful for all odd-degree moment problems.

1. Introduction

Given a doubly indexed finite sequence of complex numbers

γ ≡ γ(m) = {γi j}0�i+ j�m = {γ00,γ01,γ10, . . . ,γ0m, . . . ,γm0},

with γ00 > 0 and γ i j = γ ji for 0 � i+ j � m . The truncated complex moment prob-
lem (in short, TCMP) associated with γ entails finding a positive Borel measure μ
supported in the complex plane C such that

γi j =
∫

ziz jdμ , 0 � i+ j � m. (1.1)

A sequence {γi j}0�i+ j�m satisfying (1.1) will be called a truncated moment sequence
and the solution μ is said to be a representing measure associated to the sequence
{γi j}0�i+ j�m .

In [34] J. Stochel has shown that solving TCMP solves the widely studied Full
Moment Problem (see, for example, [1, 2, 3, 17, 29, 30, 33, 36]). More precisely, a full
moment sequence {γi j}i, j∈Z+ admits a representing measure if and only if each of its
truncation γ(m) admits a representing measure.
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The truncated complex moment problem serves as a prototype for several other
moment problems to which it is closely related. Its application can be found in subnor-
mal operator theory [31,24,35], polynomial hyponormality [12] and joint hyponormal-
ity [4, 5]. It is also related to the optimization theory [26, 25, 27, 28, 29] and arises in
pure and applied mathematics, in physics and in several other domains.

For the even case m = 2n , Curto and Fialkow developed in a series of papers an
approach for TCMP based on positivity and flat extensions of the moment matrix, see
Section 2. This allowed them to find solutions for various particular cases of truncated
moment problems (see, for instance, [6, 8, 7, 10, 11, 21, 20]). However, only the cases
m = 2 and m = 4 are completely solved (cf. [6, 9, 19, 14]).

In the odd case m = 2n+1, a general solution to some partial cases of the TCMP
can be found in [22] and [23] as well as a solution to the truncated matrix moment
problem; a solution to the cubic complex moment problem (when m = 3) was given
in [23], see also [16]. The solution is based on commutativity conditions of matrices
determined by {γi j}0�i+ j�2n+1 .

Therefore, only the cases m = 1,2,3 and 4 (the quadratic, the cubic and the quartic
moment problem) have been completely achieved. All the other cases (quintic, sixtic,
...) are open and interest several authors; as indicated in many recent papers (see, for
instance, [13, 15, 16, 37, 38]).

In this paper, we provide a concrete solution to the, almost all, quintic moment
problem (i.e. m = 5) when one desires a minimal representing measure. To this aim,
we investigate the structure of recursive complex-valued bi-indexed sequences and we
combine the obtained observations with some results due to R.Curto and L. Fialkow,
to provide a new technique for solving the odd-degree TCMP. We notice that our tech-
niques furnish a short solution to the cubic moment problem (we omit the proof because
the cubic moment problem is already solved, see [16,23]) and expected to be useful for
higher odd-degree truncated moment problems.

Let γ(5) = {γi j}0�i+ j�5 be a given complex valued bi-sequence. We associate
with γ(5) the next two matrices that will play a crucial role in our approach.

M(2) :=

⎛⎜⎜⎜⎜⎜⎜⎝

γ00 γ01 γ10 γ02 γ11 γ20
γ10 γ11 γ20 γ12 γ21 γ30
γ01 γ02 γ11 γ03 γ12 γ21
γ20 γ21 γ30 γ22 γ31 γ40
γ11 γ12 γ21 γ13 γ22 γ31
γ02 γ03 γ12 γ04 γ13 γ22

⎞⎟⎟⎟⎟⎟⎟⎠B :=

⎛⎜⎜⎜⎜⎜⎜⎝

γ03 γ12 γ21 γ30
γ13 γ22 γ31 γ40
γ04 γ13 γ22 γ31
γ23 γ32 γ41 γ50
γ14 γ23 γ32 γ41
γ05 γ14 γ23 γ32

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.2)

Let us recall that thanks to Douglas factorization theorem, we have Rang B ⊆ Rang M(2)
if, and only if, there exists a matrix W such that B = M(2)W . We will show, in Section 2, that
the Hermitian matrix W ∗M(2)W is symmetric with respect to the counter diagonal (persymetric),
then one can set

W ∗M(2)W =

⎛⎜⎜⎝
a b c d
b e f c
c f e b
d c b a

⎞⎟⎟⎠ (1.3)

As we will see in the sequel, the entries a,b,e and f in the matrix W ∗M(2)W encode the
complete information on the cardinal of the support of the minimal representing measure.
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THEOREM 1.1. Let γ(5) ≡ {γi j}i+ j�5 be a given finite sequence, such that
M(2) � 0 , Rang B ⊆ Rang M(2) and a �= e or b = f .

Then the quintic moment problem, associated with γ(5) , admits a solution μ . Moreover, the
smallest cardinality of supp μ is:

• card supp μ = r ⇐⇒ a = e and b = f ;

• card supp μ = r+1 ⇐⇒ a �= e and a−e
2 <| b− f | ;

• card supp μ = r+2 ⇐⇒ a > e and a−e
2 �| b− f | ;

where r is the rank of M(2) and the numbers a,b,e and f are given by (1.3).

Since (as we will show in Section 2) M(2) � 0 and Rang B ⊆ Rang M(2) are two neces-
sary conditions for the quintic TCMP, associated with γ(5) to own a solution, then Theorem 1.1
provides a concrete solution to the quintic complex moment problem, except for the case a = e
and b �= f . The difficulty that we encountered in solving the remaining case ( a = e and b �= f )
is technical, not a failure in the method, see Section 5.

This paper is organized as follows. In Section 2, we will give useful tools and results
usually used in the treatment of the truncated complex moment problems. We will investigate in
Section 3 the complex-valued recursive bi-sequences and we will present in section 4 a solution
for the quintic TCMP associated with each, as well as a solution to the minimal support problem.
Finally, in Section 5, we give several examples illustrating the different cases arising in the quintic
complex moment problem.

2. Preliminaries

First, we recall a fundamental necessary condition. To this end, let us assume that γ(2n) ≡
{γi j}i+ j�2n is a given moment sequence and let μ be the associated representing measure. Then,
for every p ≡ ∑

h,k
ahkzhzk ∈ C[z,z] , we have

0 �
∫

| p |2 dμ = ∑
h,k,h′,k′

ahkah′k′

∫
zh+k′zk+h′ = ∑

h,k,h′,k′
ahkah′k′γh+k′,k+h′ ,

or equivalently, the moment matrix M(n)≡M(n)(γ(2n)) , defined below, is positive semi-definite.

M(n) :=

⎛⎜⎜⎜⎝
M[0,0] M[0,1] . . . M[0,n]
M[1,0] M[1,1] . . . M[1,n]

...
...

. . .
...

M[n,0] M[n,1] . . . M[n,n]

⎞⎟⎟⎟⎠ , (2.1)

where

M[i, j] =

⎛⎜⎜⎜⎝
γi, j γi+1, j−1 . . . γi+ j,0

γi−1, j+1 γi, j . . . γi+ j−1,1
...

...
. . .

...
γ0,i+ j γ1,i+ j−1 . . . γ j,i

⎞⎟⎟⎟⎠ .

Considering the lexicographic order,

1,Z,Z,Z2,ZZ,Z2
, . . . ,Zn,Zn−1Z, . . . ,ZZn−1

,Zn
, (2.2)
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to denote rows and columns of the moment matrix M(n) . For example, the M(3) matrix is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Z Z Z2 ZZ Z2 Z3 Z2Z ZZ2 Z3

1 γ00 | γ01 γ10 | γ02 γ11 γ20 | γ03 γ12 γ21 γ30
−− − −− −− − −− −− −− − −− −− −− −−

Z γ10 | γ11 γ20 | γ12 γ21 γ30 | γ13 γ22 γ31 γ40
Z γ01 | γ02 γ11 | γ03 γ12 γ21 | γ04 γ13 γ22 γ31

−− − −− −− − −− −− −− − −− −− −− −−
Z2 γ20 | γ21 γ30 | γ22 γ31 γ40 | γ23 γ32 γ41 γ50
ZZ γ11 | γ12 γ21 | γ13 γ22 γ31 | γ14 γ23 γ32 γ41

Z2 γ02 | γ03 γ12 | γ04 γ13 γ22 | γ05 γ14 γ23 γ32
−− − −− −− − −− −− −− − −− −− −− −−

Z3 γ30 | γ31 γ40 | γ32 γ41 γ50 | γ33 γ42 γ51 γ60
Z2Z γ21 | γ22 γ31 | γ23 γ32 γ41 | γ24 γ33 γ42 γ51

ZZ2 γ12 | γ13 γ22 | γ14 γ23 γ32 | γ15 γ24 γ33 γ42

Z3 γ03 | γ04 γ13 | γ05 γ14 γ23 | γ06 γ15 γ24 γ33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3)

Observe in passing that each block M[i, j] has a Toeplitz form. That is each of its diagonals
contains constant entries. On the other hand, it is easy to see that the matrix M(n) detects the
positivity of the Riesz functional given by

Λγ (2n) : p(z,z) ≡ ∑
0�i+ j�2n

ai jz
iz j −→ ∑

0�i+ j�2n
ai jγi j

on the cone generated by the collection {pp : p ∈ Cn[z,z]} , where Cn[Z,Z] is the vector space
of polynomials in two variables with complex coefficients and total degree less than or equal to
n .

It is an immediate observation that the row ZkZl , column ZiZ j entry of the matrix M(n) is
equal to Λγ (2n) (zi+l z j+k) = γi+l, j+k . For reason of simplicity, we identify a polynomial p(z,z) ≡
∑ai jziz j with its coefficient vector p = (ai j) with respect to the basis of monomials of Cn[z,z]
in degree-lexicographic order. Clearly, M(n) acts on these coefficient vectors as follows:

〈M(n)p,q〉 = Λγ (2n) (pq). (2.4)

A theorem of Smul’jan [32] shows that a block matrix

M =
(

A B
B∗ C

)
� 0, (2.5)

if and only if:

(i) A � 0;

(ii) there exists a matrix W such that B = AW ;

(iii) C �W ∗AW .

Since A = A∗ , we obtain that W ∗AW is independent of the choice of W provided that B = AW .
Moreover, rank M = rank A ⇔ C = W ∗AW for some W such that B = AW . Conversely, if
A � 0, any extension M satisfying rank M = rank A (if this condition is satisfied, we say that
M is a flat extension of A ) is necessarily positive. Notice also that from the expression(

I 0
−W ∗ I′

)
M

(
I −W
0 I′

)
=

(
A 0
0 C−W ∗AW

)
,
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where I and I′ denote the unit matrices, we deduce that

rank M = rank A+ rank (C−W ∗AW ). (2.6)

By Smul’jan’s theorem, M(n) � 0 admits a (necessarily positive) flat extension

M(n+1) =
(

M(n) B
B∗ C

)
(2.7)

in the form of a moment matrix M(n+1) if and only if:

(i) B = M(n)W for some W ;

(ii) C = W ∗M(n)W is a Toeplitz matrix.

Furthermore, we have the next result due to Curto and Fialkow.

THEOREM 2.1. [6, Theorem 5.13] The finite sequence γ(2n) has a rank M(n) -atomic
representing measure if and only if M(n) � 0 and M(n) admits a flat extension M(n+1) . That
is, M(n) can be extended to a positive moment matrix M(n+ 1) satisfying rank M(n+ 1) =
rank M(n) .

An important step in our approach is to show that the Hermitian matrix W ∗M(n)W is
persymmetric, that is, it is symmetric across its lower-left to upper-right diagonals. For this
purpose, we introduce first some additional notations.

We denote the successive columns of W and B (given as in Expression (2.7)) by
W|Zn+1 ,W|ZZn , . . . ,W|Zn+1 and B|Zn+1 ,B|ZZn , . . . ,B|Zn+1 , respectively.

Let us consider the (n+1)(n+2)
2 -matrix built as follows,

Mϕ (n) := J0 ⊕J1 ⊕ . . . ⊕Jn;

where Jp = (δi+ j,p+1)1�i, j�p with δi, j is the Kronecker symbol given by δl,k = 1 for k = l and
zero otherwise. For example

J0 = (1), J1 =
(

0 1
1 0

)
and J2 =

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠ .

LEMMA 2.2. Let Mϕ (n) , M(n) and B
Z

n−i
Zi ( i = 0, . . . ,n) be as above, then:

1. (Mϕ (n))2 = I ;

2. (Mϕ (n))∗ = Mϕ (n) ;

3. Mϕ (n)B
Z

i
Zn−i = B

Z
n−i

Zi , i = 0, . . . ,n;

4. Mϕ (n)M(n) = M(n)Mϕ (n) .

Proof. The assertions (1), (2) and (3) are obvious. Only the fourth assertion requires a
proof. To this aim, we recall that M(n) = [M(i, j)]0�i, j�n , see (2.1). Therefore

[Mϕ (n)]M(n) =

[
n⊕

i=0

Ji

]
[M(i, j)]i, j�n = [JiM(i, j)]i, j�n = [M(i, j)Jj]i, j�n

= [M(i, j)]i, j�n

[
n⊕

i=0

Ji

]
= M(n)Mϕ (n). �
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PROPOSITION 2.3. Let n be a given integer and let M(n) and W be as above, then
W ∗M(n)W is an Hermitian Persymmetric matrix.

Proof. Setting W ∗M(n)W = (ci j)0�i, j�n , then we have

cn− j,n−i = W ∗
Z

n− j
Z j

M(n)W
Z

n−i
Zi . (2.8)

By multiplying left sides of the fourth equation in Lemma 2.2 by Mϕ (n) we obtain

Mϕ (n)Mϕ (n)M(n) = Mϕ (n)M(n)Mϕ (n). (2.9)

Hence, by applying Lemma 2.2-(1), we get

M(n) = Mϕ (n)M(n)Mϕ (n). (2.10)

It follows, from (2.8) and (2.10), that

cn− j,n−i =W ∗
Z

n− j
Z j

Mϕ (n)M(n)Mϕ (n)W
Z

n−i
Zi . (2.11)

The fact that Mϕ (n) is self-adjoint allows to write

cn− j,n−i =
(
Mϕ (n)W

Z
n− j

Z j

)∗
M(n)

(
Mϕ (n)W

Z
n−i

Zi

)
. (2.12)

By using the assertions (3) and (4), in Lemma 2.2, we deduce that:

M(n)Mϕ (n)W
Z

n−i
Zi = Mϕ (n)M(n)W

Z
n−i

Zi = Mϕ (n)B
Z

n−i
Zi = B

Z
i
Zn−i .

Therefore, (2.12) implies that

cn− j,n−i = (Mϕ (n)W
Z

n− j
Z j )

∗B
Z

i
Zn−i = W ∗

Z
n− j

Z j
Mϕ (n)M(n)W

Z
i
Zn−i

= ((M(n)Mϕ (n))∗W
Z

n− j
Z j )

∗W
Z

i
Zn−i = (Mϕ (n)M(n)W

Z
n− j

Z j )
∗W

Z
i
Zn−i

= (M(n)Mϕ (n)W
Z

n− j
Z j )

∗W
Z

i
Zn−i = (M(n)W

Z
j
Zn− j )

∗W
Z

i
Zn−i =W ∗

Z
j
Zn− j

M(n)W
Z

i
Zn−i

= ci, j.

This concludes the proof of the Proposition 2.3. �

3. Complex-valued recursive bi-sequences

Let γ(n) ≡ {γi j}i+ j�n , with γi j = γ ji and n ∈ N∪{+∞} , be a given complex-valued se-
quence and let Pzezd−e = ∑

l+k�d
(l,k) �=(e,d−e)

alkzlzk be in Cd [z,z] , the vector space of polynomials in

two variables with complex coefficients and total degree less than or equal to d (we assume
that d � n ). The sequence γ(n) is said to be recursive, associated with a generating polynomial
zezd−e −Pzezd−e , if

γe+i,d−e+ j = Λγ (n) (ziz jPzezd−e), for all i+ j � n−d, (3.1)

or, equivalently, if

γe+i,d−e+ j = ∑
l+k�d

(l,k) �=(e,d−e)

alkγl+i,k+ j, i+ j � n−d. (3.2)
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We notice that, because of the equality γi j = γ ji , Equation (3.2) is equivalent to the follow-
ing one:

γd−e+i,e+ j = ∑
l+k�d

(l,k) �=(e,d−e)

alkγk+i,l+ j, (3.3)

for all integers i and j , with i+ j � n−d .
Therefore, zd−eze −Pzd−eze (where Pzd−eze = Pzezd−e ) is, also, a generating polynomial, associated

with γ(n) ; that is,

γd−e+i,e+ j = Λγ (n) (ziz jPzd−eze), i+ j � n−d. (3.4)

The following proposition provides a connection, via Λ , between the polynomials Pzf z f+1

and Pzf+1z f .

PROPOSITION 3.1. Let γ(n) ≡ {γi j}i+ j�n be a recursive bi-sequence and let z f z f+1 −
Pzf z f+1 be an associated generating polynomial, then

Λγ (n) (zl+1zkPzf z f+1) = Λγ (n) (zlzk+1Pzf+1z f ), l +k � n−2 f −2.

Proof. For all integers l and k , with l +k � n−2 f −2, we have

Λγ (n) (zl+1zkPzf z f+1) = γ f+l+1, f+k+1 = γ f+k+1, f+l+1 = Λγ (n) (zk+1zlPzf z f+1)

= Λγ (n) (zl zk+1Pzf+1z f ). �

It is well known that the classical singly indexed recursive sequence can be defined by the
initial data and the associated recurrence relation (or, characteristic polynomial), see [18]. In a
similar way, one can define recursive bi-sequences as observed below.

REMARK 3.2. (i) A generating polynomial ze −Pze (or, equivalently, ze −Pze ), where
degPze < e , with the initial data {γi j}i, j<e verifying γi j = γ ji , stand together to furnish
the sequence γ(n) .

(ii) For a generating polynomial zze−1 −Pzze−1 , with degPzze−1 < e , we need (all) the data
{γi j}i, j<e ∪{γ0 j} j=e,...,n and the equality γi j = γ ji to get the recursive bi-sequence γ(n) .

In the next lemma, we provide useful results for solving the quintic moment problem.

LEMMA 3.3. Let γ(8) ≡ {γi j}i+ j�8 , with γi j = γ ji , be a truncated bi-sequence and let
z4 −Pz4 (where Pz4 = β z3 + Rz4 and Rz4 ∈ C2[z,z] ) be an associated generating polynomial.
Assume that zz2 −Pzz2 (where Pzz2 = αz3 + Rzz2 , α �= 0 and Rzz2 ∈ C2[z,z] ) is a generating
polynomial for γ(6)∪{γ34,γ43} , then zz2−Pzz2 is a generating polynomial for γ(8) .

Proof. We have z4 −Pz4 is a generating polynomial for γ(8) , that is,

γi, j+4 = Λγ (8) (ziz jPz4) = βγi, j+3 +Λγ (8) (ziz jRz4), i+ j � 4. (3.5)

As shown in (3.4), the last equality (3.7) is equivalent to

γi+4, j = Λγ (8) (ziz jPz4) = βγi+3, j +Λγ (8) (ziz jRz4), i+ j � 4; (3.6)
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where Pz4 := Pz4 = β z3 +Rzz2 .

Also, the polynomial zz2 −Pzz2 is a generating one for γ(6) ∪{γ34,γ43} ; that is, for all i+ j � 3
and (i, j) = (2,2),(3,1) :

γi+1, j+2 = Λγ (8) (ziz jPzz2) = αγi, j+3 +Λγ (8) (ziz jRzz2), (3.7)

or, equivalently, for i+ j � 3 and (i, j) = (2,2),(1,3) :

γi+2, j+1 = Λγ (8) (ziz jPz2z1) = αγi+3, j +Λγ (8) (ziz jRz2z), (3.8)

where Pz2z := Pzz2 = β z3 +Rz2z , see (3.4).
We have to show that (3.7) remains valid for all integers i and j , verifying i+ j � 5. To this
end, we consider the recursive bi-sequence γ̂(8) ≡ {γ̂i j}i+ j�8 defined by

{
γ̂i+1, j+2 = Λγ̂ (8) (ziz jPzz2), i+ j � 5,

γ̂i, j = γi, j, otherwise;
(3.9)

and we will show that γ̂(8) = γ(8) . Notice that since zz2 −Pzz2 is a generating polynomial for
γ̂(8) , then z2z−Pz2z is an other one. Thus

γ̂i+2, j+1 = Λγ̂ (8) (ziz jPz2z), i+ j � 5. (3.10)

It follows from (3.7) and (3.9) that, for n+m � 6, n = 0 and (n,m) = (3,4),(4,3) :

γnm = Λγ (8) (znzm) = Λγ̂ (8) (znzm) := γ̂nm. (3.11)

Remark that if γ̂nm = γnm then γ̂mn = γ̂nm = γnm = γmn .

Therefore, it remains to show (3.11), only, for (n,m) = (2,5),(1,6);(1,7),(2,6),(3,5),(4,4) .
We start with γ25 and γ16

γ25 = Λγ (8) (z2zPz4) utilizing (3.5)

= Λγ (8) (Pz2zPz4) employ (3.8) and degPz4 � 3

= αΛγ (8) (z3Pz4)+Λγ (8) (Rz2zPz4)

= αγ34 +Λγ (8) (z4Rz2z) applying (3.5)

= αγ̂34 +Λγ̂ (8) (z4Rz2z) use deg z4Rz2z � 6 and (3.11)

= Λγ̂ (8) (αz3z4 + z4Rz2z)

= Λγ̂ (8) (z4Pz2z)

= Λγ̂ (8) (zz3Pz2z) according to Proposition 3.1

= γ̂25 from (3.10).

(3.12)
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γ16 = Λγ (8) (zz2Pz4) use(3.5)

= Λγ (8) (Pzz2Pz4) employ (3.7) and degPz4 � 3

= Λγ (8) (αz3Pz4 +Rzz2Pz4)

= αγ07 +Λγ (8) (z4Rzz2) utilizing (3.5)

= αγ̂07 +Λγ̂ (8) (z4Rzz2) using (3.11) and degz4Rzz2 � 6

= Λγ̂ (8) (αz7 + z4Rzz2)

= Λγ̂ (8) (z4Pzz2)

= γ̂16 according to (3.9).

(3.13)

Thus, the equality (3.11) is valid for every integer n and m with n+m � 7. In other words,

γnm = Λγ (8) (znzm) = Λγ̂ (8) (znzm) := γ̂nm, n+m � 7. (3.14)

Hence one can generalize relation (3.7) as follows

γi+1, j+2 = Λγ (8) (ziz jPzz2) = αγi, j+3 +Λγ (8) (ziz jRzz2), i+ j � 4. (3.15)

Now, let us show (3.11) for the remaining cases (n+m = 8).

γ08 = γ̂08, by the construction of γ̂(8) , see (3.9). (3.16)

γ17 = Λγ (8) (zz3Pz4) according to (3.5)

= Λγ (8) (zPz4Pzz2) because degzPz4 � 4 and (3.15)

= Λγ (8) (z5Pzz2) utilizing (3.5)

= αΛγ (8) (z8)+Λγ (8) (z5Rzz2)

= αΛγ̂ (8) (z8)+Λγ̂ (8) (z5Rzz2) using (3.16) and (3.14)

= Λγ̂ (8) (z5Pzz2)

= γ̂17 applying (3.9).

(3.17)

γ26 = Λγ (8) (z2z2Pz4) according to (3.5)

= Λγ (8) (zPz4Pzz2) use degzPz4 � 4 and (3.15)

= Λγ (8) (zz4Pzz2) utilizing (3.5)

= αΛγ (8) (zz7)+Λγ (8) (zz4Rzz2)

= αΛγ̂ (8) (zz7)+Λγ̂ (8) (zz4Rzz2) by using (3.17) and (3.14)

= Λγ̂ (8) (zz4Pzz2)

= γ̂26 according to (3.9).

(3.18)

Before we continue the proof of our lemma, let us remark that the relation (3.14) implies
that, for all i+ j � 5,

Λγ̂ (8) (zi+1z j+2) = γ̂i+1, j+2 = Λγ̂ (8) (ziz j(αz3 +Rzz2)),
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therefore

Λγ̂ (8) (ziz j+3) =
1
α

Λγ̂ (8) (ziz j(zz2−Rzz2)), i+ j � 5. (3.19)

Now, we write

γ35 = Λγ (8) (z3zPz4) according to (3.5)

= Λγ̂ (8) (z3zPz4) because degz3zPz4 � 7

= Λγ̂ (8) (
1
α

(Pz2z −Rz2z)zPz4)

=
1
α

Λγ̂ (8) ((z2z−Rz2z)zPz4)

=
1
α

Λγ (8) ((z2z−Rz2z)zPz4) applying (3.14)

=
1
α

Λγ (8) (z2z6)− 1
α

Λγ (8) (z5Rz2z)

=
1
α

γ26− 1
α

Λγ̂ (8) (z5Rz2z) remark that degz5Rz2 � 7

=
1
α

γ̂26− 1
α

Λγ̂ (8) (z5Rz2z) from (3.18)

= Λγ̂ (8) (
1
α

(Pz2z −Rz2z)z
5)

= Λγ̂ (8) (z3z5)

= γ̂35.

(3.20)

γ44 = Λγ (8) (z4Pz4)

= Λγ̂ (8) (z3zPz4) using (3.14)

= Λγ̂ (8) (
1
α

(Pz2z −Rz2z)zPz4) by (3.19)

=
1
α

Λγ̂ (8) (z3zPz4)− 1
α

Λγ̂ (8) (zPz4Rz2z)

=
1
α

Λγ (8) (z3zPz4)− 1
α

Λγ (8) (zPz4Rz2z)

=
1
α

γ35−
1
α

Λγ̂ (8) (zPz4Rz2z)

=
1
α

γ̂35−
1
α

Λγ̂ (8) (zPz4Rz2z) applying (3.20)

= Λγ̂ (8) (
1
α

(Pz2z −Rz2z)zPz4)

= Λγ̂ (8) (z4Pz4)

= γ̂44.

(3.21)

This finishes the proof of Lemma 3.3. �

4. Solving the quintic moment problem

Let γ(5) ≡ {γi j}i+ j�5 be a given complex-valued bi-sequence, with γ00 > 0 and γi j =
γ ji for i + j � 5. The quintic complex moment problem involves determining necessary and
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sufficient conditions for the existence of a positive Borel measure μ on C (called a representing
measure for γ(5) ) such that

γi j =
∫

ziz jdμ, for i+ j � 5.

In this section we will show that in almost all cases the classical necessary conditions
M(2) � 0 and B = M(2)W , for some W , (with M(2) and B are as in (2.7)) guarantee the
existence of at most (r+2) -atomic (here r := rank M(2) ) representing measure for γ(5) .

According to Proposition 2.3, the Hermitian 4× 4-matrix W ∗M(2)W is symmetric with
respect to the counter diagonal, then one can set

W ∗M(2)W =

⎛⎜⎜⎝
a b c d
b e f c
c f e b
d c b a

⎞⎟⎟⎠ . (4.1)

The next theorem gives a concrete solution to the quintic complex moment problem, except
for the case a = e and b �= f .

THEOREM 4.1. Let γ(5) ≡ {γi j}i+ j�5 be a given sequence, we assume that M(2) � 0 and
Rang B ⊆ Rang M(2) , and a �= e or b = f .

Then the quintic moment problem, associated with γ(5) , admits a solution μ . Moreover,
the smallest cardinality of supp μ is given by:

• card supp μ = r ⇐⇒ a = e and b = f ;

• card supp μ = r+1 ⇐⇒ a �= e and a−e
2 <| b− f | ;

• card supp μ = r+2 ⇐⇒ a > e and a−e
2 �| b− f | ;

where a,b,e and f are as in (4.1).

Before we develop the proof of our theorem, let us introduce some notations. For n ∈ {3,4} ; let
γ(2n) ≡ {γi j}i+ j�2n be a truncated complex bi-sequence and let M(n) be the associated moment
matrix. As before, we denote by B(n) and C(n) the (n− 1)× n -matrix and the n× n -matrix,
respectively, such that

M(n) =
(

M(n−1) B(n)
B∗(n) C(n)

)
. (4.2)

Let B≡B(n)≡{ZiZ j}(i, j)∈R (where R≡R(n)⊆{0,1, . . . ,n}×{0,1, . . . ,n} ) be a basis
for the column space of M(n) . Let us remark that the r× r -matrix M(n)|B , where r ≡ r(n) :=
card R(n) , the restriction of the moment matrix M(n) to the basis B , is invertible.

Proof of Theorem 4.1. The main idea is to extend the initial data γ(5) to an even-degree
γ(6) (by adding the sixtic moments γ60 = γ06 , γ51 = γ15 , γ42 = γ24 and γ33 ∈ R ) such that the
associated moment matrix M(3) , for an appropriate choice of the missing moments, is either a
flat extension of M(2) or admits a flat extension M(4) . Theorem 2.1 yields that M(3) has a
representing measure; and as a consequence, γ(5) also admits a representing measure μ . It is
also proved that the smallest cardinality of supp μ will be r := rank M(2) or r+1 or r+2.

By virtue of the Smul’jan’s Theorem, we need to find a Toeplitz square matrix C(3) , built
with the new, sixtic, moments as entries and such that C(3)−W ∗M(2)W � 0. Setting

C(3)−W ∗M(2)W =

⎛⎜⎜⎝
γ33 −a γ42 −b γ51−c γ60−d
γ24 −b γ33 −e γ42− f γ51−c
γ15−c γ24 − f γ33−e γ42−b
γ06 −d γ15 −c γ24−b γ33−a

⎞⎟⎟⎠ , (4.3)
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in the sequel, we distinguish two cases:

Case I: a = e and b = f . In this case the matrix W ∗M(2)W is a Toeplitz one, then
it suffices to consider that C(3) = W ∗M(2)W . According to (2.6), the matrix M(3) is a flat
extension of M(2) and thus γ(6) (and in force γ(5) ) has a r -representing measure.

Case II: a �= e . We proceed in two steps for this case. Obviously, the matrix W ∗M(2)W
is not a Toeplitz one. Therefore, for every choice of a Toeplitz 4× 4-matrix C(3) , we have
rank (C(3)−W ∗M(2)W ) � 1. We will show, in first step, that the smallest possible rank of
C(3)−W ∗M(2)W will be either 1 or 2. In the second step, we will show that the moment matrix
M(3) , obtained by extending γ(5) with the entries of some suitable C(3) , has a flat extension
and thus admits a rank M(3) -atomic representing measure, see Theorem 2.1.

Step 1: Construction of C(3) . Firstly, let us observe that

rank(C(3)−W ∗M(2)W ) = 1 and C(3)−W ∗M(2)W � 0 (4.4)

if and only if we have:

(0) γ33 > max(a,e);

(i) | γ42−b |=
√

(γ33 −a)(γ33 −e) and | γ42 − f |= γ33−e;

(ii) (γ15−c)(γ42−b) = (γ33−a)(γ24 − f );

(iii) (γ06−d)(γ42−b)2 = (γ33 −a)2(γ24− f ) and | γ06 −d |2= (γ33 −a)2.

(4.5)

Remark that the equalities in (i) provide the compatibility of the two equalities in (iii) and vice
versa.

The condition (i) means that γ42 belongs to the intersection of the circles C =
C (b,

√
(γ33 −a)(γ33 −e)) , of radius

√
(γ33−a)(γ33 −e) and centered at b , and C ′ =C ( f ,γ33−

e) .
It is geometricaly easy to see that, the two circles C and C ′ have a nonempty intersection

if, and only if, there exists γ33 > max(a,e) , such that

| (γ33 −e)−
√

(γ33−a)(γ33 −e) |�| b− f |� γ33−e+
√

(γ33 −a)(γ33 −e). (4.6)

Since the function x → (x− e)−√
(x−a)(x−e) is decreasing (on [max(a,e);+∞[ ), then

(x−e)−√
(x−a)(x−e)−−−−→

x→+∞
a−e
2 and (x−e)+

√
(x−a)(x−e)−−−−→

x→+∞
+∞. Therefore (4.6)

is verified if and only if a = e and b �= f or a < e or a > e and |b− f | > a−e
2 .

Sub-case II-1: a < e or a > e and |b− f |> a−e
2 . It suffices to choose γ33 verifying (4.6),

and thus γ42 exists (as an intersection point of the two circles C and C ′ ). Furthermore , from
(0) and (i) we derive that

(γ42 −b)(γ42 − f ) �= 0. (4.7)

Equality (ii) gives the moment γ15 and (iii) supplies γ06 , and this completes the construction
of a Toeplitz matrix C(3) for which rank(C(3)−W ∗M(2)W ) = 1. Note that,

rank M(3)|B(2)∪{Z3} = rank M(2)+1 = rank M(3).

Hence, in M(3) , the columns ZZ2,Z2Z and Z3 are linear combinations of the columns B(2)∪
{Z3} . In particular, we can set

ZZ2 = Pzz2(Z,Z) = αZ3 +Rzz2(Z,Z), (4.8)
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with

α =

det

∣∣∣∣∣M(2)|B(2) ZZ2|B(2)
(Z3

|B(2))
∗ γ42

∣∣∣∣∣
det

∣∣∣∣∣M(2)|B(2) Z3
|B(2)

(Z3
|B(2))

∗ γ33

∣∣∣∣∣
=

det

∣∣∣∣∣M(2)|B(2) ZZ2|B(2)
(Z3

|B(2))
∗ b

∣∣∣∣∣+(γ42 −b) det | M(2)|B(2) |

det

∣∣∣∣∣M(2)|B(2) Z3
|B(2)

(Z3
|B(2))

∗ a

∣∣∣∣∣+(γ33 −a) det | M(2)|B(2) |

=
(γ42−b) det | M(2)|B(2) |
(γ33−a) det | M(2)|B(2) |

=
γ42−b
γ33−a

�= 0; by virtue of (4.7).

(4.9)
Sub-case II-2: a > e and a−e

2 �| b− f | . Then rank(C(3)−W ∗M(2)W ) � 2 for every
4×4-Toeplitz matrix C(3) . Let us choose the sixtic moments as follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ33 > max(a,e),
| γ42 −b |= √

(γ33−a)(γ33 −e),
γ15−c = γ33−a

γ42−b (γ24− f ),

γ06−d = ( γ33−a
γ42−b )2(γ24− f ).

(4.10)

We notice that as the first sub-case II-1, we have

γ42−b
γ33−a

=
√

γ33 −e
γ33 −a

�= 0. (4.11)

The moments defined in (4.10) construct a Toeplitz matrix C(3) for which
rank(C(3)−W ∗M(2)W ) = 2. Indeed, it suffices to observe that:

• (C(3)−W ∗M(2)W )(Z3) = γ33−a
γ42−b (C(3)−W ∗M(2)W )(ZZ2) ;

• (C(3)−W ∗M(2)W )(Z3) = γ33−a
γ24−b

(C(3)−W ∗M(2)W )(Z2Z) ;

• the columns (C(3)−W ∗M(2)W )(Z3) and (C(3)−W ∗M(2)W )(Z3) are nonlinear (be-
cause (i) can not be verified).

Therefore, in M(3) , the column ZZ2 is a linear combination of the columns in B(2)∪{Z3} .
For reason of simplicity, we adopt the notation of the Relation (4.8), that is,

ZZ2 = Pzz2(Z,Z) = αZ3 +Rzz2(Z,Z), (4.12)

where

α =
γ42−b
γ33−a

�= 0,

by using (4.11).
We conclude that, in the both cases II-1 and II-2, we have extended the initial data γ(5) to

γ(6) so that the associated moment matrix M(3) has the following columns relation

ZZ2 = Pzz2(Z,Z) = αZ3 +Rzz2(Z,Z), with α �= 0. (4.13)

We also note that since a �= e we get,

|α| =
∣∣∣∣ γ42−b
γ33−a

∣∣∣∣ =

√
(γ33−a)(γ33 −e)

γ33−a
�= 1. (4.14)
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Step 2: M(3) has a flat extension, and therefore has a representing measure. We will build
moments {γi j}i+ j=7,8 for which the moment matrix M(4) is a flat extension of M(3) .

The relation (4.13) yields that

〈M(3)ZZ2,Z jZi〉 = 〈M(3)Pzz2(Z,Z),Z jZi〉, for all i+ j � 3.

By applying (2.4), one obtains

Λγ (6) (zi+1z j+2) = Λγ (6) (ziz jPzz2), i+ j � 3. (4.15)

Since |α| �= 1, we derive that there exists a complex number γ43 = γ43 such that

γ43 = Λ(z3zPzz2), (4.16)

that is,
γ43 = αγ34 + ∑

i+ j�2
αi, jγi+3, j+1.

It follows, from (4.16) and (4.15), that zz2 − Pzz2 is a generating polynomial of γ(6) ∪
{γ34,γ43} . Since

(M(2)|B(2) Z3
|B(2)

(Z3
|B(2))

∗ γ33

)
> 0, then there exists a (unique) vector, denoted here

Pz4 = β z3 +Rz4 = β z3 + ∑
ziz j∈B(2)

βi jz
iz j

the associated polynomial, such that

(M(2)|B(2) Z3
|B(2)

(Z3
|B(2))

∗ γ33

)
Pz4 = ((γ04,γ14,γ05,γ24,γ15,γ06)|B(2),γ34)T .

Therefore the sequence γ(6)∪{γ34,γ43} verifies that

γi, j+4 = Λ(ziz jPz4), for all i+ j � 2 and (i, j) = (3,0), (4.17)

and
γi+4, j = Λ(ziz jPz4), for all i+ j � 2 and (i, j) = (0,3). (4.18)

Thus z4 −Pz4 is a generating polynomial of γ(6) ∪{γ34,γ43} .

We will build γ(8) ≡ {γi j}i+ j�8 , the extension of γ(6)∪{γ34,γ43} , by using the generating
polynomial Pz4 and the initial data {γi j}i, j�3 , that is,

γi, j+4 = Λ(ziz jPz4) = βγi, j+3 + ∑
zl zk∈B(2)

βlkγi+l, j+k, i+ j � 4, (4.19)

or, equivalently,

γi+4, j = Λ(ziz jPz4) = βγi+3, j + ∑
zl zk∈B(2)

βlkγi+k, j+l , i+ j � 4. (4.20)

Hence, Lemma 3.3 implies that zz2 −Pzz2 and z4 −Pz4 are two generating polynomials of

γ(8) . Therefore, in M(4) , the columns Z4,ZZ3,Z2Z2,Z3Z,Z4 are linear combinations of the

columns {ZiZ j}i+ j�3 and thus M(4) is a flat extension of M(3) . Indeed, it suffices to observe
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that Pz4 ,Pz4 ,Pzz2 ,Pz2z ∈V ≡Vect(Z3,Z3
,Z2,ZZ,Z2

,Z,Z,1) , threfore zPzz2 ,zPz2z,zPzz2 ∈V . Also
one has, for all i+ j � 4,

〈M(4)Z4,ZiZ j〉 = 〈M(4)Pz4 ,Z
iZ j〉;

〈M(4)Z4
,ZiZ j〉 = 〈M(4)Pz4 ,Z

iZ j〉;
〈M(4)ZZ3,ZiZ j〉 = 〈M(4)zPzz2 ,Z

iZ j〉;
〈M(4)Z2Z2,ZiZ j〉 = 〈M(4)zPzz2 ,ZiZ j〉;

and 〈M(4)Z3Z,ZiZ j〉 = 〈M(4)zPz2z,Z
iZ j〉.

This finishes the proof. �

5. Examples

We give in this section four examples illustrating the different solved cases.

5.1. The case a = e and b = f

We consider the quintic sequence,

γ00 = 6
γ01 = 1+ i γ10 = 1− i
γ20 = −2i γ11 = 6 γ02 = 2i
γ30 = −2−2i γ21 = 2−2i γ12 = 2+2i γ03 = −2+2i
γ40 = 0 γ31 = −4i γ22 = 8 γ13 = 4i γ04 = 0
γ50 = −4+4i γ41 = −4−4i γ32 = 4−4i γ23 = 4+4i γ14 = −4+4i γ05 = −4−4i.

Then, we have

M(2) =

⎛⎜⎜⎜⎜⎜⎜⎝

6 1+ i 1− i 2i 6 −2i
1− i 6 −2i 2+2i 2−2i −2−2i
1+ i 2i 6 −2+2i 2+2i 2−2i
−2i 2−2i −2−2i 8 −4i 0
6 2+2i 2−2i 4i 8 −4i
2i −2+2i 2+2i 0 4i 8

⎞⎟⎟⎟⎟⎟⎟⎠
and

B =

⎛⎜⎜⎜⎜⎜⎜⎝

−2+2i 2+2i 2−2i −2−2i
4i 8 −4i 0
0 4i 8 −4i

4+4i 4−4i −4−4i −4+4i
−4+4i 4+4i 4−4i −4−4i
−4−4i −4+4i 4+4i 4−4i

⎞⎟⎟⎟⎟⎟⎟⎠ .

The fact that M(2) is positive definite implies,

W = (M(2))−1B =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 0 1
1 0 1 0

3
4 + 3i

4
1
4 − i

4 − 1
4 − i

4 − 3
4 + 3i

4
0 0 0 0

− 3
4 − 3i

4 − 1
4 + i

4
1
4 + i

4
3
4 − 3i

4

⎞⎟⎟⎟⎟⎟⎟⎠
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and

W ∗M(2)W =

⎛⎜⎜⎝
12 −8i −4 8i
8i 12 −8i −4
−4 8i 12 −8i
−8i −4 8i 12

⎞⎟⎟⎠ .

Since a = e = 12 and b = f = −8i , according to the main theorem, our sequence provides a

moment matrix for a 6 atoms measure. In fact, from W , we can see that Z3+ 3(1+i)
4 (Z

2−Z2)−Z

and Z2Z + (1−i)
4 (Z

2−Z2)−Z are two characteristic polynomials for this moment sequence. The
common roots of the two polynomials are

{±1,±i,0,1+ i}.

Finally we can write that μ = δ1 +δ−1 +δi +δ−1 +δ0 +δ1+i .

5.2. The case a < e

We consider the quintic sequence,

γ00 = 7
γ01 = 0 γ10 = 0
γ20 = −4i γ11 = 8 γ02 = 4i
γ30 = 0 γ21 = 0 γ12 = 0 γ03 = 0
γ40 = −4 γ31 = −8i γ22 = 12 γ13 = 8i γ04 = −4
γ50 = 0 γ41 = 0 γ32 = 0 γ23 = 4+4i γ14 = 0 γ05 = 0.

Then, we have

M(2) =

⎛⎜⎜⎜⎜⎜⎜⎝

7 0 0 4i 8 −4i
0 8 −4i 0 0 0
0 4i 8 0 0 0

−4i 0 0 12 −8i −4
8 0 0 8i 12 −8i
4i 0 0 −4 8i 12

⎞⎟⎟⎟⎟⎟⎟⎠
and

B =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
8i 12 −8i −4
−4 8i 12 −8i
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since M(2) is positive semi-definite implies, we can take W as follows:

W =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
i 4

3 − i
3 0

0 i
3

4
3 −i

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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therefore

W ∗M(2)W =

⎛⎜⎜⎝
8 −12i −8 4i

12i 56
3 − 44i

3 −8
−8 44i

3
56
3 −12i

−4i −8 12i 8

⎞⎟⎟⎠ .

Since a = 8 < e = 56
3 , according to the main theorem, our sequence is a moment sequence

associated with a 7 atoms measure. In fact, examining (4.6) we can take γ33 = 20, then γ42 =
−16i . Therefore γ06 = −16i , then ZZ2 = i

3Z3 + Z + i
3 Z is a characteristic polynomial and

with γ43 = 0 we derive another characteristic polynomial given by Z4 = 3i
2 Z2 +ZZ− 3i

2 Z
2
. The

common roots of the two polynomials are

{±1,±i,0,1+ i,−1− i}.

Finally we get
μ = δ0 +δ1 +δ−1 +δi +δ−i +δ1+i +δ−1−i.

5.3. The case a > e and a− e < 2|b− f |
We consider the quintic sequence,

γ00 = 7,γ01 = 1+5i,γ10 = 1−5i,

γ20 = −64−60i,γ11 = 230,γ02 = −64+60i,

γ30 = 277−161i,γ21 = −203+257i,γ12 = −203−257i,γ03 = 277+161i,

γ40 = 3722+4320i,γ31 = −4816−4200i,γ22 = 10778,
γ13 = −4816+4200i,γ04 = 3722−4320i,

γ50 = −59219−29695i,γ41 = 31021−11585i,γ32 = −16979+24353i,
γ23 = −16979−24353i,γ14 = 31021+11585i and γ05 = −59219+29695i.
Then M(2) =⎛⎜⎜⎜⎜⎜⎜⎝

7 1+5i 1−5i −64−60i 230 −64+60i
1−5i 230 −64+60i −203+257i −203−257i 277+161i
1+5i −64−60i 230 277−161i −203+257i −203−257i

−64+60i −203−257i 277+161i 10778 −4816+4200i 3722−4320i
230 −203+257i −203−257i −4816−4200i 10778 −4816+4200i

−64−60i 277−161i −203+257i 3722+4320i −4816−4200i 10778

⎞⎟⎟⎟⎟⎟⎟⎠
and

B =

⎛⎜⎜⎜⎜⎜⎜⎝

277−161i −203+257i −203−257i 277+161i
−4816−4200i 10778 −4816+4200i 3722−4320i
3722+4320i −4816−4200i 10778 −4816+4200i

−16979+24353i −16979−24353i 31021+11585i −59219+29695i
31021−11585i −16979+24353i −16979−24353i 31021+11585i
−59219−29695i 31021−11585i −16979+24353i −16979−24353i

⎞⎟⎟⎟⎟⎟⎟⎠ .



1020 H. EL-AZHAR, A. HARRAT, K. IDRISSI AND E. H. ZEROUALI

The fact that M(2) is positive definite allows to calculate W and W ∗M(2)W . Finally, using the
same process in above, one gets the following expression of μ

μ = δ2 +δ−6 +δ4i +δ−7i +δ3+3i +δ5−3i +δ−3+8i.

5.4. The remaining case a = e and b �= f

We consider the quintic sequence,

γ00 = 7
γ01 = 9+9i γ10 = 9−9i
γ20 = 22i γ11 = 34 γ02 = −22i
γ30 = −18+18i γ21 = 58+58i γ12 = 58−58i γ03 = −18−18i
γ40 = 40 γ31 = 164i γ22 = 256 γ13 = −164i γ04 = 40
γ50 = 304(1+ i) γ41 = 128(i−1) γ32 = 480(i+1) γ23 = 480(1− i) γ14 = −128(1+ i)
γ05 = 304(1− i).

Then, we obtain

M(2) =

⎛⎜⎜⎜⎜⎜⎜⎝

7 9+9i 9−9i 22i 34 −22i
9−9i 34 −22i 58+58i 58−58i −18−18i
9+9i 22i 34 −18+18i 58+58i 58−58i
−22i 58−58i −18−18i 256 −164i 40
34 58+58i 58−58i 164i 256 −164i
22i −18+18i 58+58i 40 164i 256

⎞⎟⎟⎟⎟⎟⎟⎠
and

B =

⎛⎜⎜⎜⎜⎜⎜⎝

−18+18i 58+58i 58−58i −18−18i
164i 256 −164i 40
40 164i 256 −164i

480+480i 480−480i −128−128i 304−304i
−128+128i 480+480i 480−480i −128−128i
304+304i −128+128i 480+480i 480−480i

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since M(2) is not invertible. We can take W as follows,

W =

⎛⎜⎜⎜⎜⎜⎜⎝

− 1041
319 + 1041i

319
931
319 + 931i

319 − 1041
319 + 1041i

319
3483
319 + 3483i

319
− 1

319 (2028i) − 2061
319 − 1

319 (752i) − 4613
319

− 89
319 − 1

319 (1220i) − 89
319 − 1

319 (2496i)
39
11 + 39i

11
17
11 − 17i

11
17
11 + 17i

11
39
11 − 39i

11
24
29 − 24i

29
82
29 + 82i

29
82
29 − 82i

29
24
29 + 24i

29
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
and

W ∗M(2)W =

⎛⎜⎜⎝
719500

319 − 1
319 (448504i) 152956

319 − 1
319 (622040i)

448504i
319

719500
319 − 1

319 (449800i) 152956
319

152956
319

449800i
319

719500
319 − 1

319 (448504i)
622040i

319
152956

319
448504i

319
719500

319

⎞⎟⎟⎠ .

In this case we get a = e = 719500
319 and b = − 448504i

319 �= f = 449800i
319 . This is the remaining case

which is not covered by the main theorem. We notice that this sequence is a moment sequence
associated with a 7 atoms representing measure:

μ = δ1 +δi +δ1+i +δ1+2i +δ1+3i +δ2+i +δ3+i.
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