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ABSTRACT KOROVKIN THEORY FOR DOUBLE SEQUENCES

VIA POWER SERIES METHOD IN MODULAR SPACES

FADIME DIRIK, SEVDA YILDIZ ∗ AND KAMIL DEMIRCI

(Communicated by T. S. S. R. K. Rao)

Abstract. In the present paper, we obtain an abstract version of the Korovkin type approximation
theorems for double sequences of positive linear operators on modular spaces in the sense of
power series method. We present an example that satisfies our theorem but not satisfies the
classical one and also, we study an extension to non-positive operators.

1. Introduction

The classical version of Korovkin theorem deals with the approximation only us-
ing test functions that provides the approximation in whole space [10]. This theorem
has been extended with the use of summability methods since they make convergent
a non-convergent sequence. The well known summability methods are power series
methods which includes Abel and Borel methods. The first usage of Korovkin theorem
in modular spaces was by Bardaro and Mantellini [4]. Then, this theorem was studied
by various authors on modular spaces in papers [6], [8] and [9]. In this paper, we study
an abstract Korovkin theorems by means of power series method for double sequences
on modular spaces. We present an example that satisfies our theorem but not satisfies
the classical one and also, we study an extension to non-positive operators.

We begin the following notations and definitions of power series method for dou-
ble sequences used in this paper.

Let (pmn) be a double sequence of nonnegative numbers with p00 > 0 and such
that the following power series

p(t,s) :=
∞

∑
m,n=0

pmnt
msn

has radius of convergence R with R ∈ (0,∞] and t,s ∈ (0,R) . If, for all t,s ∈ (0,R) ,

lim
t,s→R−

1
p(t,s)

∞

∑
m,n=0

pmnt
msnxmn = A,
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then we say that the double sequence x = (xmn) is convergent to A in the sense of power
series method [7]. The power series method for double sequences is regular if and only
if

lim
t,s→R−

∞
∑

m=0
pmν tm

p(t,s)
= 0 and lim

t,s→R−

∞
∑

n=0
pμnsn

p(t,s)
= 0, for any μ ,υ , (1)

hold [7]. Throughout the paper we assume that power series method is regular.

REMARK 1. Note that for R = 1, if pmn = 1 and pmn = 1
(m+1)(n+1) , the power

series methods are Abel summability method and logarithmic summability method,
respectively. For R = ∞ and pmn = 1

m!n! , the power series method coincides with Borel
summability method.

Now, we recall the concept of Pringsheim convergence for double sequences.
A double sequence x = (xmn) is said to be convergent in Pringsheim’s sense if,

for every ε > 0, there exists N = N(ε) ∈ N , the set of all natural numbers, such
that |xmn−L|< ε whenever m,n > N , where L is called the Pringsheim limit of x and
denoted by P− lim

m,n
xmn = L (see [17]). We shall call such an x, briefly, “P-convergent”.

A double sequence is called bounded if there exists a positive number M such that
|xmn| � M , for all (m,n) ∈ N

2. Note that in contrast to the case for single sequences, a
convergent double sequence need not to be bounded.

Now let us remind that some well known notations and properties of modular
spaces.

Assume that Z be a locally compact Hausdorff topological space given with a
uniform structure U ⊂ 2Z×Z that generates the topology of Z (see, [12]). Let B be
the σ−algebra of all Borel subsets of Z and μ : B → R is a positive σ−finite regular
measure. Let L0 (Z) be the space of all real valued μ−measurable functions on Z with
identification up to sets of measure μ zero, C (Z) be the space of all continuous real
valued functions on Z , Cb (Z) be the space of all continuous real valued and bounded
functions on Z and Cc (Z) be the subspace of Cb (Z) of all functions with compact
support on Z. In this case, we say that a functional ρ : L0 (Z) → [0,∞] is a modular on
L0 (Z) if it satisfies, (i) ρ ( f ) = 0 if and only if f = 0 μ−almost everywhere on Z,
(ii) ρ (− f ) = ρ ( f ) , for every f ∈ L0 (Z) , (iii) ρ (α f + βg) � ρ ( f )+ρ (g) , for every
f ,g ∈ L0 (Z) and for any α,β � 0 with α + β = 1.

A modular ρ is N−quasi convex if there exists a constant N � 1 such that the
inequality

ρ (α f + βg) � Nαρ (N f )+Nβ ρ (Ng)

holds for every f ,g ∈ L0 (Z) , α,β � 0 with α + β = 1. Note that if N = 1, then ρ
is called convex. Furthermore, a modular ρ is N−quasi semiconvex if there exists a
constant N � 1 such that ρ (α f ) � Nαρ (N f ) holds for every f ∈ L0 (Z) and α ∈
(0,1] .

The modular space Lρ (Z) generated by the modular ρ , is given by

Lρ (Z) :=
{

f ∈ L0 (Z) : lim
λ→0+

ρ (λ f ) = 0

}
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and Eρ (Z) := { f ∈ Lρ (Z) : ρ (λ f ) < ∞, for all λ > 0} is the space of the finite ele-
ments of Lρ (Z) . Also, we note that if ρ is N−quasi semiconvex, then the space{

f ∈ L0 (Z) : ρ (λ f ) < ∞, for some λ > 0
}

coincides with Lρ (Z) .
Now we recall the modular and strong convergence for double sequences.

DEFINITION 1. Let ( fmn) be a double function sequence whose terms belong to
Lρ (Z) . Then, ( fmn) is said to be modularly convergent to a function f ∈ Lρ (Z) iff

P− lim
m,n

ρ (λ0 ( fmn − f )) = 0, for some λ0 > 0.

Also, ( fmn) is F−norm convergent (or, strongly convergent) to f iff

P− lim
m,n

ρ (λ ( fmn − f )) = 0, for every λ > 0.

The two notions of convergence are equivalent if and only if the modular satisfies
a Δ2−condition, i.e. there exists a constant M > 0 such that ρ (2 f ) � Mρ ( f ) , for
every f ∈ L0 (Z) , see [14].

Now we also give convergences in the sense of power series method in modular
spaces:

DEFINITION 2. Let ( fmn) be a double function sequence whose terms belong to
Lρ (Z) . Then, ( fmn) is said to be modularly convergent to a function f ∈ Lρ (Z) in the
sense of power series method iff

lim
t,s→R−ρ

(
λ0

(
1

p(t,s)

∞

∑
m,n=0

pmnt
msn fmn − f

))
= 0, for some λ0 > 0.

Also, ( fmn) is F−norm convergent (or, strongly convergent) to f in the sense of power
series method iff

lim
t,s→R−ρ

(
λ

(
1

p(t,s)

∞

∑
m,n=0

pmnt
msn fmn − f

))
= 0, for every λ > 0.

Recall the following notions that we use in this paper.
A modular ρ is said to be monotone if ρ( f ) � ρ(g) , for | f | � |g| . A modular ρ

is finite if χA ∈ Lρ (Z) whenever A ∈ B with μ (A) < ∞. A modular ρ is strongly
finite if χA ∈ Eρ (Z) , for all A ∈ B such that μ (A) < ∞ and a modular ρ is said to
be absolutely continuous if there exists an α > 0 such that: for every f ∈ L0 (Z) with
ρ ( f ) < ∞, the following conditions hold:

◦ for each ε > 0 there exists a set A∈B such that μ (A)< ∞ and ρ
(
α f χZ\A

)
� ε,

◦ for every ε > 0 there is a δ > 0 with ρ (α f χB) � ε , for every B ∈ B with
μ (B) < δ .
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If a modular ρ is monotone and finite, then C (Z) ⊂ Lρ (Z) . If ρ is monotone
and strongly finite, then C (Z) ⊂ Eρ (Z) . Also, if ρ is monotone, strongly finite and
absolutely continuous, Cc (Z) = Lρ (Z) with respect to the modular convergence in the
ordinary sense (for details and properties see also [11, 13, 15]).

2. Korovkin type theorems via power series method

In this section we prove some Korovkin type theorems with respect to an abstract
finite set of test functions e0,e1, ...,ek in the sense of power series method. First, we
recall a Korovkin type theorem via modular convergence for double sequences:

Set e0 (v) ≡ 1, for all v ∈ Z, let er, r = 1,2, ...,k and ar, r = 0,1,2, ...,k, be
functions in Cb (Z) . Put

Pu (v) =
k

∑
r=0

ar (u)er (v) , u,v ∈ Z, (2)

and suppose that Pu (v) , u,v ∈ Z, satisfies the following properties:

(P1) Pu (u) = 0, for all u ∈ Z ;

(P2) for every neighbourhood U ∈ U there is a positive real number η with Pu (v) �
η whenever u,v ∈ Z, (u,v) /∈U (see [3]).

THEOREM 1. Let ρ be a monotone, strongly finite, absolutely continuous and
N−quasi semiconvex modular. Suppose that er and ar, r = 0,1,2, ...,k, satisfy prop-
erties (P1) and (P2) . Let T = (Tmn) be a double sequence of positive linear operators
from D into L0 (Z) with Cb (Z) ⊂ D ⊂ L0 (Z) such that the inequality

P− limsup
m,n

ρ (λ (Tmnh)) � Rρ (λh)

holds for every h ∈ XT, λ > 0 and for an absolute positive constant R. If (Tmner) is
strongly convergent to er, r = 0,1,2, ...,k, in Lρ (Z) then (Tmn f ) is modularly conver-
gent to f in Lρ (Z) and f is any function belonging to D∩Lρ (Z) with f −Cb (Z) ⊂
XT.

Let T = (Tmn) be a double sequence of positive linear operators from D into
L0 (Z) with Cb (Z) ⊂ D ⊂ L0 (Z) . Let ρ be monotone and finite modular on L0 (Z) .
Assume further that the double sequence T, together with modular ρ , satisfies the
following property:

there exists a subset XT ⊂ D∩Lρ (Z) with Cb (Z) ⊂ XT the inequality

limsup
t,s→R−

ρ

(
λ

1
p(t,s)

∞

∑
m,n=0

pmnt
msnTmnh

)
� Rρ (λh) (3)

holds for every h ∈ XT, λ > 0 and for an absolute positive constant R.
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Throughout the paper Sts is defined by

Sts f := Sts ( f ; .) :=
1

p(t,s)

∞

∑
m,n=0

pmnt
msnTmn ( f ; .) ,

for each t,s ∈ (0,R) .
In order that to obtain our main theorem, we first give the following result.

THEOREM 2. Let ρ be a monotone, strongly finite and N−quasi semiconvex
modular. Suppose that er and ar, r = 0,1,2, ...,k, satisfy properties (P1) and (P2) .
Let T = (Tmn) be a double sequence of positive linear operators from D into L0 (Z) .
If

lim
t,s→R−ρ (λ0 (Stser − er)) = 0, for some λ0 > 0, (4)

r = 0,1,2, ...,k, in Lρ (Z) , then for every f ∈Cc (Z)

lim
t,s→R−ρ (γ (Sts f − f )) = 0, for some γ > 0 (5)

in Lρ (Z) . If
lim

t,s→R−ρ (λ (Stser − er)) = 0, for every λ > 0,

r = 0,1,2, ...,k, in Lρ (Z) , then for every f ∈Cc (Z)

lim
t,s→R−ρ (λ (Sts f − f )) = 0, for every λ > 0

in Lρ (Z) .

Proof. We first claim that, for every f ∈Cc (Z) ,

lim
t,s→R−ρ (γ (Sts f − f )) = 0, for some γ > 0. (6)

To see this assume that f ∈Cc (Z) . Then, since Z is endowed with the uniformity U ,
f is uniformly continuous and bounded on Z. By the uniform continuity of f , choose
ε ∈ (0,1] , there exists a set U ∈ U such that | f (u)− f (v)| � ε whenever u,v ∈ Z,
(u,v) ∈U.

For all u,v ∈ Z let Pu (v) be as in (2), and η > 0 satisfy condition (P2) . Then
for u,v ∈ Z, (u,v) /∈ U, we have | f (u)− f (v)| � 2M

η Pu (v) where M := sup
v∈Z

| f (v)| .
Therefore, in any case we get | f (u)− f (v)| � ε + 2M

η Pu (v) , for all u,v ∈ Z, namely,

− ε − 2M
η

Pu (v) � f (u)− f (v) � ε +
2M
η

Pu (v) . (7)

Since Tmn is linear and positive, by applying Tmn to (7), for every m,n ∈ N, we have

−εSts (e0;u)−2M
η

Sts (Pu;u) � f (u)Sts (e0;u)−Sts ( f ;u) � εSts (e0;u)+
2M
η

Sts (Pu;u) .
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Hence

|Sts ( f ;u)− f (u)| � |Sts ( f ;u)− f (u)Sts (e0;u)|+ | f (u)| |Sts (e0;u)− e0 (u)|
� εSts (e0;u)+

2M
η

Sts (Pu;u)+M |Sts (e0;u)− e0 (u)|

� ε +(ε +M) |Sts (e0;u)− e0 (u)|+ 2M
η

k

∑
r=0

ar (u) |Sts (er;u)− er (u)| .

Let γ > 0. Now for each r = 0,1,2, ...,k and u∈ Z, choose M0 > 0. The last inequality
gives that

γ |Sts ( f ;u)− f (u)| � γε +Kγ
k

∑
r=0

|Sts (er;u)− er (u)| ,

where K := ε +M + 2M
η M0. Now, applying the modular ρ to both sides of the above

inequality, since ρ is monotone, we get

ρ (γ (Sts f − f )) � ρ

(
γε +Kγ

k

∑
r=0

|Stser − er|
)

.

Thus, we can see that

ρ (γ (Sts f − f )) � ρ ((k+2)γε)+
k

∑
r=0

ρ ((k+2)Kγ (Stser − er)) .

Let λ0 > 0 be as in the hypothesis (4), such λ0 > 0, by hypothesis, does exist. Let
γ > 0 be with (k+2)Kγ � λ0 and since ρ is N−quasi semiconvex and strongly finite,
we have

ρ (γ (Sts f − f )) � Nερ ((k+2)γN)+
k

∑
r=0

ρ (λ0 (Stser − er)) (8)

without loss of generality, where ε ∈ (0,1]. By taking limit superior as t,s→ R− in the
both sides and by using the hypothesis (4), we get

lim
t,s→R−ρ (γ (Sts f − f )) = 0,

which proves our claim (6).
The last part of theorem can be proved similarly to the first one. �
Now, let us give our main theorem of this paper.

THEOREM 3. Let ρ be a monotone, strongly finite, absolutely continuous and
N−quasi semiconvex modular. Suppose that er and ar, r = 0,1,2, ...,k, satisfy prop-
erties (P1) and (P2) . Let T = (Tmn) be a double sequence of positive linear operators
satisfying (3). If

lim
t,s→R−ρ (λ (Stser − er)) = 0, for every λ > 0,
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r = 0,1,2, ...,k in Lρ (Z) , then for every f ∈ D∩Lρ (Z) with f −Cb (Z) ⊂ XT,

lim
t,s→R−ρ (λ0 (Sts f − f )) = 0, for some λ0 > 0

in Lρ (Z) and D, XT are as before.

Proof. Let f ∈D∩Lρ (Z) with f −Cb (Z)⊂XT. It is known from [5, 13] that there
exists a sequence

(
gk j
)⊂Cc (Z) such that ρ (3λ ∗

0 f )< ∞ and P− lim
k, j

ρ
(
3λ ∗

0

(
gk j − f

))
=

0, for some λ ∗
0 > 0. This means that, for every ε > 0, there is a positive number

k0 = k0 (ε) with
ρ
(
3λ ∗

0

(
gk j − f

))
< ε, for every k, j � k0. (9)

For all m,n ∈ N, by linearity and positivity of the operators Tmn, we have

λ ∗
0 |Sts ( f ;u)− f (u)| � λ ∗

0

∣∣Sts
(
f −gk0k0 ;u

)∣∣+ λ ∗
0

∣∣Sts
(
gk0k0 ;u

)−gk0k0 (u)
∣∣

+λ ∗
0

∣∣gk0k0 (u)− f (u)
∣∣

holds for every u ∈ Z . Now, applying modular ρ in the last inequality and using the
monotonicity of ρ , we get

ρ (λ ∗
0 (Sts f − f )) � ρ

(
3λ ∗

0

(
Sts
(
f −gk0k0

)))
+ ρ

(
3λ ∗

0

(
Stsgk0k0 −gk0k0

))
(10)

+ρ
(
3λ ∗

0

(
gk0k0 − f

))
.

Then using the (9) in (10), we have

ρ (λ ∗
0 (Sts f − f )) � ε + ρ

(
3λ ∗

0

(
Sts
(
f −gk0k0

)))
+ ρ

(
3λ ∗

0

(
Stsgk0k0 −gk0k0

))
.

By property (3) and also using the facts that gk0k0 ∈ Cc (Z) and f − gk0k0 ∈ XT, we
obtain

limsup
t,s→R−

ρ (λ ∗
0 (Sts f− f )) � ε +Rρ

(
3λ ∗

0

(
f−gk0k0

))
+ limsup

t,s→R−
ρ
(
3λ ∗

0

(
Stsgk0k0−gk0k0

))
� ε (1+R)+ limsup

t,s→R−
ρ
(
3λ ∗

0

(
Stsgk0k0 −gk0k0

))
also, resulting from previous theorem,

0 = lim
t,s→R−ρ

(
3λ ∗

0

(
Stsgk0k0 −gk0k0

))
= limsup

t,s→R−
ρ
(
3λ ∗

0

(
Stsgk0k0 −gk0k0

))
,

which gives
0 � limsup

t,s→R−
ρ (λ ∗

0 (Sts f − f )) � ε (1+R) .

From arbitrariness of ε > 0, it follows that limsup
t,s→R−

ρ (λ ∗
0 (Sts f − f )) = 0. Furthermore,

lim
t,s→R−ρ (λ ∗

0 (Sts f − f )) = 0,

and this completes the proof. �
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REMARK 2. Note that, in Theorem 3, in general it is not possible to obtain strong
convergence in the sense of power series method unless the modular ρ satisfies the
Δ2−condition.

Now, we give an application showing that in general, our results are stronger than
classical ones.

EXAMPLE 1. Let us consider Z = [0,1]2 ⊂ R
2 and let ϕ : [0,∞) → [0,∞) is

a continuous function with ϕ is convex, ϕ (0) = 0, ϕ (x) > 0, for any x > 0, and
limx→∞ ϕ (x) = ∞ . Then, the functional ρϕ defined by

ρϕ( f ) :=
1∫

0

1∫
0

ϕ (| f (x,y)|)dxdy, for f ∈ L0 (Z) ,

is a convex modular on L0 (Z) and

Lϕ (Z) :=
{

f ∈ L0 (Z) : ρϕ (λ f ) < +∞, for some λ > 0
}

is the Orlics space generated by ϕ .
For every (x,y)∈Z , let e0 (x,y)= a3 (x,y)= 1, e1 (x,y)= x, e2 (x,y) = y, e3 (x,y)

= a0 (x,y) = x2 + y2, a1 (x,y) = −2x, a2 (x,y) = −2y. For every m,n ∈ N , u1,u2 ∈
[0,1] , let Kmn (u1,u2) = (m+1)(n+1)um

1 un
2 and for f ∈C (Z) and x,y ∈ [0,1] set

Mmn ( f ;x,y) =
1∫

0

1∫
0

Kmn (u1,u2) f (u1x,u2y)du1du2.

Then we get

1∫
0

1∫
0

Kmn (u1,u2)du1du2 = (m+1)

⎛
⎝ 1∫

0

um
1 du1

⎞
⎠(n+1)

⎛
⎝ 1∫

0

un
2du2

⎞
⎠= 1,

and hence, Mmn (e0;x,y) = e0 (x,y) = 1. Also, we know from [2] that

|Mmn (e1;x,y)− e1 (x,y)| � 1
m+2

, |Mmn (e2;x,y)− e2 (x,y)| � 1
n+2

,

∣∣Mmn
(
e2
1;x,y

)− e2
1 (x,y)

∣∣ � 2
m+3

,
∣∣Mmn

(
e2
2;x,y

)− e2
2 (x,y)

∣∣� 2
n+3

,

and for each m,n � 2, f ∈ Lϕ(Z) we get ρϕ(Mmn f ) � 32ρϕ( f ). Moreover, (Mmn)
satisfies the condition (14) in [16] with XM = Lϕ (Z) and (Mmn f ) is modulary conver-
gent to f ∈ Lϕ (Z) . Using the operators M =(Mmn) , we define the double sequence of
positive linear operators T = (Tmn) on Lϕ (Z) as follows:

Tmn ( f ;x,y) = (1+ smn)Mmn ( f ;x,y) , for f ∈ Lϕ (Z),
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x,y ∈ [0,1] and m,n ∈ N, where smn = 1, m,n are squares and 0 otherwise. Also let
R = 1, p(t,s) = 1

(1−t)(1−s) and for m,n � 0, pmn = 1. As it is well known, in this

case the power series method coincides with Abel method. Then, (smn) is convergent
to 0 in the sense of power series method. If ϕ (x) = xp , for 1 � p < ∞, x � 0 then
Lϕ(Z) = Lp(Z) and we have for any function f ∈ Lϕ (Z), ρϕ( f ) = ‖ f‖p

p .
Then, for every L1 (Z) , λ > 0 that

ρϕ(λ
1

p(t,s)

∞

∑
m,n=0

pmnt
msnTmnh) =

∥∥∥∥∥λ
1

p(t,s)

∞

∑
m,n=0

pmnt
msnTmnh

∥∥∥∥∥
p

p

� 2p

∥∥∥∥∥λ
1

p(t,s)

∞

∑
m,n=0

pmnt
msnMmnh

∥∥∥∥∥
p

p

� 2p 1
p(t,s)

∞

∑
m,n=0

pmnt
msn ‖λMmnh‖p

p

� 2p+5ρϕ (λh) .

Now, observe that Tmn (e0;x,y)−e0 (x,y) = smn, hence, we can see, for any λ > 0, that

ρϕ(λ
1

p(t,s)

∞

∑
m,n=0

pmnt
msnTmne0− e0) =

∥∥∥∥∥λ
1

p(t,s)

∞

∑
m,n=0

pmnt
msnTmne0− e0

∥∥∥∥∥
p

p

=

∥∥∥∥∥λ
1

p(t,s)

∞

∑
m,n=0

pmnt
msnsmn

∥∥∥∥∥
p

p

,

then, since (smn) is convergent to 0 in the sense of power series method, we get

lim
t,s→R−ρϕ(λ

1
p(t,s)

∞

∑
m,n=0

pmnt
msnTmne0− e0) = 0.

Also, we have

ρϕ(λ
1

p(t,s)

∞

∑
m,n=0

pmnt
msnTmne1 − e1) =

∥∥∥∥∥λ
1

p(t,s)

∞

∑
m,n=0

pmnt
msnTmne1 − e1

∥∥∥∥∥
p

p

� 2p

∥∥∥∥∥λ 1
p(t,s)

∞

∑
m,n=0

pmnt
msnMmne1−e1

∥∥∥∥∥
p

p

�2p 1
p(t,s)

∞

∑
m,n=0

pmnt
msn ‖λ (Mmne1−e1)‖p

p ,

from above inequality, since (Mmn f ) is modulary convergent to f ∈ Lϕ (Z), we have

lim
t,s→R−ρϕ(λ

1
p(t,s)

∞

∑
m,n=0

pmnt
msnTmne1− e1) = 0.

Similarly, we get

lim
t,s→R−ρϕ(λ

1
p(t,s)

∞

∑
m,n=0

pmnt
msnTmne2− e2) = 0,

lim
t,s→R−ρϕ(λ

1
p(t,s)

∞

∑
m,n=0

pmnt
msnTmne3− e3) = 0.
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So, our new operator T = (Tmn) satisfies all conditions of Theorem 3 and therefore we
obtain

lim
t,s→R−ρϕ(λ0

1
p(t,s)

∞

∑
m,n=0

pmnt
msnTmn f − f ) = 0,

for some λ0 > 0, for any f ∈ Lp (Z) . However, (Tmne0) is not modularly convergent,
thus (Tmn) does not fulfil the Theorem 1.

3. An extension to non-positive operators

In [1, 2, 3], they relax the positivity condition of linear operators in the Korovkin
theorems. Following this approach, we give some positive answers also for modular
convergence in the sense of power series method and prove a Korovkin type approxi-
mation theorem.

Let I be a bounded interval of R, C2 (I) (resp. C2
b (I)) be the space of all func-

tions defined on I, (resp. bounded and) continuous together with their first and second
derivatives, C+ :=

{
f ∈C2

b (I) : f � 0
}

, C2
+ :=

{
f ∈C2

b (I) : f ′′ � 0
}

.

Let er, r = 1,2, ...,k and ar, r = 0,1,2, ...,k, be functions in C2
b (I) , Pu (v) , u,v∈

I, be as in (7), and suppose that Pu (v) satisfies the properties (P1) , (P2) and

(P3) there is a positive real constant S0 such that P′′
u (v) � S0 , for all u,v ∈ I (here the

second derivative is intended with respect to v).

Now we prove the following Korovkin type approximation theorem for not neces-
sarily positive linear operators.

THEOREM 4. Let ρ and σr be as in Theorem 2 and er, ar, r = 0,1,2, ...,k and
Pu (v) , u,v ∈ I, satisfies the properties (P1) , (P2) and (P3) . Assume that T = (Tmn)
is a double sequence of linear operators and Tmn

(
C+∩C2

+
)⊂C+ , for all m,n ∈ N . If

Tmner is modularly convergent to er in the sense of power series method in Lρ (I) , for
each r = 0,1,2, ...,k, then Tmn f is modularly convergent to f in the sense of power
series method in Lρ (I) , for every f ∈C2

b (I) .
If Tmner is strongly convergent to er in the sense of power series method, r =

0,1,2, ...,k, in Lρ (I) , then Tmn f is strongly convergent to f in the sense of power
series method in Lρ (I) , for every f ∈C2

b (I) .
Furthermore, if ρ is absolutely continuous, T satisfies the property (3) and Tmner

is strongly convergent to er in the sense of power series method, r = 0,1,2, ...,k, in
Lρ (I) , then Tmn f is modularly convergent to f in the sense of power series method in
Lρ (I) , for every f ∈ D∩Lρ (I) with f −Cb (I) ⊂ XT.

Proof. Let f ∈C2
b (I) . Since f is uniformly continuous and bounded on I, given

ε > 0 with 0 < ε � 1, there exists a δ > 0 such that | f (u)− f (v)|� ε , for all u,v∈ I,
|u− v| � δ . Let Pu (v) , u,v ∈ I, be as in (2) and let η > 0 be associated with δ ,
satisfying (P2) . As in Theorem 2, for every β � 1 and u,v ∈ I, we have

− ε − 2Mβ
η

Pu (v) � f (u)− f (v) � ε +
2Mβ

η
Pu (v) , (11)
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where M = sup
v∈I

| f (v)| . From (11) it follows that

h1,β (v) := ε +
2Mβ

η
Pu (v)+ f (v)− f (u) � 0, (12)

h2,β (v) := ε +
2Mβ

η
Pu (v)− f (v)+ f (u) � 0. (13)

Let H0 satisfy (P3) . For each v ∈ I, we get

h′′1,β (v) � 2MβH0

η
+ f ′′ (v) , h′′2,β (v) � 2MβH0

η
− f ′′ (v) .

Because of f ′′ is bounded on I, we can choose β � 1 in such a way that h′′1,β (v) � 0,

h′′2,β (v) � 0, for each v ∈ I. Hence h1,β ,h2,β ∈C+ ∩C2
+ and then, by hypothesis

Tmn
(
h j,β ;u

)
� 0, for all m,n ∈ N, u ∈ I and j = 1,2 (14)

and hence
Sts
(
h j,β ;u

)
� 0, for t,s ∈ (0,R) , u ∈ I and j = 1,2.

From (12)-(14) and the linearity of Tmn, we get

εSts (e0;u)+
2Mβ

η
Sts (Pu;u)+Sts ( f ;u)− f (u)Sts (e0;u) � 0,

εSts (e0;u)+
2Mβ

η
Sts (Pu;u)−Sts ( f ;u)+ f (u)Sts (e0;u) � 0,

thus,

−εSts (e0;u)− 2Mβ
η

Sts (Pu;u) � f (u)Sts (e0;u)−Sts ( f ;u)

� εSts (e0;u)+
2Mβ

η
Sts (Pu;u) .

By arguing similarly as in the proof of Theorem 2, using the modular ρ and for t,s ∈
(0,R) , we have the assertion of the first part.

The other parts can be proved similarly as in the proofs of Theorem 2 and Theorem
3. �

RE F ER EN C ES

[1] G. A. ANASTASSIOU AND O. DUMAN, Towards intelligent modeling: Statistical approximation the-
ory, Intelligent System Reference Library, Springer-Verlag, Berlin, Heidelberg, New York, 2011.

[2] C. BARDARO, A. BOCCUTO, K. DEMIRCI, I. MANTELLINI, S. ORHAN, Korovkin-type theorems for
modular Ψ−A− statistical convergence, J. Funct. Spaces, 2015, Article ID 160401, 2015, pp. 11.

[3] C. BARDARO, A. BOCCUTO, X. DIMITRIOU AND I. MANTELLINI, Abstract Korovkin type theorems
in modular spaces and applications, Cent. Eur. J. Math., 11, 10, 2013, 1774–1784.



1034 F. DIRIK, S. YILDIZ AND K. DEMIRCI

[4] C. BARDARO AND I. MANTELLINI, Korovkin’s theorem in modular spaces, Commentationes Math.,
47, 2, 2007, 239–253.

[5] C. BARDARO, J. MUSIELAK, G. VINTI, Nonlinear integral operators and applications, de Gruyter
Series in Nonlinear Analysis and Appl., Vol., 9, Walter de Gruyter Publ., Berlin, 2003.

[6] C. BARDARO AND I. MANTELLINI, A Korovkin Theorem in multivariate modular function spaces, J.
Funct. Spaces Appl., 7, 2, 2009, 105–120.
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