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Abstract. For an n -by-n complex matrix A , we consider conditions on A for which the operator
norms ‖Ak‖ (resp., numerical radii w(Ak) ), k � 1 , of powers of A are constant. Among other
results, we show that the existence of a unit vector x in Cn satisfying |〈Akx,x〉| = w(Ak) = w(A)
for 1 � k � 4 is equivalent to the unitary similarity of A to a direct sum λB⊕C , where |λ |= 1 ,
B is idempotent, and C satisfies w(Ck) � w(B) for 1 � k � 4 . This is no longer the case for
the norm: there is a 3-by-3 matrix A with ‖Akx‖ = ‖Ak‖ =

√
2 for some unit vector x and for

all k � 1 , but without any nontrivial direct summand. Nor is it true for constant numerical radii
without a common attaining vector. If A is invertible, then the constancy of ‖Ak‖ (resp., w(Ak) )
for k = ±1,±2, . . . is equivalent to A being unitary. This is not true for invertible operators on
an infinite-dimensional Hilbert space.

1. Introduction

For a bounded linear operator A on a complex Hilbert space H , its operator norm,
numerical range and numerical radius are

‖A‖ = sup{‖Ax‖ : x ∈ H,‖x‖ = 1},
W (A) = {〈Ax,x〉 : x ∈ H,‖x‖ = 1},

and
w(A) = sup{|〈Ax,x〉| : x ∈ H,‖x‖ = 1},

respectively, where 〈·, ·〉 and ‖ · ‖ denote the inner product and its associated vector
norm in H , respectively. In this paper, we are concerned with the problem when the
powers of A have constant norms or constant numerical radii. One type of operators for
which this occurs is that of idempotent ones, namely, those A’s satisfying A2 = A . Thus
it seems natural to ask whether the constancy condition for norms or numerical radii
would imply A having a modulus-one multiple of an idempotent operator as a direct
summand. Though this is indeed the case when H has dimension 2 (Proposition 3.2),
it fails for H with larger dimensions (Proposition 3.4). Note that if an operator A on a
finite-dimensional space H has an idempotent summand, then its powers have a com-
mon attaining vector for their norms and numerical radii. The latter means that there is
a unit vector x in H for which ‖Akx‖= ‖Ak‖= ‖A‖ (resp., |〈Akx,x〉|= w(Ak) = w(A))
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for all k � 1. We show in Theorem 4.2 that the existence of a common attaining vector
for the numerical radii for powers up to 4 would guarantee the idempotent summand.
That “4” is the smallest such number is shown by the example in Proposition 4.4. Un-
fortunately, this is not true for the norm: the 3-by-3 matrix A1 in Proposition 3.4 is a
counterexample. Finally, we turn to invertible operators in Section 5. We show in The-
orem 5.1 that an invertible operator A on a finite-dimensional space is such that ‖Ak‖
(resp., w(Ak)), k = ±1,±2, . . . , is constant if and only if it is unitary. This is not the
case for A acting on an infinite-dimensional space: we show in Theorem 5.3 that for
any ε > 0, there is an invertible A such that ‖Ak‖ = 1+ ε (resp., w(Ak) = 1+ ε ) for
all k = ±1,±2, . . . .

In Section 2 below, we consider the general question of which sequence of non-
negative numbers can be the norms (resp., numerical radii) of powers of an operator.
Here only some preliminary results are obtained in preparation for later discussions on
constant norms and constant numerical radii. The constancy problems are addressed in
Section 3. Section 4 considers these problems under the extra condition that powers of
the operator have a common attaining vector for their norms or numerical radii. The
case of invertible operators is taken up in Section 5.

Recall that the spectrum and spectral radius of an operator A are σ(A) = {λ ∈
C : A−λ I not invertible} and ρ(A) = sup{|λ | : λ ∈ σ(A)} . A is irreducible if it is not
unitarily similar to an operator of the form B⊕C ; otherwise, it is reducible. To show
the irreducibility of A , we usually verify that the only projection P (P = P∗ = P2 )
commuting with A is either I or 0. A is power-bounded if sup{‖Ak‖ : k � 1}< ∞ . We
use ReA and ImA to denote the real part (A+A∗)/2 and imaginary part (A−A∗)/(2i)
of A , respectively. An operator on an n -dimensional space will be identified as an n -
by-n matrix. The n -by-n Jordan block Jn(λ ) with eigenvalue λ is the matrix⎡

⎢⎢⎢⎢⎣
λ 1

λ
. . .
. . . 1

λ

⎤
⎥⎥⎥⎥⎦ .

We use diag(λ1, . . . ,λn) , In and 0n to denote the n -by-n diagonal matrix with diagonal
entries λ1, . . . ,λn , the n -by-n identity matrix and zero matrix, respectively, and D to
denote the open unit disc {λ ∈ C : |λ | < 1} . The transpose of a matrix A is denoted
by AT . For a subset M of H , we use ∨M to denote the closed subspace of H spanned
by vectors in M .

Our references for general properties of operators and finite matrices are, respec-
tively, [4] and [6]; our reference for numerical ranges and numerical radii is [5, Chapter
1].

We end this section with a list of properties concerning the numerical radius from
[5, Chapter 1] which are to be used frequently in later discussions.

PROPOSITION 1.1. For an operator A on H , the following properties hold:

(a) if A = A1⊕A2 , then w(A) = max{w(A1),w(A2)} ;
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(b) w(A) � ‖A‖ � 2w(A);

(c) if λ is an eigenvalue of A and is in the boundary of W (A) , then A is unitarily
similar to [λ ]⊕B;

(d) w(A) = sup{‖Re(eiθ A)‖ : θ ∈ R} ;

(e) if A =
[
a
0

b
c

]
with a and c real, then w(A) = ‖ReA‖ ;

(f) if A =
[
a
0

b
c

]
and a,c and 0 are collinear, then

w(A) =
(|a+ c|+√|a− c|2 + |b|2)/2 ;

(g) w(Ak) � w(A)k for k � 1 (power inequality) .

2. Norms and numerical radii of powers

We start with a known result, due to Wallen, from [4, Problem 92].

PROPOSITION 2.1. Let pk � 0 for k � 1 . Then pk = ‖Ak‖ for some operator A
and for all k � 1 if and only if the pk ’s satisfy p j+k � p j pk for j,k � 1 .

If pk > 0 for all k � 1, then the operator A = [ai j]∞i, j=1 on �2(N) given by

ai j =
{

pi/pi−1, if j− i = 1 and i � 1 (p0 ≡ 1),
0, otherwise,

satisfies ‖Ak‖= pk for all k ; otherwise, if k0 is the smallest integer for which pk0 = 0,

then we would have pk = 0 for all k � k0 and hence A = [ai j]
k0
i, j=1⊕0, where

ai j =
{

pi/pi−1, if j− i = 1 and 1 � i � k0−1,
0, otherwise,

will do.
It would be interesting to know whether a (modified) condition as above on the

pk ’s would guarantee the existence of an n -by-n matrix A satisfying ‖Ak‖ = pk for all
k . The next proposition is a preliminary try.

PROPOSITION 2.2. For p1, p2 � 0 , the condition p2 � p2
1 is necessary and suffi-

cient for the existence of a 2 -by-2 matrix A with ‖Ak‖ = pk for k = 1,2 .

Proof. To prove the sufficiency, we may assume that p1 > 0 and let

A =

[
p2/p1

√
p2

1− (p2/p1)2

0 0

]
.

Then it is easily seen that ‖Ak‖ = pk for k = 1,2. �
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Note that if p1, p2 > 0, p3 = 0 and p2 � p2
1 , then there is no 2-by-2 matrix A with

‖Ak‖ = pk for 1 � k � 3. This is because if there is such an A , then ‖A3‖ = p3 = 0
implies that A is nilpotent, which yields A2 = 0 or p2 = 0, a contradiction. On the other
hand, the arguments for the proof of Proposition 2.1 show that for pk > 0, 1 � k � n−1,
and pn = 0, the existence of an n -by-n matrix A satisfying ‖Ak‖ = pk for 1 � k � n
is equivalent to the pk ’s satisfying p j+k � p j pk for j,k � 1 with j + k � n− 1. As
pointed out by the referee, when p1, . . . , pn > 0, this characterization may turn out to
be true. This we have difficult in proving at this stage.

We next turn to the numerical radius. Since w(Aj+k) � w(Aj)w(Ak) , j,k � 1,
do not hold in general (by the example in [1]), the best replacement for ‖Aj+k‖ �
‖Aj‖‖Ak‖ , j,k � 1, is the power inequalities (cf. Proposition 1.1 (g)). Because of the
difficulty in computing the numerical radius even for a general 2-by-2 matrix, whether
such inequalities would be enough to characterize w(Ak)’s is quite open. There is one
case when the numerical radius of a 2-by-2 matrix is easy to compute, namely, when

A =
[
a
0

b
c

]
is such that a,c and 0 are collinear (cf. Proposition 1.1 (f)). Using this, we

may obtain the following analogue of Proposition 2.2.

PROPOSITION 2.3. Let w1,w2 � 0 . Then w2 � w2
1 is necessary and sufficient for

the existence of a 2 -by-2 matrix A with w(Ak) = wk for k = 1,2 .

Proof. For the sufficiency, we may assume that w1 > 0 and let

A =

[
w2/w1 2

√
w2

1−w2

0 0

]
.

From Proposition 1.1 (f), we can easily show that w(Ak) = wk for k = 1,2. �
As before, if w1,w2 > 0, w3 = 0, and w2 � w2

1 , then there is no 2-by-2 matrix A
satisfying w(Ak) = wk for 1 � k � 3. However, the next proposition says that there are
3-by-3 matrices satisfying these conditions.

PROPOSITION 2.4. For w3 = 0 , the conditions w1,w2 � 0 and w2 � w2
1 are nec-

essary and sufficient for the existence of a 3 -by-3 matrix A with w(Ak) = wk for
1 � k � 3 .

Proof. To prove the sufficiency, we may assume that w1 > 0 and let

A =

⎡
⎣0 a

0 b
0

⎤
⎦ , a,b � 0.

Then w(A) = ‖ReA‖ =
√

a2 +b2/2 (since W (A) is a circular disc centered at 0) and

w(A2) = w
(⎡

⎣0 0 ab
0 0

0

⎤
⎦)

=
1
2
ab.
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If b =
(
2w2

1 +2(w4
1−w2

2)
1/2

)1/2
> 0 (since w2 � w2

1 ) and a = 2w2/b , then w(Ak) = wk

for 1 � k � 3. �
Note that if w1 = w2 = 1, w3 = 1/2, and w4 = 0, then, through some tedious

computations, we can show that no 4-by-4 matrix A of the form⎡
⎢⎢⎣

0 a
0 b

0 c
0

⎤
⎥⎥⎦

satisfies w(Ak) = wk for 1 � k � 4. However, this does not rule out the possibility that
other 4-by-4 nilpotent A will satisfy these conditions.

We conclude this section with the following relevant information on the norms and
numerical radii of matrix powers.

PROPOSITION 2.5. For an n-by-n matrix A, the following conditions are equiv-
alent:

(a) ‖Ak‖ = ‖A‖k (resp., w(Ak) = w(A)k) for some k larger than or equal to the
degree of the minimal polynomial of A;

(b) ‖Ak‖ = ‖A‖k (resp., w(Ak) = w(A)k) for all k � 1 ;

(c) ‖A‖ = ρ(A) (resp., w(A) = ρ(A));

(d) A is unitarily similar to a matrix of the form [a]⊕ B, where |a| = ‖A‖ and
‖B‖ � |a| (resp., |a| = w(A) and w(B) � |a|) .

This is proved in [8, Theorem 2.1] (resp., [3, Theorems 2 and 3]).

COROLLARY 2.6. For an n-by-n matrix A, the following are equivalent:

(a) ‖An‖ = ‖A‖ = 1 (resp., w(An) = w(A) = 1);

(b) ‖Ak‖ = 1 (resp., w(Ak) = 1) for all k � 1 ;

(c) A is unitarily similar to [a]⊕B with ‖B‖ � |a| = 1 (resp., w(B) � |a| = 1) .

3. Constant norms and constant numerical radii

We start by observing that if A is such that ‖Ak‖ = c (resp., w(Ak) = c′ ) for all
k � 1, then either c = 0 or c � 1 (resp., c′ = 0 or c′ � 1). This is even true for power-
bounded A and is an easy consequence of Gelfand’s formula ρ(A) = limk ‖Ak‖1/k

(resp., ρ(A) = limk w(Ak)1/k ) (cf. [4, Problem 88]).
The next lemma concerning properties of idempotent operators follows easily from

results in [12].

LEMMA 3.1. If A is an idempotent operator on H , then:
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(a) Ak = A for all k � 1 ;

(b) A is unitarily similar to an operator of the form 0⊕ I⊕
[
0
0

B
I

]
on H1 ⊕H2 ⊕

(H3 ⊕H3) , where B on H3 is such that 〈Bx,x〉 > 0 for any nonzero vector x in
H3 and is unique up to unitary similarity;

(c) ‖A‖ =
√

1+‖B‖2 ;

(d) w(A) = (1+
√

1+‖B‖2)/2 ;

(e) A is reducible when 3 � dimH < ∞ .

For a 2-by-2 matrix, the constancy of the norms or numerical radii of its powers
does indeed imply that it has a multiple of an idempotent as a direct summand.

PROPOSITION 3.2. Let A be a 2 -by-2 matrix.

(a) The following conditions are equivalent:

(i) ‖Ak‖ = 1 for all k � 1 ;

(ii) w(Ak) = 1 for all k � 1 ;

(iii) A is unitarily similar to λ
[
1
0

0
a

]
, where |λ | = 1 and |a| � 1 .

(b) The following conditions are equivalent:

(i) ‖Ak‖ = c > 1 for all k � 1 ;

(ii) w(Ak) = c′ > 1 for all k � 1 ;

(iii) A is unitarily similar to λB, where |λ | = 1 and B is a non-Hermitian
idempotent.

Moreover, c and c′ are related by c′ = (1+ c)/2 . Under (i) (resp., (ii)) , B may

be taken as

[
1
0

√
c2−1
0

]
(resp.,

[
1
0

2
√

c′(c′ −1)
0

]
) .

The following lemma is needed for the proof of (a) (ii)⇒(iii) and also needed later
in Section 4. It is from [2, Lemma 1.5].

LEMMA 3.3. Let A be a nonzero 2 -by-2 matrix. Then A = w(A)
[
1
y

x
z

]
if and

only if |x| � 1 , y = −x, and z = (1−|x|2)u−|x|2 for some u with |u| � 1 .

Proof of Proposition 3.2.

(a) The implications (iii)⇒(i) and (iii)⇒(ii) are trivial. We now prove (i)⇒(iii).
By Gelfand’s formula, we have ρ(A) = 1 and hence A is unitarily similar to

λ
[
1
0

a
b

]
with |λ | = 1, a � 0 and |b| � 1. Since 1 = ‖A‖ �

√
1+a2 , we ob-

tain a = 0 and thus A is unitarily similar to λ
[
1
0

0
b

]
as required. On the other
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hand, under (ii), w(A) = w
([

1
0

a
b

])
= 1. The implication (ii)⇒(iii) follows

immediately from Lemma 3.3.

Note that the equivalence (i)⇔(iii) (resp., (ii)⇔(iii)) also follows directly from
Corollary 2.6.

(b) We need only prove (i)⇒(iii) and (ii)⇒(iii), and may assume that A = λB ,

where |λ |= 1, B =
[
1
0

a
b

]
, a > 0, and |b|� 1. To prove (i)⇒(iii), we consider

four cases separately:

(I) b = 1. In this case, we have Bk =
[
1
0

ka
1

]
and hence c = ‖Ak‖ = ‖Bk‖ �√

1+ k2a2 for all k � 1. This implies that a = 0, which contradicts our assump-
tion.

(II) |b|= 1 and b �= 1. Let k j , j � 1, be positive integers such that lim j bk j = 1.
Then

lim
j

Bk j = lim
j

[
1 a(1−bkj)/(1−b)
0 bkj

]
= I2 (1)

and hence c = lim j ‖Bkj‖ = 1. Again, this contradicts (i).

(III) 0 < b < 1. Since

lim
k

Bk = lim
k

[
1 a(1−bk)/(1−b)
0 bk

]
=

[
1 a/(1−b)
0 0

]
,

we obtain

c = lim
k
‖Bk‖ =

∥∥[
1 a/(1−b)
0 0

]∥∥ =
(
1+

a2

(1−b)2

)1/2
. (2)

On the other hand, it can be computed that

c = ‖B‖ =
∥∥[

1 a
0 b

]∥∥ =
(1

2

(
a2+b2+1+(a4+b4+1+2(a2b2+a2−b2))1/2))1/2

.

(3)
The equality of (2) and (3) yields that

a2((1−b)4 +(a2 +b2)(1−b)2) = a2(a2 +(1−b)2).
As a > 0, we deduce from above that

a2 =
(1−b)4 +(b2−1)(1−b)2

1− (1−b)2 =
2(1−b)2(b−1)

2−b
< 0,

which is absurd.

(IV) 0 < |b|< 1 and b is not in (0,1) . Let k0 � 1 be such that Rebk0 < 0. Then,
as in (2),

(
1+

a2|1−bk0|2
|1−b|2

)1/2
� ‖Bk0‖ = c =

(
1+

a2

|1−b|2
)1/2

,
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from which we obtain a|1− bk0 | � a . As a > 0, we have Re(1− bk0) � |1−
bk0 | � 1 or Rebk0 � 0, which contradicts our choice of k0 .

As each of the above four cases leads to a contradiction, we arrive at the remain-

ing option of b = 0. Thus A = λB with |λ |= 1 and B =
[
1
0

a
0

]
idempotent. As

c = ‖A‖ = ‖
[
1
0

a
0

]
‖ =

√
1+a2 , we have a =

√
c2−1 as asserted.

We next prove (ii)⇒(iii). As before, we consider four cases separately:

(I) b = 1. In this case, we have

c′ = w(Ak) = w(Bk) = w
([

1 ka
0 1

])
= 1+

1
2
ka, k � 1.

This yields a = 0, a contradiction.

(II) |b| = 1 and b �= 1. Let k j , j � 1, be as before. Then lim j Bk j = I2 as in (1)
and hence c′ = lim j w(Bkj ) = 1, again contradicting (ii).

For the remaining two cases, let b = |b|e2πθ i , where θ is real.

(III) 0 < |b|< 1 and θ = m/n with n � 1 and m integers. Then

lim
k

Bk = lim
k

[
1 a(1−bk)/(1−b)
0 bk

]
=

[
1 a/(1−b)
0 0

]
.

Hence

c′ = lim
k

w(Bk) = w
([

1 a/(1−b)
0 0

])
=

1
2

(
1+(1+

∣∣ a
1−b

∣∣2)1/2), (4)

by Lemma 3.1 (d). Since bn = |b|ne2πmi = |b|n > 0, we also have

c′ = w(Bn) = w
([1 a(1−bn)/(1−b)

0 bn

])
=

1
2

(
(1+bn)+(1−bn)(1+

∣∣ a
1−b

∣∣2)1/2)
(5)

by Proposition 1.1 (f). The equality of (4) and (5) yields that bn = bn(1+ |a/(1−
b)|2)1/2 . Since b �= 0, we obtain a = 0, which contradicts our assumption.

(IV) 0 < |b| < 1 and θ irrational. In this case, the set {e2πnθ i : n � 1} is dense
in ∂D . Let k0 be such that Rebk0 < 0 and bk0 is very close to Rebk0 . Let

C =
[
1
0
|a/(1−b)|

0

]
and let x = [x1 x2]T be a unit vector in C2 with x1,x2 > 0

such that 〈Cx,x〉 = w(C) (cf. [7, Proposition 3.3]). Letting

D =
[

1 |a(1−bk0)/(1−b)|
0 bk0

]
,

we claim that Re〈Dx,x〉 > w(C) . Indeed, this is the same as

x2
1 +

∣∣a(1−bk0)
1−b

∣∣x1x2 +(Rebk0)x2
2 > x2

1 +
∣∣ a
1−b

∣∣x1x2



CONSTANT NORMS AND NUMERICAL RADII OF MATRIX POWERS 1043

or

d
|1−bk0|−1

Rebk0
+1 < 0, where d =

∣∣ a
1−b

∣∣x1

x2
.

Since a �= 0 as before, we deduce from

x2
1 +

∣∣ a
1−b

∣∣x1x2 = w(C) =
1
2

(
1+(1+

∣∣ a
1−b

∣∣2)1/2) > 1 and x2
2 = 1− x2

1

that |a/(1−b)|x1x2 > x2
2 , which yields d > 1. As

|1−bk0|−1
Rebk0

≈ |1−Rebk0 |−1
Rebk0

=
−Rebk0

Rebk0
= −1,

we do have

d
|1−bk0|−1

Rebk0
+1 ≈−d +1 < 0,

which proves our claim. Thus

c′ = w(Ak0) = w(D) � |〈Dx,x〉| � Re〈Dx,x〉 > w(C),

which contradicts the fact that

c′ = lim
k

w(Ak) = lim
k

w(Bk) = w(C).

As before, b = 0 is the only option for us and hence A = λB with |λ | = 1

and B =
[
1
0

a
0

]
. Finally, from c′ = w(A) = w(B) = (1+

√
1+a2)/2, we have

a = 2
√

c′(c′ −1) and c and c′ are related by c′ = (1+ c)/2. �

After the positive results in the preceding proposition, it seems conceivable that an
n -by-n matrix A with the ‖Ak‖ ’s (resp., w(Ak)’s) constant should have a summand of
the form λB , where |λ | = 1 and B is idempotent. This turns out to be not the case as
the following examples show.

PROPOSITION 3.4. If

A1 =

⎡
⎣
√

2/2 −1/2 0
1

√
2/2 0√

2/2 −1/2 0

⎤
⎦ (resp., A2 =

⎡
⎣ 1 1 0

0 −1
√

3−√
6

0 0 0

⎤
⎦),

then ‖Ak
1‖ =

√
2 (resp., w(Ak

2) =
√

6/2) for all k � 1 , and A1 (resp., A2) is irre-
ducible.

Proof. For A1 , we have A∗
1A1 = diag(2,1,0) and, by induction,

Ak
1
∗
Ak

1 = A∗
1(A

k−1
1

∗
Ak−1

1 )A1 = A∗
1

(
diag(2,1,0)

)
A1 = diag(2,1,0), k � 2.
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Hence ‖Ak
1‖ =

√
2 for all k � 1.

As for A2 , note that

A2
2 =

⎡
⎢⎣1 0

√
3−√

6

0 1 −
√

3−√
6

0 0 0

⎤
⎥⎦

is idempotent. Hence A2k−1
2 = A2 and A2k

2 = A2
2 for k � 1. We now show that w(A2) =

w(A2
2) =

√
6/2. To prove w(A2) =

√
6/2, we make use of Proposition 1.1 (d). For any

real θ , consider the matrices Uθ = diag(e2iθ ,eiθ ,1) and

Bθ ≡U∗
θ (eiθ A2)Uθ =

⎡
⎣ eiθ 1 0

0 −eiθ
√

3−√
6

0 0 0

⎤
⎦ .

Then

ReBθ =

⎡
⎢⎣

cosθ 1/2 0

1/2 −cosθ
√

3−√
6/2

0
√

3−√
6/2 0

⎤
⎥⎦

has characteristic polynomial

pθ (x) ≡ det(xI3 −ReBθ ) = x3− (1−
√

6
4

+ cos2 θ )x+
3−√

6
4

cosθ .

Since, for each fixed θ , the derivative

p′θ (x) = 3x2− (1−
√

6
4

+ cos2 θ ) � 3x2−2+
√

6
4

> 0 for x �
√

6
2

,

pθ (x) is strictly increasing on [
√

6/2,∞) . This together with

pθ (
√

6
2

) =
3
4

√
6− (1−

√
6

4
+ cos2 θ )

√
6

2
+

3−√
6

4
cosθ

� 3
4

√
6− (1−

√
6

4
+1)

√
6

2
+

3−√
6

4
(−1) = 0 = pπ(

√
6

2
)

yields that pθ (x) > 0 on (
√

6/2,∞) for all θ in (−π ,π) . Thus all eigenvalues of
ReBθ are less than or equal to

√
6/2 for any θ and

√
6/2 is an eigenvalue of ReBπ .

This says that ‖ReBθ‖ �
√

6/2 for all θ and ‖ReBπ‖ =
√

6/2. Applying Proposition
1.1 (d) then yields that w(A2) = supθ ‖ReBθ‖ =

√
6/2. Moreover, from Lemma 3.1

(d), we obtain w(A2
2) =

(
1+

√
1+2(3−√

6)
)
/2 =

√
6/2. Hence w(Ak

2) =
√

6/2 for
all k � 1.

The irreducibility of A1 (resp., A2 ) follows by showing via simple computations
that the only projections commuting with A1 (resp., A2 ) are 03 and I3 , which we
omit. �
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The preceding proposition shows that A1 and A2 there have no (proper) summand
of the form λB with |λ | = 1 and B idempotent. Nor are they themselves idempotent
either by simple computations or by Lemma 3.1 (e).

In view of the fact that A8
1 and A2

2 are both idempotent, the referee suggested that
the following may be true: If the n -by-n matrix A is such that ‖Ak‖ ’s (resp., w(Ak)’s)
are constant, then some power of A has a modulus-one multiple of an idempotent as a
direct summand. We leave it has as a conjecture.

4. Common attaining vector

As seen in last section, the condition of constant norms or constant numerical
radii of matrix powers Ak , k � 1, does not guarantee the existence of a multiple of
an idempotent summand for A . In the present section, we consider a strengthening
of the constancy condition. Since an idempotent A is equal to all its powers, there
is a unit vector x such that ‖Akx‖ = ‖Ak‖ = ‖A‖ (resp., |〈Akx,x〉| = w(Ak) = w(A))
for all k � 1. It is thus natural to add such a common attaining vector condition to
the constancy to check whether this would lead to the expected conclusion. This is
indeed the case for the numerical radius as to be proved in Theorem 4.2 below, but,
unfortunately, not for the norm in general: the 3-by-3 A1 in Proposition 3.4 is such that
‖Ak

1x‖ = ‖Ak
1‖ =

√
2 for x = [1 0 0]T and all k � 1. However, for 2-by-2 matrices, the

next proposition shows that our expectation is fulfilled.

PROPOSITION 4.1. For a 2 -by-2 matrix A, the existence of a unit vector x in
C2 such that ‖Akx‖ = ‖Ak‖ = ‖A‖ for k = 1,2 (resp., 1 � k � 3) is equivalent to the

unitary similarity of A to λ
[
1
0

0
a

]
, ηB, or

[
0

‖A‖
ξ
0

]
(resp., λ

[
1
0

0
a

]
or ηB) , where

|λ | = |η | = |ξ | = 1 , |a| � 1 , and B is idempotent.

Proof. We need only prove the necessity. Assuming that A �= 02 , let y be a unit
vector orthogonal to x , and let A be represented as C = [ai j]2i, j=1 with respect to the

orthonormal basis {x,y} of C
2 . Since ‖Ax‖ = ‖A‖ , we have

|a11|2 + |a21|2 = ‖A‖2. (6)

Moreover, the equalities |〈A∗Ax,x〉| = ‖Ax‖2 = ‖A‖2 = ‖A∗A‖‖x‖2 yield that A∗Ax =
αx for some scalar α . Hence 〈Ax,Ay〉 = 〈A∗Ax,y〉 = α〈x,y〉 = 0, which, in terms
of the entries of C , is the orthogonality of [a11 a21]T and [a12 a22]T . It follows that
[a12 a22]T = β [−a21 a11]T for some β . Thus

C =
[

a11 −βa21

a21 βa11

]

and C∗C = diag(‖A‖2, |β |2‖A‖2) from (6). On the other hand, since ‖A2x‖ = ‖A2‖ =
‖A‖ , we can repeat the above arguments to obtain C2∗C2 = diag(‖A2‖2,∗) =
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diag(‖A‖2,∗) . It follows that[ ‖A‖2 0
0 ∗

]
= C∗(C∗C)C =

[
a11 a21

−βa21 βa11

][‖A‖2 0
0 |β |2‖A‖2

][
a11 −βa21

a21 βa11

]

=
[

(|a11|2 + |β |2|a21|2)‖A‖2 0
βa11a21‖A‖2(−1+ |β |2) ∗

]
.

The equalities of the (1, 1)- and (2, 1)-entries yield

(|a11|2 + |β |2|a21|2)‖A‖2 = ‖A‖2 and βa11a21‖A‖2(−1+ |β |2) = 0,

respectively. The former gives

|a11|2 + |β |2|a21|2 = 1 (7)

and the latter a11 = 0, a21 = 0, β = 0 or |β |= 1. We treat these four cases separately:

(I) a11 = 0. Then C =
[

0
a21

−βa21
0

]
, |a21| = ‖A‖ by (6), and |βa21| = 1 by (7).

Thus B is unitarily similar to

[
0

‖A‖
ξ
0

]
, with |ξ | = 1.

(II) a21 = 0. Then C = diag(a11,βa11) with |a11|= ‖A‖= 1 by (6) and (7). Thus

A is unitarily similar to C = a11

[
1
0

0
βa11/a11

]
with |a11|= 1 and |βa11/a11|� ‖C‖=

‖A‖ = 1.
(III) β = 0. Then |a11| = 1 by (7), and A is unitarily similar to

C =
[

a11 0
a21 0

]
= a11

[
1 0

a21/a11 0

]
≡ a11B,

with B idempotent.
(IV) |β | = 1. Then C is unitary by (7) and the orthogonality of its two columns,

and hence is unitarily similar to λ
[
1
0

0
a

]
, with |λ | = |a| = 1.

Finally, assume that A =
[

0
‖A‖

ξ
0

]
, with |ξ | = 1, satisfies ‖A3‖ = ‖A‖ . Then

‖A‖ = ‖A3‖ =
∥∥[

0 ξ 2‖A‖
ξ‖A‖2 0

]∥∥ = max{‖A‖,‖A‖2},

which yields ‖A‖ � ‖A‖2 . On the other hand, we also have

‖A‖2 � ‖A2‖ =
∥∥[

ξ‖A‖ 0
0 ξ‖A‖

]∥∥ = ‖A‖.

Thus ‖A‖2 = ‖A‖ or ‖A‖ = 1. Hence A =
[
0
1

ξ
0

]
is unitary and is unitarily similar to

λ
[
1
0

0
a

]
with |λ | = |a| = 1. �

We now turn to the case for constant numerical radii. The next theorem is our
main result in this section.
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THEOREM 4.2. For an n-by-n matrix A, the existence of a unit vector x in Cn

such that |〈Akx,x〉|= w(Ak) = w(A) for 1 � k � 4 is equivalent to the unitary similarity
of A to λB⊕C, where |λ | = 1 , B is idempotent, and w(Ck) � w(B) for 1 � k � 4 .

For its proof, we need the following lemma, which is an easy consequence of
Lemma 3.3.

LEMMA 4.3. Let A be an n-by-n matrix, x be a unit vector in Cn such that
|〈Ax,x〉| = w(A) , and y be a unit vector orthogonal to x . Then:

(a) |〈Ax,y〉| � w(A);

(b) |〈Ax,y〉| = w(A) if and only if[ 〈Ax,x〉 〈Ay,x〉
〈Ax,y〉 〈Ay,y〉

]
= w(A)

[
1 λ
−λ −1

]

for some λ , |λ | = 1 .

Note that the 2-by-2 matrix in (b) above is unitarily similar to

[
0
0

2w(A)
0

]
.

Proof of Theorem 4.2. We need only prove the necessity. For this, we may as-
sume that A �= 0n and 〈Ax,x〉 = w(A) . Expand the vector x to an orthonormal basis
{x,x2, . . . ,xn} of Cn in such a way that {x,x2} forms a basis of a two-dimensional sub-
space containing ∨{x,Ax} . Let A be represented as [ai j]ni, j=1 with respect to this basis.
We have ai1 = 0 for 3 � i � n . Since a11 = w(A) , we may apply Lemma 3.3 to the

submatrices
[
a11
a j1

a1 j
a j j

]
, 2 � j � n , to obtain a21 = −a12 and a1 j = 0 for 3 � j � n .

Let C = [ai j]ni, j=2 . If a12 = 0, then A = [a11]⊕C and A2 = [a2
11]⊕C2 . Note that

a11 = w(A) = w(A2) = a2
11 , where the last equality follows from

w(C2) � w(C)2 � w(A)2 = a2
11

via the power inequality (Proposition 1.1 (g)). Hence a11 = 1 and A = [1]⊕C with
w(Ck) � w(C)k � 1 for all k , 1 � k � 4, as required.

In the following, we assume that a12 �= 0. Let Ak be denoted by [a(k)
i j ]ni, j=1 , 2 �

k � 4. We claim that a(k)
11 = w(Ak) for each k . Indeed, for the a(2)

i j ’s, we have

a(2)
11 = a2

11−|a12|2, a(2)
12 = a12(a11 +a22), a(2)

21 = −a12(a11 +a22),

and
a(2)

1k = a12a2k, a(2)
k1 = −a12ak2 for k � 3.

In particular, a(2)
11 � 0 by Lemma 4.3 (a), and hence, by |〈A2x,x〉| = w(A2) , is equal to

w(A2) . By Lemma 4.3 (a) again, we have

a11 = w(A) = w(A2) = a(2)
11 � |a(2)

12 | = |a12||a11 +a22|.
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Together with a11 � |a12| , this yields a2
11 � |a12|2|a11 +a22| . On the other hand, from

Lemma 3.3, we infer that

a12(a11 +a22) = a(2)
12 = −a(2)

21 = a12(a11 +a22).

Since a12 �= 0, this implies that a11 +a22 is real. Hence

a(3)
11 = a11a

(2)
11 +a12a

(2)
21 = a2

11 +a12
(−a12(a11 +a22)

)
= a2

11−|a12|2(a11 +a22)

� a2
11−|a12|2|a11 +a22| � 0.

Therefore, we also have a(3)
11 = w(A3) via our assumption |〈A3x,x〉| = w(A3) . From

a2
11−|a12|2(a11 +a22) = a(3)

11 = w(A3) = w(A2) = a(2)
11 = a2

11−|a12|2,
we obtain a11 +a22 = 1. From

a11 = w(A) = w(A2) = a(2)
11 = a2

11−|a12|2, (8)

we solve a11 as (1±√
1+4|a12|2)/2. Then a22 = (1∓√

1+4|a12|2)/2 and, there-

fore, a2
22 − |a12|2 = a22 . Note that, from a12a2k = a(2)

1k = −a(2)
k1 = a12ak2 , k � 3, we

infer that a2k = ak2 for k � 3. Thus

a(2)
22 = −|a12|2 +a2

22 +
n

∑
k=3

a2kak2 = a22 +
n

∑
k=3

|a2k|2,

a(3)
12 = a11a

(2)
12 +a12a

(2)
22 = a11a12(a11 +a22)+a12a

(2)
22 = a12(a11 +a(2)

22 )

= a12(a11 +a22 +
n

∑
k=3

|a2k|2) = a12(1+
n

∑
k=3

|a2k|2), (9)

and

a(4)
11 = a(3)

11 a11 +a(3)
12 a21 = a2

11 +a12a21(1+
n

∑
k=3

|a2k|2) = a2
11−|a12|2(1+

n

∑
k=3

|a2k|2).
(10)

Since

a11 = a(3)
11 � |a(3)

12 | = |a12|(1+
n

∑
k=3

|a2k|2)

by (9), we have

a2
11 � |a12|2(1+

n

∑
k=3

|a2k|2)2 � |a12|2(1+
n

∑
k=3

|a2k|2).

Applying this to (10) yields a(4)
11 � 0 and thus a(4)

11 = w(A4) . Therefore, by (8) and (10),
we have

a2
11−|a12|2 = a11 = w(A) = w(A4) = a(4)

11 = a2
11−|a12|2(1+

n

∑
k=3

|a2k|2),
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which then implies that ∑n
k=3 |a2k|2 = 0 or a2k = ak2 = 0 for all k � 3. This shows that

A = B⊕C , where B =
[

a11−a12
a12
a22

]
is unitarily similar to

[
1
0

√
2(|a12|2 −a11a22)

0

]
(since a11 + a22 = 1, a11a22 + |a12|2 = a11(1− a11) + |a12|2 = 0 by (8), and a2

11 +
a2

22 +2|a12|2 = (a11 +a22)2−2a11a22 +2|a12|2 = 1+2(|a12|2−a11a22)) and hence is
idempotent, and C satisfies w(Ck) � w(Ak) = w(A) = w(B) for 1 � k � 4. �

In the preceding theorem, the condition |〈Akx,x〉| = w(Ak) = w(A) for k up to 4
cannot be further reduced to “3” in general as the next example shows.

PROPOSITION 4.4. If

A =

⎡
⎣ 2

√
2 0

−√
2 −1 ε

0 ε 0

⎤
⎦ ,

where ε = 1/100 , and x = [1 0 0]T , then 〈Akx,x〉 = w(Ak) = w(A) for 1 � k � 3 , and
A is irreducible.

Proof. It can be shown by tedious computations, which we omit, that Re(eiθ Ak)�
2I3 for any real θ and any k , 1 � k � 3. Moreover, since

ReA =

⎡
⎣ 2 0 0

0 −1 ε
0 ε 0

⎤
⎦ , Re(A2) =

⎡
⎣2 0 0

0 −1+ ε2 −ε
0 −ε ε2

⎤
⎦ , and

Re (A3) =

⎡
⎣ 2 0 0

0 −1−2ε2 −ε(1− ε2)
0 −ε(1− ε2) −ε2

⎤
⎦ ,

we have ‖Re(Ak)‖ = 2 for 1 � k � 3. Combining these together yields w(Ak) = 2
for 1 � k � 3 (cf. Proposition 1.1 (d)). The irreducibility of A can be verified as
before. �

Note that for a 3-by-3 matrix, its irreducibility also implies that it is not unitarily
similar to a multiple of an idempotent matrix (cf. Lemma 3.1 (e)).

For 2-by-2 matrices, the critical number can indeed be reduced to “3” as shown in
the following proposition. Its proof is modeled after that of Theorem 4.2.

PROPOSITION 4.5. For a 2 -by-2 matrix A, the existence of a unit vector x in C2

such that |〈Akx,x〉|= w(Ak) = w(A) for 1 � k � 3 is equivalent to the unitary similarity

of A to λ
[
1
0

0
a

]
or to ηB, where |λ | = |η | = 1 , |a| � 1 , and B is idempotent.

Proof. To prove the necessity, we may assume, as in the proof of Theorem 4.2,

that A =
[

a11−a12
a12
a22

]
with a11 = w(A) . If a12 = 0, then a11 = 1 and |a22| � 1 as
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before. On the other hand, if a12 �= 0, then a11 + a22 = 1 and a11a22 + |a12|2 = 0.

Thus A is unitarily similar to

[
1
0

√
2(|a12|2 −a11a22)

0

]
, which is easily seen to be

idempotent. �
That, for 2-by-2 matrices, the number “3” cannot be further reduced to “2” is seen

by the example below.

PROPOSITION 4.6. If A =
[

a
−√

a(a−1)

√
a(a−1)

0

]
, where a =

√
5/2 , and

x = [1 0]T , then 〈Akx,x〉 = w(Ak) = a for k = 1,2 , and A is irreducible and is not a
multiple of an idempotent matrix.

Proof. It can be computed that the eigenvalues of A and

A2 =
[

a a
√

a(a−1)
−a

√
a(a−1) −a(a−1)

]

are (a±√−3a2 +4a)/2 and
(−a(a−2)±

√
a3(−3a+4)

)
/2, respectively. For a =√

5/2, these are all real numbers. Hence, by Proposition 1.1 (e),

w(A) = ‖ReA‖ =
∥∥[

a 0
0 0

]∥∥ = a =
√

5
2

and

w(A2) = ‖Re(A2)‖ =
∥∥[

a 0
0 −a(a−1)

]∥∥ = a =
√

5
2

.

The irreducibility of A can be easily verified as before. �

5. Invertible matrices and operators

In this final section, we consider invertible matrices or operators A for which the
norms (resp., numerical radii) of powers of both A and A−1 are constant. For invertible
matrices, all is well as demonstrated in the following theorem.

THEOREM 5.1. For an invertible n-by-n matrix A, the following conditions are
equivalent:

(a) ‖Ak‖ = c for all k = ±1,±2, . . .;

(a ′ ) w(Ak) = c′ for all k = ±1,±2, . . .;

(b) ‖Ak‖ = c and ‖A−k‖ = d for all k � 1 ;

(b ′ ) w(Ak) = c′ and w(A−k) = d′ for all k � 1 ;

(c) ‖Ak‖ = c and ‖A−k‖ � d for all k � 1 ;
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(c ′ ) w(Ak) = c′ and w(A−k) � d′ for all k � 1 ;

(d) A is unitary.

For the proof, we need the next lemma, which is based on a classical result of
Kronecker’s.

LEMMA 5.2. Let A be an n-by-n matrix.

(a) If A is power-bounded, then there is a sequence of positive integers k j , j � 1 ,
and an idempotent matrix B such that lim j Ak j = B.

(b) If A is invertible and both A and A−1 are power-bounded, then there are positive
integers k j , j � 1 , such that lim j Ak j = lim j A−k j = In .

Proof.

(a) Let A = X−1JX , where X is invertible and J =
(

∑m
i=1⊕Jni(λi)

)⊕C , where
|λi| = 1 for all i and ρ(C) < 1, is the Jordan canonical form of A . If ni > 1 for
some i , then

Jni(λi)k =

⎡
⎢⎢⎢⎢⎣

λ k
i kλ k−1

i ∗
λ k

i
. . .
. . . kλ k−1

i
λ k

i

⎤
⎥⎥⎥⎥⎦

and hence ‖Jni(λi)k‖ � k|λ k−1
i | = k for any k � 1. This leads to

‖Ak‖ � ‖Jk‖
‖X‖‖X−1‖ � ‖Jni(λi)k‖

‖X‖‖X−1‖ � k
‖X‖‖X−1‖ ,

for all k , which contradicts the power-boundedness of A . Hence ni = 1 for all i ,
1 � i � m , and J = diag(λ1, . . . ,λm)⊕C . Moreover, Kronecker’s theorem says

that there are positive integers k j , j � 1, such that lim j λ k j
i = 1 for all i (cf. [14,

Lemma 2.2]). Since ρ(C) < 1, C is similar to a matrix D with limk Dk = 0n−m

(cf. [4, Problem 153]). Thus we also have limkCk = 0n−m . Combining these
together yields that lim j Jk j = Im ⊕0n−m . Thus Akj converges to the idempotent
B ≡ X−1(Im⊕0n−m)X as j approaches infinity.

(b) If A is power-bounded, then Gelfand’s formula ρ(A) = limk ‖Ak‖1/k implies that
ρ(A) � 1. Similarly, the power-boundedness of A−1 yields that ρ(A−1) � 1.
Thus all the eigenvalues of A have moduli equal to 1. Then the arguments in
(a) show that the Jordan form J of A is a diagonal unitary matrix. Hence Kro-
necker’s theorem yields the existence of positive integers k j , j � 1, such that Jkj

together with Akj converges to In . �
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We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Since the implications (a)⇒(b)⇒(c), (a ′ )⇒(b ′ )⇒(c ′ ),
and (d)⇒(a), (a ′ ) are trivial, we need only prove (c)⇒(d) and (c ′ )⇒(d).

Note that, under (c), both A and A−1 are power-bounded. Thus Lemma 5.2 (b)
says that lim j Ak j = In for some positive integers k j , j � 1. Hence c = lim j ‖Akj‖ =
‖In‖ = 1. In particular, we have ‖A‖ = 1. As noted in the proof of Lemma 5.2 (b), all
eigenvalues of A have moduli equal to 1. If A is unitarily similar to the upper-triangular
A′ = [ai j]ni, j=1 , then |aii| = 1 for all i . Moreover,

1 = ‖A‖ �
( n

∑
j=i

|ai j|2
)1/2 � |aii| = 1,

for all i yields that ai j = 0 for all i < j . Hence A′ is diagonal unitary and A is unitary.
Now we assume that (c ′ ) holds. Since ‖Ak‖� 2w(Ak)= 2c′ and ‖A−k‖� 2w(A−k)

� 2d′ , for all k � 1 (cf. Proposition 1.1 (b)), A and A−1 are both power-bounded with
eigenvalues all contained in ∂D . As before, apply Lemma 5.2 (b) to obtain that c′ = 1.
Let λ1 be an eigenvalue of A . Since |λ1| = 1 and w(A) = 1, λ1 is in ∂W (A) . Hence
Proposition 1.1 (c) implies that A is unitarily similar to a matrix of the form [λ1]⊕A1 .
We may repeat the above arguments to A1 to obtain the unitary similarity of A1 to
[λ2]⊕A2 , where λ2 is another eigenvalue of A . By induction, A is unitarily similar to
a diagonal unitary matrix and hence is itself unitary. �

Finally, we turn to the case when A acts on an infinite-dimensional space H .
Some of the tools we used in proving Theorem 5.1 and Lemma 5.2 remain true. For
example, instead of relying on the Jordan form of a matrix, we have available a re-
sult of Sz.-Nagy’s [11, Theorem 1]: An invertible operator A with A and A−1 both
power-bounded is similar to a unitary operator. Using Kronecker’s theorem, Wermer
obtained in [15, Theorem 6] that if A is a diagonal unitary operator, then there are
positive integers k j , j � 1, such that Akj converges to I in the strong operator topol-
ogy. Another result relevant to our present discussions is the one by Stampfli: For an
invertible operator A , the following conditions are equivalent: (a) ‖A‖,‖A−1‖� 1, (b)
‖A‖,w(A−1) � 1, (c) w(A),‖A−1‖ � 1, (d) w(A),w(A−1) � 1, and (e) A is unitary
(cf. [9, Corollaries 1 and 2 of Theorem 1] or [10, Corollary 4 of Theorem 2]). Unfor-
tunately, despite all such supporting evidences, Theorem 5.1 per se is not true for an
infinite-dimensional A . This is shown in our final theorem.

THEOREM 5.3. For any ε > 0 , there is an invertible operator A on �2(Z)⊕�2(Z)
such that ‖Ak‖ = ‖A−k‖ = 1+ ε (resp., w(Ak) = w(A−k) = 1+ ε) for all k � 1 . In
particular, A is not unitary.

Proof. We first consider the constant norm case. Let a = 1/(1+ ε) and let A′ =
[ai j]∞i, j=−∞ on �2(Z) be such that

ai j =

⎧⎨
⎩

a, if (i, j) = (0,1),
1, if j = i+1 and (i, j) �= (0,1),
0, otherwise.

(11)
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Then A′ is invertible and A′k , denoted by [a(k)
i j ]∞i, j=−∞ for k � 1, is given by

a(k)
i j =

⎧⎨
⎩

a, if (i, j) = (0,k),(−1,k−1), . . . ,
(− (k−1),1

)
,

1, if j = i+ k and i �= 0,−1, . . . ,−(k−1),
0, otherwise.

As 0 < a < 1 and 1 appears as entries of A′k , it is easily seen that ‖A′k‖= 1 for all k �
1. On the other hand, A′−1∗ has the same matrix form as A′ except that its (0,1)-entry
is 1/a instead of a . Thus, as above, we easily obtain that ‖A′−k‖ = ‖A′−k∗‖ = 1/a for
all k . Letting A = A′ ⊕A′−1 on �2(Z)⊕ �2(Z) , we have ‖Ak‖ = ‖A−k‖ = 1/a = 1+ ε
for all k � 1.

For the constant numerical radii, we let a = 1+ ε −√
ε(ε +2) . Then 0 < a < 1.

Let A′ be as in (11). Note that A′k , k � 1, is unitarily similar to the direct sum of k
copies of A′ . Hence w(A′k) = w(A′) = 1 and w(A′−k) = w(A′−1) = (a2 + 1)/(2a) =
1+ ε for k � 1 (cf. [13, Theorem 4.9]). As before, A ≡ A′ ⊕A′−1 is the operator on
�2(Z)⊕ �2(Z) satisfying w(Ak) = w(A−k) = 1+ ε for all k � 1. �

A final remark: in line with Sz.-Nagy’s result, the operator A in the preced-
ing theorem is similar to the unitary operator W ⊕W , where W = [wi j]∞i, j=−∞ is the
simple bilateral shift given by wi j = 1 if i = j + 1, and wi j = 0 otherwise. This
is seen by (XY )−1A′(XY ) = W and X−1A′−1X = W , where X is the diagonal op-
erator diag(. . . ,1,1,1,1/a,1/a, . . .) on �2(Z) with its (0, 0)-entry underlined, and
Y = [yi j]∞i, j=−∞ is such that yi j = 1 if i+ j = −1, and yi j = 0 otherwise.
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