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H∞ –FUNCTIONAL CALCULUS FOR COMMUTING FAMILIES

OF RITT OPERATORS AND SECTORIAL OPERATORS

OLIVIER ARRIGONI AND CHRISTIAN LE MERDY

Abstract. We introduce and investigate H∞ -functional calculus for commuting finite families
of Ritt operators on Banach space X . We show that if either X is a Banach lattice or X or
X∗ has property (α) , then a commuting d -tuple (T1, . . . ,Td) of Ritt operators on X has an
H∞ joint functional calculus if and only if each Tk admits an H∞ functional calculus. Next for
p ∈ (1,∞) , we characterize commuting d -tuple of Ritt operators on Lp(Ω) which admit an H∞

joint functional calculus, by a joint dilation property. We also obtain a similar characterisation
for operators acting on a UMD Banach space with property (α) . Then we study commuting
d -tuples (T1, . . . ,Td) of Ritt operators on Hilbert space. In particular we show that if ‖Tk‖ � 1
for every k = 1, . . . ,d , then (T1, . . . ,Td ) satisfies a multivariable analogue of von Neumann’s
inequality. Further we show analogues of most of the above results for commuting finite families
of sectorial operators.
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