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INVARIANCE OF DISTRIBUTIONAL CHAOS FOR BACKWARD SHIFTS

XINXING WU ∗ AND YANG LUO

(Communicated by R. Curto)

Abstract. A sufficient and necessary condition ensuring that the backward shift operator on the
Köthe sequence space admits an invariant distributionally ε -scrambled set for some ε > 0 is
obtained, improving the main results in [10].

Let N = {1,2,3, . . .} and Z
+ = {0,1,2, . . .} . According to [7], an infinite matrix

A = (a j,k) j,k∈N is called a Köthe matrix if, for every j ∈ N , there exists some k ∈ N

with a j,k > 0 and 0 � a j,k � a j,k+1 for all j,k ∈ N .
Consider the backward shift defined by

B(x1,x2,x3, . . .) = (x2,x3,x4, . . .)

on the Köthe sequence space λp(A) determined by a Köthe matrix A , where, for 1 �
p < +∞ ,

λp(A) :=

⎧⎨
⎩x ∈ K

N : ‖x‖k :=

(
∞

∑
j=1

|x ja j,k|p
)1/p

< ∞,∀k ∈ N

⎫⎬
⎭ ,

and, for p = 0,

λ0(A) :=

{
x ∈ K

N : lim
j→∞

x ja j,k = 0,‖x‖k := sup
j∈N

|x ja j,k|,∀k ∈ N

}
.

It is possible to define a complete metric on λp(A) which is invariant by translation:

d(x,y) =
∞

∑
n=1

1
2n

‖x− y‖n

1+‖x− y‖n
.
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The operator B : λp(A) −→ λp(A) is continuous and well-defined if and only if
the following condition on the matrix A is satisfied:

∀n ∈ N, ∃m > n such that sup
j∈N

∣∣∣∣ a j,n

a j+1,m

∣∣∣∣< +∞, (1)

where in the case of a j+1,m = 0, one has a j,n = 0 and we consider 0
0 as 1 (see [7]).

For simplicity, throughout this paper, for any x = (x1,x2,x3, . . .) ∈ λp(A) and any
k,n ∈ Z

+ , denote

(x)k := xk, x(k) := Bk(x) = (xk+1,xk+2,xk+3, . . .),
x(k,n) := (xk+1,xk+2, . . . ,xk+n,0,0, . . .),

and
x[k,n] := (0,0, . . . ,0︸ ︷︷ ︸

n

,xk+n+1,xk+n+2, . . .).

The notion of distributional chaos was introduced by Schweizer and Smı́tal [15].
Let f : X −→X be a continuous map defined on a metric space (X ,d) . For any x,y∈X ,
n ∈ N and t ∈ R , let

Φ(n)
x,y (t) =

∣∣{0 � i < n : d( f i(x), f i(y)) < t}∣∣ .
Define lower and upper distributional functions, R −→ [0,1] generated by f , x and y ,
as follows:

Φx,y(t) = liminf
n→∞

1
n

Φ(n)
x,y (t),

and

Φ∗
x,y(t) = limsup

n→∞

1
n

Φ(n)
x,y (t),

respectively, where |A| denotes the cardinality of set A . A subset D ⊂ X is distribu-
tionally ε -scrambled if for any distinct points x,y ∈ D , Φ∗

x,y(t) = 1 for any t > 0 and
Φx,y(ε) = 0. A pair satisfying the above condition is called a distributionally ε -chaotic
pair.

During the last decades, many research works were devoted to the ‘chaotic behav-
ior’ of the backward shift operator on the Köthe sequence space (more generally, Ba-
nach or Fréchet space) (see, e.g., [1, 8, 9, 10, 11, 16, 21, 22, 23, 20, 25]). For example,
Martı́nez-Giménez and Peris [9] obtained some characterizations for hypercyclicity and
Devaney chaos under backward shift on the Köthe sequence space. Martı́nez-Giménez
[8] provided some sufficient conditions for the operator f (Bw) to be chaotic in the sense
of Devaney. Then, Bermúdez et al. [1] proved some useful equivalent conditions for
Li-Yorke chaos and a few sufficient criteria for distributionally chaotic operators. By
employing methods developed in [1], Wu and Zhu [22] proved that for a bounded op-
erator defined on a Banach space, Li-Yorke chaos, Li-Yorke sensitivity, spatiotemporal
chaos, and distributional chaos in a sequence are all equivalent, and they are all strictly
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stronger than sensitivity. Further results of [11] were extended to maximal distribu-
tional chaos for the annihilation operator of a quantum harmonic oscillator in [21, 17].
In 2009, Martı́nez-Giménez et al. [10] provided sufficient conditions for uniform distri-
butional chaos under backward shift. Very recently, we [16, 18, 19, 23] provided a class
of characterizations for uniform Li-Yorke chaos and a sufficient condition for maximal
distributional chaos under backward shift on the Köthe sequence space. Bernardes et
al. [2] characterized distributional chaos for linear operators on Fréchet spaces and ob-
tained a sufficient condition to ensure the existence of dense uniformly distributionally
irregular manifolds.

For quite a long time, operator theorists have been studying the so-called cyclic
vectors in connection with the (invariant) subspace problem [3, 5, 6, 13, 14]. The
invariant subspace problem, which is open to this day, asks whether every Hilbert space
operator possesses an invariant closed subspace other than the two trivial ones given
by {0} and the whole space. Du [4] proved that an interval map is turbulent if and
only if there is an invariant scrambled set in 2005. Later, Oprocha [12] extended this
approach and proved that exactly the same characterization is valid for distributional
chaos. Very recently, for the full shift (Σ2,σ) on two symbols, we [24] constructed
an invariant distributionally ε -scrambled set for any 0 < ε < dim(Σ2) , in which each
point is transitive but is not weakly almost periodic.

In [10], Martı́nez-Giménez et al. proved the following:

THEOREM 1. [10, Theorem 5] Let A be a Köthe matrix satisfying (1), 1 � p <
+∞ (or, p = 0 ). If there exist x,y ∈ λp(A) such that Φx,y(δ ) = 0 holds for some δ > 0 ,
then B : λp(A) −→ λp(A) has a distributionally ε -scrambled subset for some ε > 0 .

Combining this with [18, Theorem 3.3], Wu et al. [18] provided the following
question:

QUESTION 1. [18, Question 3.5] Does the hypothesis in Theorem 1 imply that B
has an invariant distributionally scrambled linear manifold?

Being a partial answer to Question 1, this paper shall prove that the hypothesis in
Theorem 1 can ensure that B admits an invariant distributionally ε -scrambled subset
for any 0 < ε < δ (see Theorem 2).

THEOREM 2. Let A be a Köthe matrix satisfying (1), 1 � p < +∞ (or, p = 0 ). If
there exist x,y∈ λp(A) such that Φx,y(δ ) = 0 holds for some δ > 0 , then B : λp(A)−→
λp(A) has an invariant distributionally ε -scrambled subset for any 0 < ε < δ .

Proof. By the invariability of the metric d , we may assume that x = 0 and y =
(y1,y2,y3, . . .) . Since Φx,y(δ ) = 0, there exists an increasing sequence {Nk}k∈N

⊂ N

such that

lim
k→∞

1
Nk

∣∣{0 � i < Nk : d(Bi(x),Bi(y)) � δ}∣∣= 1. (2)
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It is not difficult to check that there exists a subsequence {Mk}k∈N of {Nk}k∈N
such

that for any k ∈ N ,
Mk+1−Mk � 4Mk , (3)

∞

∑
j=Mk

∣∣y ja j,k

∣∣p <
1
2k , (4)

and that for any M2k < j � M2k+1 ,

d (0,y( j,M2k+2 −M2k+1)) � d(0,Bj(y))− 1
2k

. (5)

Define ν = (ν1,ν2,ν3, . . .) by

ν j =

{
k · |y j|, M4k < j � M4k+3, k ∈ N,

0, otherwise.

Because

∞

∑
j=Mk

|ν ja j,k|p = ∑
l�k

Ml+1

∑
j=Ml+1

|ν ja j,k|p � ∑
l�k

Ml+1

∑
j=Ml+1

l p|y ja j,k|p � ∑
l�k

Ml+1

∑
j=Ml+1

l p|y ja j,l|p

� ∑
l�k

l p

2l
< +∞,

one has ν ∈ λp(A) . Applying the method of induction, it can be verified that there
exists a subsequence {Mkn}n∈N

of {Mk}k∈N
such that for any n ∈ N ,

{k2n : n ∈ N} ⊂ {4k : k ∈ N} , k1 = 1, k2n+1 = k2n +3,

and that for any Mk2n−1 < j � Mk2n−1 +2Mk2n−1 ,

d
(
0,ν

[
j,Mk2n −4Mk2n−1

])
� 1

2n
. (6)

Arrange all odd prime numbers by the natural order ‘< ’ and denote them as
P1,P2, . . . . For any n, l ∈ N , set

C 0
n,l =

{
j ∈ N : Mk

Pl
n+1

+ (2u)l < j � Mk
Pl
n+1

+(2u+1)l,

0 � 2u �
[Mk

Pl
n+1

+3−Mk
pl
n+1

l

]
−1

}
,

and
C 1

n,l =
{

j ∈ N : Mk
Pl
n+1

< j � Mk
Pl
n+1

+3

}
−C 0

n,l.
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Take ν = (ν1,ν2,ν3, . . .) ∈ λp(A) with

ν j =

⎧⎪⎨
⎪⎩
|ν j|, j ∈ C 0

n,l, n, l ∈ N,

−|ν j|, j ∈ C 1
n,l, n, l ∈ N,

0, otherwise,

and set

D =
∞⋃

n=0

Bn ({αν : α ∈ (0,1)
})

.

Clearly, B(D) ⊂ D and D is uncountable. Given any two fixed points a , b ∈ D with
a 	= b , there exist α,β ∈ (0,1) and p,q ∈ Z

+ such that a = Bp(αν) and b = Bq(β ν) .
Without loss of generality, assume that p � q .

Now, we assert that (a,b) is a distributionally ε -chaotic pair for any 0 < ε < δ .

Firstly, for any Mk2n−1 < j � Mk2n−1 + 2Mk2n−1 − q , noting that Mk2n − 4Mk2n−1 �
Mk2n − ( j +q) , and applying (6), it follows that

d(Bj(a),Bj(b)) � d(0,Bj(a))+d(0,Bj(b)) � d(0,Bj+p(ν))+d(0,Bj+q(ν))

� 1
n
−→ 0, (n −→ ∞).

Then, given any t > 0, there exists some N ∈ N such that for any n � N and any
Mk2n−1 < j � Mk2n−1 +2Mk2n−1 −q ,

d(Bj(a),Bj(b)) < t,

implying that

Φ∗
a,b(t)

= limsup
n→∞

1
n

∣∣{0 � i < n : d(Bi(a),Bi(b)) < t}∣∣
� limsup

n→∞

1

Mk2n−1 +2Mk2n−1 −q

∣∣∣{0 � i < Mk2n−1 +2Mk2n−1 −q : d(Bi(a),Bi(b)) < t
}∣∣∣

� limsup
n→∞

2Mk2n−1 −q

Mk2n−1 +2Mk2n−1 −q
= 1.

Second, to prove Φa,b(ε) = 0 for any 0< ε < δ , we consider two cases as follows:

Case 1. p = q and α 	= β . Noting that for any MkPn+1 < j � MkPn+1+1 and any 1 � i �
MkPn+1+2−MkPn+1+1 ,

∣∣(Bj
(
(α −β )ν

))
i

∣∣= ∣∣((α −β ) kPn+1
4 y( j)

)
i

∣∣ , and apply-

ing (5), it follows that for all n∈N with |α −β | kPn+1
4 > 1 and any MkPn+1 < j �

MkPn+1+1 ,

d(Bj(αν),Bj(β ν)) = d(0,Bj((α −β )ν)) � d
(
0,y
(
j,MkPn+1+2−MkPn+1+1

))
� d(0,Bj(y))− 1

kPn+1
.
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This, together with (2) and (3), implies that for any 0 < ε < δ ,

Φa,b(ε) = 1− limsup
n→∞

1
n

∣∣{0 � i < n : d(Bi(a),Bi(b)) � ε}∣∣
� 1− limsup

n→∞

1
MkPn+1+1

∣∣{0 � i < MkPn+1+1 : d(Bi(a),Bi(b)) � ε}∣∣
� 1− limsup

n→∞

Φ
(MkPn+1+1)
0,y (δ )−MkPn+1

MkPn+1+1
= 0.

Case 2. q > p . Fix any n ∈ N with α
k
Pq−p
n +1
4 > 1. For any Mk

Pq−p
n +1

< i � Mk
Pq−p
n +1

+1

and any i+1 � j < i+(Mk
Pq−p
n

+3−Mk
Pq−p
n

+2) , noting that
∣∣(αν −Bq−p(β ν)) j

∣∣�∣∣(αν) j
∣∣ (as (αν) j and (Bq−p(β ν)) j are of different signs), it follows that

d
(
Bi−p(a),Bi−p(b)

)
=d(0,Bi(αν−Bq−p(β ν)))�d(0,αν(i,Mk

Pq−p
n

+3−Mk
Pq−p
n

+2)).

Similarly to the proof of Case 1, it can be verified that for any 0 < ε < δ , Φa,b(ε) = 0.
Therefore, D is an invariant distributionally ε -scrambled subset for any 0 < ε <

δ .

REMARK 1. (1) Given a sequence {wi}i�2 of strictly positive scalars, consider
its associated weighted backward shift

Bw(x1,x2, . . .) := (w2x2,w3x3, . . .).

According to the discussions in [8, 10], the study of chaos under a weighted
backward shift can be reduced to the unweighted case, with a suitable Köthe
matrix. So, for weighted backward shift, we actually have also obtained similar
result.

(2) Applying Theorem 2, it is easy to verify that all examples in [10] admit an invari-
ant ε -scrambled subset for some ε > 0.

(3) Combining Theorem 2 with [16, Theorem 2.1], it follows that [19, Theorem 3.1]
holds trivially.

RE F ER EN C ES
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