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POSITIVE DEFINITENESS OF PIECEWISE–LINEAR FUNCTION 2

ANATOLIY MANOV

(Communicated by R. Curto)

Abstract. Let α ,β ∈ (0,1) , 0 < α � β < 1 , s ∈ R and let wα,β ,s be an even function with the
properties: wα,β ,s(x) = 0 for x > 1 , wα,β ,s(0) = 1 , wα,β ,s(1) = 0 , wα,β ,s(x) = s for x ∈ [α ,β ]
( [α ,α ] := {α} ), wα,β ,s is linear over the intervals [0,α ] and [β ,1] . In this paper we prove that
wα,β ,s is positive definite on R ⇐⇒ m(α ,β) � s � M(α ,β) , where m(α ,β) � 0 , M(α ,β) � 0 .
If either (1 + β)/α ,(1 − β)/α ∈ N or 1/α �∈ N , β/α ∈ N , then M(α ,β) > 0 , otherwise
M(α ,β) = 0 . If either (1+ β)/α ,(1−β)/α ∈ N or 1/α ∈ N , β/α �∈ N , then m(α ,β) < 0 ,
otherwise m(α ,β) = 0 . Moreover, we find explicit values of M(α ,β) , m(α ,β) for some α
and β .

1. Introduction

A function f : R → C is said to be positive definite on R ( f ∈ Φ(R)) if for every
n ∈ N , and for every choice of x1, . . . ,xn ∈ R , the n×n matrix [ f (xi − x j)] is positive
semidefinite (see, e.g., [2, Chapter 7]).

It is well-known that positive definite functions and kernels have applications in
various parts of mathematics: in approximation theory, probability theory [4, 6], op-
erator theory [3] and other areas. In particular, positive definiteness of an integrable
function on R is equivalent to positivity of some summation method of Fourier series
(positive operator) (see, e.g., [10, Lemma 10]).

This paper considers the following problem. Let α,β ∈ (0,1) , 0 < α � β < 1,
s ∈ R and let wα ,β ,s be an even function with the properties: wα ,β ,s(x) = 0 for x > 1,
wα ,β ,s(0) = 1, wα ,β ,s(1) = 0, wα ,β ,s(x) = s for x ∈ [α,β ] ( [α,α] := {α} ), wα ,β ,s is
linear over the intervals [0,α] and [β ,1] . For each pair of α,β ∈ (0,1) , 0 < α � β < 1
find the set of all values of s ∈ R for which wα ,β ,s ∈ Φ(R) .

If 0 < α � β < 1 and s = 0, then wα ,β ,0 ∈ Φ(R) . Indeed, in this case wα ,β ,0(x) =
(1− |x/α|)+ and it follows from the definition of positive definite functions and the
easily verified relation

(1−|x|)+ =
1
2π

∫
R

sin2(t/2)
(t/2)2 eitxdt, x ∈ R
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that wα ,β ,0 is positive definite. This also follows from Pólya’s theorem (see, e.g., [4,
Theorem 4.3.1], [6, Theorem 3.9.11]). Notice that if α �= β and s �= 0, then wα ,β ,s is
not convex on (0,+∞) , and therefore Pólya’s theorem does not apply.

The case α = β is known as Trigub problem, for which a solution has been pro-
vided by Zastavnyi and Manov in [5]. The following result provides necessary and
sufficient conditions for the function wα ,α ,s to be positive definite.

THEOREM 1. ([5]) Let α ∈ (0,1) , s ∈ R . Then wα ,α ,s ∈ Φ(R) ⇐⇒ m(α) � s �
1−α , where m(α) = 0 if 1/α �∈ N , and m(α) = −α if 1/α ∈ N .

In [8] Zastavnyi and Manov found necessary and sufficient conditions for positive def-
initeness of wα ,α ,c when c := s + ih , for s,h ∈ R . In this case the function wα ,α ,c

is defined by the relations: 1) wα ,α ,c is hermitian, i.e., wα ,α ,c(−x) = wα ,α ,c(x) , x ∈
R ; 2) wα ,α ,c(x) = 0 for x > 1, wα ,α ,c is linear over the intervals [0,α] and [α,1] ,
wα ,α ,c(0) = 1, wα ,α ,c(α) = c , wα ,α ,c(1) = 0. Furthermore, in [8] new Bernstein type
inequalities for trigonometric polynomials were obtained by using Theorem 1. For
more details about the connection between sharp inequalities for trigonometric polyno-
mials and positive definite functions the reader is referred to [9].

The main result of this paper is the following theorem.

THEOREM 2. Let 0 < α � β < 1 and s∈R . Then wα ,β ,s ∈Φ(R) ⇐⇒ m(α,β )�
s � M(α,β ) , where

M(α,β ) :=
1−β

1−β −αm1

(
1+β

α , 1−β
α

) , m(α,β ) :=
1−β

1−β −αm2

(
1+β

α , 1−β
α

) , (1)

and m1(ν1,ν2) , m2(ν1,ν2) , ν1,ν2 > 0 are defined by

m1(ν1,ν2) := inf
R\πZ

sin(ν1t)sin(ν2t)
sin2(t)

, m2(ν1,ν2) := sup
R\πZ

sin(ν1t)sin(ν2t)
sin2(t)

. (2)

Moreover:

1) If either (1+ β )/α,(1−β )/α ∈ N or 1/α �∈ N , β/α ∈ N , then M(α,β ) > 0 ,
otherwise M(α,β ) = 0 .

2) If either (1+ β )/α,(1−β )/α ∈ N or 1/α ∈ N , β/α �∈ N , then m(α,β ) < 0 ,
otherwise m(α,β ) = 0 .

In the following we find explicit values of m1(ν1,ν2) , m2(ν1,ν2) for some values
of ν1 and ν2 .

THEOREM 3. Let ν1,ν2 > 0 and m1(ν1,ν2) , m2(ν1,ν2) as defined in equation
(2). Then the following assertions hold.

1) If |ν1 −ν2| = 2 , then m1(ν1,ν2) = −1 .
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2) If ν1,ν2 ∈ N , then m2(ν1,ν2) = ν1ν2 and m1(ν1,ν2) � −ν1ν2 . If, in addition,
ν1 and ν2 have opposite parity, then m1(ν1,ν2) = −ν1ν2 .

3) If ν1 = p1/q, ν2 = p2/q, where p1, p2,q ∈ N , then

m1(ν1,ν2)= inf
[−1,1]\A

Up1−1(x)Up2−1(x)
[Uq−1(x)]2

, m2(ν1,ν2)= sup
[−1,1]\A

Up1−1(x)Up2−1(x)
[Uq−1(x)]2

,

where A := {x :Uq−1(x) = 0} , and Up(cos(t)) := sin((p+1)t)/sin(t) , t ∈ [0,π ] ,
p ∈ Z+ are the Chebyshev polynomials of the second kind.

4) m1(1,1) = 1 , m1(1,3) = −1 , m1(1,5) = −5/4 , m1(1,7) = −(7+ 14
√

7)/27 ,
m2(1/2,7/2) = 7/4 .

Notice that Theorem 2 is proved in the same way as Theorem 1 in [5], but the
result essentially depends on the extremal properties of a function of a certain type (see
Proposition 1).

Let us note that combination of Theorem 2 and Theorem 3 provides the following
sufficient conditions for positive definiteness: let g ∈C(R) be an even function, which
is nonnegative, nonincreasing and convex on (0,+∞) , and let α = 2/(2m+ 2k+ 1) ,
β = (2k+1)/(2m+2k+1) , m,k ∈ N , s ∈ R . Define

gα ,β ,s(x) := (1− s)g
( x

α

)
− s

β
1−β

g

(
x
β

)
+

s
1−β

g(x), x ∈ R.

If −1/(m+ 2k) � s � 1/(m+ 2k+ 2) , then gα ,β ,s ∈ Φ(R) . Indeed, in this case the
function g can be represented in the form (see, e.g., [6, 3.9.12]):

g(x) =
+∞∫
0

(1−|xu|)+dμ(u), x ∈ R,

where μ is a finite nonnegative Borel measure on [0,+∞) . It is easy to prove that

wα ,β ,s(x) = (1− s)(1−|x/α|)+− s
β

1−β
(1−|x/β |)+ +

s
1−β

(1−|x|)+, x ∈ R, (3)

and hence

gα ,β ,s(x) =
+∞∫
0

wα ,β ,s(xu)dμ(u), x ∈ R.

For α,β and s as above we have wα ,β ,s ∈ Φ(R) (see Example 3), and so gα ,β ,s ∈Φ(R)
(see, e.g., [10, Lemma 1]).

Let us note one more corollary of Theorem 2. A function f is said to be completely
monotone on the interval (0,+∞) ( f ∈ CM ) if f ∈C∞(0,+∞) and (−1)n f (n)(x) � 0

for all k ∈ Z+ and x > 0. Let α,β ∈ (0,1) , a,b,c ∈ R and define the function f α ,β
a,b,c

by

f α ,β
a,b,c(x) :=

a
x(x2 + α2)

+
b

x(x2 + β 2)
+

c
x(x2 +1)

, x > 0.
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If α = β , then

f α ,α
a,b,c(x) :=

(a+b+ c)x2 +(a+b+ α2c)
x(x2 + α2)(x2 +1)

, x > 0.

In this case, it follows from Theorem 4 in [8] that if α ∈ (0,1) and (a+b+ c)2 +(a+
b+ α2c) �= 0, then

f α ,α
a,b,c ∈ CM ⇐⇒ a+b+ c � 0, a+b+ α2c > 0, m(α) � α(1−α)c

a+b+ cα
� 1−α,

where m(α) is defined as in Theorem 1.
In the case 0 < α < β < 1 the following theorem holds true.

THEOREM 4. Let 0 < α < β < 1 , a,b,c ∈ R , and suppose that

1− a
α

=
b(β −1)

β 2 = c(1−β ) =: s. (4)

Then f α ,β
a,b,c ∈C M ⇐⇒ m(α,β ) � s � M(α,β ) , where m(α,β ) , M(α,β ) are defined

as in Theorem 2.

This paper is organized as follows. Section 2 contains some auxiliary facts and
statements. In Sections 3 and 4, we prove Theorems 2 and 3, respectively. In Section 5,
we give some examples of application of Theorem 2, in particular we obtain Theorem
1. In Section 6, we prove Theorem 4.

2. Auxiliary facts and statements

Let f ∈ Φ(R) . Then f is continuous at the origin if and only if f is continuous
on R . Furthermore, if f ,g ∈ Φ(R) then | f (x)| � f (0) , f (−x) = f (x) , x ∈ R and f ,
ℜ f , f g ∈ Φ(R) . The following theorem was proved independently by S. Bochner and
A. Khinchin in 1932.

THEOREM 5. (Bochner-Khinchin) f ∈ Φ(R)∩C(R) if and only if there is a finite
nonnegative Borel measure μ on R such that

f (x) =
∫
R

eixtdμ(t), x ∈ R.

The proof can be found in [4, 6, 7, 1]. As a consequence, we obtain the following
criterion for positive definiteness in terms of the Fourier transform.

COROLLARY 1. If f ∈ C(R)∩L1(R) , then f ∈ Φ(R) ⇐⇒ f̂ (t) � 0 , t ∈ R ,
where

f̂ (t) :=
∫
R

f (x)e−itxdx, t ∈ R.
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The following lemma is needed in the sequel.

LEMMA 1. ([5]) Let V be an arbitrary nonempty set and h ∈ R , let G : V → R ,
M := sup

V
G(t) , and m := inf

V
G(t) . If M > 0 and m < 0 , then the inequality 1−hG(t)�

0 is satisfied for any t ∈V ⇐⇒ 1/m � h � 1/M.

For completeness, we give a proof here.

Proof. Let us find all h ∈ R such that the inequality

1−hG(t) � 0 (5)

is satisfied for any t ∈ V . Solve this problem for each set of the following partition of
V :

V0 := {t ∈V : G(t) = 0}, V− := {t ∈V : G(t) < 0}, V+ := {t ∈V : G(t) > 0}.
From the conditions of the lemma it follows that V− and V+ are nonempty and the
following equalities are true:

M = sup
V

G(t) = sup
V+

G(t) and m = inf
V

G(t) = inf
V−

G(t).

For t ∈ V0 inequality (5) is satisfied for any h . For t ∈ V− inequality (5) holds if and
only if h � sup

V−
1/G(t) = 1/ inf

V−
G(t) = 1/m . For t ∈V+ inequality (5) holds if and only

if h � inf
V+

1/G(t) = 1/sup
V+

G(t) = 1/M . Lemma 1 is proved. �

Define the function Kν1,ν2 by

Kν1,ν2(t) :=
sin(ν1t)sin(ν2t)

sin2(t)
, ν1,ν2 > 0. (6)

The values of Kν1,ν2 at points t = πn , n ∈ Z are defined by continuity, whenever
possible. The following properties are easily obtained: 1) Kν1,ν2 is an even function; 2)
Kν1,ν2 is symmetric with respect to ν1 , ν2 , i.e. Kν1,ν2 = Kν2,ν1 ; 3) Kν1,ν2 is nonnegative
on its domain if and only if ν1 = ν2 ; 4) the supremum (the infimum) of Kν1,ν2 over its
domain is the same as that over R \πZ . In addition, m1(ν1,ν2) = inf

R\πZ
Kν1,ν2(t) and

m2(ν1,ν2) = sup
R\πZ

Kν1,ν2(t) .

PROPOSITION 1. Let ν1,ν2 > 0 . Then the following assertions hold.

1) Kν1,ν2 is bounded on R if and only if ν1,ν2 ∈ N .

2) Kν1,ν2 is bounded below but not bounded above on its domain if and only if
ν1,ν2 �∈ N and |ν1−ν2| = 2n for some n ∈ Z+ .

3) Kν1,ν2 is bounded above but not bounded below on its domain if and only if
ν1,ν2 �∈ N and ν1 + ν2 = 2n for some n ∈ N .
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4) Otherwise, Kν1,ν2(t) is neither bounded above nor bounded below on its domain.
In particular, when a) ν1 ∈ Q , ν2 �∈ Q ; b) ν1,ν2 ∈ Q and ν1 = p1/q1 , ν2 =
p2/q2 , pi,qi ∈ N , q1 �= q2 , where pi and qi are relatively prime.

Let ν1,ν2 > 0 and denote by S(ν1,ν2) the set of all k ∈ Z for which the values of
Kν1,ν2 at points t = πk can be defined by continuity. It is obvious that

S(ν1,ν2) = {k ∈ Z : sin(ν1πk) = 0 and sin(ν2πk) = 0}.
Since 0 ∈ S(ν1,ν2) for all ν1,ν2 > 0, we have S(ν1,ν2) �= ∅ . It is easily seen that if
k ∈ S(ν1,ν2) , then |Kν1,ν2(πk)|= ν1ν2 . From the definition of S(ν1,ν2) it follows that
the domain of Kν1,ν2 is R\π(Z\ S(ν1,ν2)) .

The following lemmas are needed to prove Proposition 1.

LEMMA 2. Let ν1,ν2 > 0 . Then:

1) If the function Kν1,ν2(t) is bounded below but not bounded above on its domain,
then S(ν1,ν2) �= Z and the inequality sin(ν1πk)sin(ν2πk) > 0 holds for every
k ∈ Z\ S(ν1,ν2) .

2) If the function Kν1,ν2(t) is bounded above but not bounded below on its domain,
then S(ν1,ν2) �= Z and the inequality sin(ν1πk)sin(ν2πk) < 0 holds for every
k ∈ Z\ S(ν1,ν2) .

Proof.

1) Suppose Kν1,ν2(t) is bounded below but not bounded above on R\π(Z\ S(ν1,ν2)) .
Hence, there is a point t0 = πk0 , k0 ∈ Z such that Kν1,ν2(t) is unbounded in
a neighborhood of t0 , and so S(ν1,ν2) �= Z . Let us show that sin(ν1πk) �= 0
and sin(ν2πk) �= 0 for all k ∈ Z \ S(ν1,ν2) . Assume that sin(ν1πk0) = 0 and
sin(ν2πk0) �= 0 for some k0 ∈ Z \ S(ν1,ν2) . Hence, the function sin(ν2t) does
not change sign in the neighborhood of t0 = πk0 , but sin(ν1t) changes sign in the
same neighborhood. Therefore, Kν1,ν2(t) is neither bounded above nor bounded
below, so we have a contradiction. Since Kν1,ν2(t) is bounded below, we have
sin(ν1πk)sin(ν2πk) > 0, k ∈ Z\ S(ν1,ν2) .

2) Assertion 2) is proved analogously. �

REMARK 1. If the function Kν1,ν2(t) is bounded below (above) but not bounded
above (below) on its domain, we may assume that either ν1,ν2 �∈ Q or ν1 = p1/q ,
ν2 = p2/q , p1, p2,q ∈ N , q > 1, where pi and q are relatively prime. In these cases,
S(ν1,ν2) = {0} and S(ν1,ν2) = qZ , respectively.

Indeed:

1) If ν1,ν2 ∈ N , then S(ν1,ν2) = Z .

2) If ν1 ∈ Q , ν2 �∈ Q and ν1 = p/q , p,q ∈ N , then k = q ∈ Z \ S(ν1,ν2) and
sin(ν1πk)sin(ν2πk) = 0.
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3) If ν1 = p1/q1 , ν2 = p2/q2 , pi,qi ∈ N , q1 �= q2 , where pi and qi are relatively
prime, then k = min{q1,q2} ∈ Z\ S(ν1,ν2) and sin(ν1πk)sin(ν2πk) = 0.

The formulation of the following lemma is due to Zaraisky.

LEMMA 3. Let h > 0 , x0 ∈ R and T (x) :=
n
∑
j=0

c jeiλ jx , x ∈ R , where λ j,c j ∈ R .

If eiλ jh �= 1 , j = 0, . . . ,n and ei(λ j−λp)h �= 1 for j �= p and T (x0 + kh) � 0 for every
k ∈ Z+ , then c j = 0 for j = 0, . . . ,n.

Proof. Consider the partial sums

Sm+1 :=
m

∑
k=0

T (x0 + kh) =
m

∑
k=0

n

∑
j=0

c je
iλ j(x0+kh) =

n

∑
j=0

c je
iλ jx0

m

∑
k=0

eikλ jh.

Since eiλ jh �= 1, j = 0, . . . ,n , we have∣∣∣∣∣
m

∑
k=0

eikλ jh

∣∣∣∣∣ =

∣∣∣∣∣1− ei(m+1)λ jh

1− eiλ jh

∣∣∣∣∣ � 2

|1− eiλ jh| .

Therefore,

Sm+1 = |Sm+1| �
n

∑
j=0

|c j| 2

|1− eiλ jh| .

Since T (x0 + kh) � 0 holds for every k ∈ Z+ , it follows that the series
∞
∑

k=0
T (x0 + kh)

is convergent. Hence T (x0 + kh) → 0 as k → ∞ .
Let p ∈ {0, . . . ,n} . Consider the sequence

tk(p) := e−iλpkhT (x0 + kh) = cpe
iλpx0 +

n

∑
j=0, j �=p

c je
iλ jx0ei(λ j−λp)kh.

Since tk(p)→ 0 as k→∞ , it follows that the arithmetic mean of the sequence {tk(p)}∞
k=0

converges to zero as well. On the other hand, since ei(λ j−λp)h �= 1 for j �= p , we have∣∣∣∣∣
m

∑
k=0

n

∑
j=0, j �=p

c je
iλ jx0ei(λ j−λp)kh

∣∣∣∣∣ =

∣∣∣∣∣
n

∑
j=0, j �=p

c je
iλ jx0

1− ei(m+1)(λ j−λp)h

1− ei(λ j−λp)h

∣∣∣∣∣
�

n

∑
j=0, j �=p

|c j| 2

|1− ei(λ j−λp)h| .

Therefore,
1

m+1
(t0(p)+ · · ·+ tm(p)) → cpe

iλpx0 , k → ∞,

and hence cp = 0. �
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Proof of Proposition 1. Let ν1,ν2 > 0. Let us prove Assertion 1). Necessity.
Since Kν1,ν2(t) is bounded on R , we have S(ν1,ν2) = Z . Then, 1 ∈ S(ν1,ν2) , i.e.,
sin(ν1π) = sin(ν2π) = 0, hence there are k1,k2 ∈ Z such that ν1 = k1 , ν2 = k2 . Since
ν1,ν2 > 0, we have k1,k2 ∈ N .

Sufficiency. Let ν1,ν2 ∈ N . Then sin(ν1πk) = sin(ν2πk) = 0 for all k ∈ Z .
Therefore, S(ν1,ν2) = Z . Since Kν1,ν2 is continuous on [−π ,π ] , Kν1,ν2 is bounded
on [−π ,π ] . Since Kν1,ν2 has period 2π , Kν1,ν2 is bounded on R .

Let us prove Assertion 2). Necessity. Suppose the function Kν1,ν2(t) is bounded
below but not bounded above on its domain. Then from lemma 2 it follows that
S(ν1,ν2) �= Z and the inequality

sin(ν1πk)sin(ν2πk) > 0 (7)

holds for every k ∈ Z \ S(ν1,ν2) . If k ∈ S(ν1,ν2) , then sin(ν1πk)sin(ν2πk) = 0.
Therefore,

cos((ν1 −ν2)πk)− cos((ν1 + ν2)πk) = 2sin(ν1πk)sin(ν2πk) � 0, k ∈ Z+.

Let x0 = 0, h = π and

T (x) := cos((ν1 −ν2)x)− cos((ν1 + ν2)x)

=
1
2
ei(ν1−ν2)x +

1
2
e−i(ν1−ν2)x − 1

2
ei(ν1+ν2)x − 1

2
e−i(ν1+ν2)x.

Let λ1 = ν1 − ν2 , λ2 = −ν1 + ν2 , λ3 = ν1 + ν2 , λ4 = −ν1 − ν2 . Since ν1,ν2 �∈ N ,
we have e±i2ν1π �= 1, e±i2ν2π �= 1. It follows from Lemma 3 that at least one of the
following equalities holds: e±i(λ1−λ2)π = e±i2(ν1−ν2)π = 1, e±i(λ3−λ4)π = e±i2(ν1+ν2)π =
1, e±iλ1π = e±i(ν1−ν2)π = 1, e±iλ3π = e±i(ν1+ν2)π = 1, so either ν1 − ν2 = m or ν1 +
ν2 = m , where m ∈ Z .

If ν1 + ν2 = 2n , n ∈ Z then sin(ν1πk)sin(ν2πk) = −sin2(ν2πk) � 0 holds for
every k ∈ Z+ . This is a contradiction, since S(ν1,ν2) �= Z and inequality (7) holds for
some k ∈ Z\ S(ν1,ν2) .

Suppose ν1,ν2 �∈ Q . Then Z \ S(ν1,ν2) = Z \ {0} (see Remark 1). If ν1 + ν2 =
2n + 1, n ∈ Z , then there is an even k ∈ Z \ S(ν1,ν2) ; hence sin(ν1πk)sin(ν2πk) =
−sin2(ν2πk) and we have a contradiction, since the inequality (7) does not hold. If
ν1−ν2 = 2n+1, n∈Z , then there is an odd k∈Z\S(ν1,ν2) ; hence sin(ν1πk)sin(ν2πk)
= −sin2(ν2πk) and we have a contradiction. Therefore, ν1 −ν2 = 2n , n ∈ Z , and so
|ν1−ν2| = 2n , n ∈ Z+ .

Suppose ν1 = p1/q , ν2 = p2/q , p1, p2,q ∈ N , q > 1, where pi and q are rel-
atively prime. Then Z \ S(ν1,ν2) = Z \ qZ (see Remark 1). If q > 2, then 1,2 ∈
Z\ S(ν1,ν2) , so the same arguments as above shows that |ν1 −ν2| = 2n , n ∈ Z+ .

In case of q = 2 we have ν1 = p1/2, ν2 = p2/2, where p1, p2 are odd. If ν1 +
ν2 = 2m+1, m ∈ Z , then p1 = 2(2m+1)− p2 ; hence ν1−ν2 = (2m+1)− p2 . Since
p2 is odd, so ν1 −ν2 is even. Therefore, |ν1 −ν2| = 2n , n ∈ Z+ .

Sufficiency. Let ν1,ν2 �∈ N and |ν1 −ν2| = 2n , n ∈ Z+ . Without loss of a gener-
ality we may assume that ν2 = ν1 +2n for some n ∈ Z+ . Since ν1,ν2 �∈ N , Kν1,ν2(t)
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is unbounded on its domain. From the inequality

sin(ν1t)sin((ν1 +2n)t)
sin2(t)

=
sin(ν1t)(sin(ν1t)cos(2nt)+ cos(ν1t)sin(2nt))− sin2(ν1t)+ sin2(ν1t)

sin2(t)

=− sin2(ν1t)
2sin2(nt)
sin2(t)

+
(sin(ν1t)+ (1/2)cos(ν1t)sin(2nt))2

sin2(t)
− 1

4
cos2(ν1t)sin2(2nt)

sin2(t)

�−3n2, t �= πk, k ∈ Z,

it follows that Kν1,ν2(t) is bounded below but not bounded above on its domain.
Assertion 3) is proved analogously. Assertion 4) follows from Assertions 1)–

3). �

3. Proof of Theorem 2

Let us prove the main assertion of Theorem 2. Let α,β ∈ (0,1) , 0 < α � β < 1
and s ∈ R . The function wα ,β ,s has the following explicit form:

wα ,β ,s(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− 1−s

α |x|+1, |x| ∈ [0,α],
s, |x| ∈ [α,β ],
− s

1−β |x|+ s
1−β , |x| ∈ [β ,1],

0, |x| � 1,

0 < α � β < 1, s ∈ R.

Since wα ,β ,s is a continuous function with compact support, it follows from Corollary
1 that wα ,β ,s ∈ Φ(R) ⇐⇒ ŵα ,β ,s(t) � 0 for all t ∈ R , where

ŵα ,β ,s(t) =
4sin2 (αt

2

)
αt2

− s

⎡
⎣4sin2 (αt

2

)
αt2

−
4sin

(
1+β

2 t
)

sin
(

1−β
2 t

)
(1−β )t2

⎤
⎦ , t ∈ R.

Let Eα ,β := {s ∈ R : wα ,β ,s ∈ Φ(R)} . Since ŵα ,β ,s(t) is linear with respect to s , it
follows that for fixed t ∈ R the inequality ŵα ,β ,s(t) � 0 holds for every s ∈ [γ,+∞) or
s ∈ (−∞,γ] , where γ ∈ R . Obviously, Eα ,β is the intersection of closed, convex sets,
so Eα ,β is convex and closed. If s ∈ Eα ,β , then wα ,β ,s ∈ Φ(R) and hence |wα ,β ,s(x)|�
wα ,β ,s(0) = 1 for all x∈R . For x = α we have |s|� 1. Since Eα ,β is a convex, closed,
bounded subset of R , it follows that Eα ,β is a closed interval (or a degenerate interval),
i.e., Eα ,β = [a,b] . In addition, Eα ,β contains the origin, and hence a � 0, b � 0.

It is obvious that ŵα ,β ,s(t) � 0, t ∈ R ⇐⇒ (1/α)ŵα ,β ,s(2t/α) � 0, t ∈ R . Since
ŵα ,β ,s is continuous on R , it follows that the last inequality is equivalent to the follow-
ing inequality: (1/α)ŵα ,β ,s(2t/α) � 0, t ∈ R\A , where A := πZ\ {0} .
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Let us find all s ∈ R such that the inequality

(1/α)ŵα ,β ,s

(
2t
α

)
=

sin2(t)
t2

− s

⎛
⎝sin2(t)

t2
− α

1−β

sin
(

1+β
α t

)
sin

(
1−β

α t
)

t2

⎞
⎠ � 0 (8)

holds for all t ∈ R \A . Since sin2(t)/t2 > 0 (at the origin the function is defined by
continuity) for all t ∈ R\A , we can divide inequality (8) by sin2(t)/t2 :

1− s

⎛
⎝1− α

1−β

sin
(

1+β
α t

)
sin

(
1−β

α t
)

sin2(t)

⎞
⎠ � 0. (9)

Consider the function

G(t) := 1− α
1−β

sin
(

1+β
α t

)
sin

(
1−β

α t
)

sin2(t)
= 1− α

1−β
Kν1,ν2(t), t ∈ R\A,

where

ν1 = ν1(α,β ) :=
1+ β

α
, ν2 = ν2(α,β ) :=

1−β
α

. (10)

It is easily seen that G(0) = (α − 1− β )/α < 0. On the other hand, since ν1 �= ν2 ,
from properties 3), 4) of Kν1,ν2 (see Introduction) it follows that there is a t0 ∈ R \A
such that Kν1,ν2(t0) < 0, and hence G(t0) > 0. Therefore, we can apply Lemma 1 to
the function G on V := R \A . From Lemma 1 it follows that inequality (9) holds for
all t ∈ R\A if and only if

1
inf
R\A

G(t)
=

1
1− α

1−β sup
R\A

Kν1,ν2(t)
� s � 1

sup
R\A

G(t)
=

1
1− α

1−β inf
R\A

Kν1,ν2(t)
.

Obviously,

M(α,β ) =
1

sup
R\A

G(t)
, m(α,β ) =

1
inf
R\A

G(t)
,

where M(α,β ) and m(α,β ) are defined by (1). Thus inequality (9) holds for every t ∈
R\A ⇐⇒ m(α,β ) � s � M(α,β ) . We have proved that Eα ,β = [m(α,β ),M(α,β )] .
The main assertion of Theorem 2 is proved.

Let us prove 1). If Kν1,ν2 is bounded below on R \ πZ , then m1(ν1,ν2) attains
finite, negative value, and hence M(α,β ) > 0. If Kν1,ν2 is not bounded below, then
M(α,β ) = 0. By Proposition 1, Kν1,ν2 is bounded below on R \ πZ if and only if
either ν1,ν2 ∈ N or |ν1 −ν2| = 2n , n ∈ Z+ , ν1,ν2 �∈ N (we may assume that n ∈ N).
Taking into account equation (10), we obtain

ν1,ν2 ∈ N ⇐⇒ (1+ β )/α,(1−β )/α ∈ N.
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If |ν1−ν2| = 2n , n ∈ N , then β = nα . In this case ν1 = 1/α +n , ν2 = 1/α −n . The
condition ν1,ν2 �∈ N is equivalent to 1/α �∈ N . Therefore,

|ν1 −ν2| = 2n, n ∈ N, ν1,ν2 �∈ N ⇐⇒ 1/α �∈ N, β/α ∈ N.

Let us prove 2). If Kν1,ν2 is bounded above on R \ πZ , then m2(ν1,ν2) attains
finite, positive value and we have

m2(ν1,ν2) � Kν1,ν2(0) = ν1ν2 =
1−β 2

α2 .

It easily seen that m(α,β ) < 0. If Kν1,ν2 is not bounded above, then m(α,β ) = 0.
By Proposition 1, Kν1,ν2 is bounded above on R \πZ if and only if either ν1,ν2 ∈ N
or ν1 + ν2 = 2n , n ∈ N , ν1,ν2 �∈ N . If ν1 + ν2 = 2n , n ∈ N , then 1/α = n . In this
case ν1 = n + nβ = n + β/α , ν2 = n− nβ = n− β/α . The condition ν1,ν2 �∈ N is
equivalent to β/α �∈ N . Therefore,

ν1 + ν2 = 2n, n ∈ N, ν1,ν2 �∈ N ⇐⇒ 1/α ∈ N, β/α �∈ N.

Theorem 2 is proved. �

4. Proof of Theorem 3

Let ν1,ν2 > 0 and m1(ν1,ν2) , m2(ν1,ν2) be defined by (2).
Let us prove 1). Let |ν1−ν2| = 2. Without loss of generality we may assume that

ν1 > ν2 . In this case ν1 = ν2 +2 and

sin((ν2 +2)t)sin(ν2t)
sin2(t)

=
cos(2t)− cos(2(ν2 +1)t)

2sin2(t)
=

−2sin2(t)+2sin2((ν2 +1)t)
2sin2(t)

=
sin2((ν2 +1)t)

sin2(t)
−1 � −1.

Since 0 < 1/(ν2 +1) < 1 we have sin(π/(ν2 +1)) �= 0. Therefore, for t = π/(ν2 +1)
the last inequality is an equality, and so m1(ν1,ν2) = −1.

Let us prove 2). Let ν1,ν2 ∈N . From the inequality |sin(mt)|� m|sin t| , which is
satisfied for any m ∈ N and t ∈ R it follows that |Kν1,ν2(t)|� ν1ν2 . On the other hand,
Kν1,ν2(0) = ν1ν2 . Therefore, m2(ν1,ν2) = sup

R
Kν1,ν2(t) = ν1ν2 and m1(ν1,ν2) �

−ν1ν2 . If, in addition, ν1 and ν2 have different parity, then Kν1,ν2(π) = −ν1ν2 and
m1(ν1,ν2) = inf

R
Kν1,ν2(t) = −ν1ν2 .

Let us prove 3). Let ν1 = p1/q , ν2 = p2/q , where p1, p2,q ∈ N . Obviously,
the infimum (the supremum) of sin(p1t/q)sin(p2t/q)/sin2(t) over R\πZ is same as
the infimum (the supremum) of sin(p1t)sin(p2t)/sin2(qt) over [0,π ]\ (π/q)Z , and so
Assertion 3) follows from formula:

Up(cos(t)) :=
sin((p+1)t)

sin(t)
, t ∈ [0,π ], p ∈ Z+,

where Up is the Chebyshev polynomial of the second kind.
Assertion 4) follows from Assertion 3). �
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5. Examples

EXAMPLE 1. Let α ∈ (0,1) , β = α , s∈R . Then wα ,α ,s ∈Φ(R) ⇐⇒ m(α,α)�
s � 1−α , where m(α,α) = −α , if 1/α ∈ N and m(α,α) = 0, if 1/α �∈ N .

Proof. From Assertion 1) of Theorem 2 it follows that M(α,α) > 0. From As-
sertion 2) of Theorem 2 it follows that m(α,α) < 0 if and only if 1/α ∈ N .

It follows from Theorem 3 that m1((1 + β )/α,(1− β )/α) = −1 and m2((1 +
β )/α,(1− β )/α) = (1− α2)/α2 , if 1/α ∈ N . Therefore, M(α,α) = 1− α and
m(α,α) = −α , if 1/α ∈ N and m(α,α) = 0, if 1/α �∈ N . �

EXAMPLE 2. Let α ∈ (0,1/2) , β = 1−α , s ∈ R . Then:

1) If 2/α �∈ N , then wα ,1−α ,s ∈ Φ(R) ⇐⇒ s = 0.

2) If 2/α ∈ N , then

wα ,1−α ,s ∈ Φ(R) ⇐⇒ − α
2(1−α)

� s � 1
1−m1(2/α −1,1)

.

Moreover, if 2/α is odd, then 1/(1−m1(2/α −1,1)) = α/2.

Proof. From Assertions 1), 2) of Theorem 2 it follows that

M(α,1−α) > 0 ⇐⇒ (2−α)/α ∈ N ⇐⇒ 2/α ∈ N

and

m(α,1−α) < 0 ⇐⇒ (2−α)/α ∈ N ⇐⇒ 2/α ∈ N.

From Theorem 3 it follows that if 2/α ∈ N , the m2((2−α)/α,1) = (2−α)/α and if
2/α is even, then m1((2−α)/α,1) = −(2−α)/α . �

EXAMPLE 3. Let α = 2/(2m + 2k + 1) , β = (2k + 1)/(2m + 2k + 1) , where
m,k ∈ N . Then wα ,β ,s ∈ Φ(R) ⇐⇒ −1/(m+2k) � s � 1/(m+2k+2) .

Proof. It is easily shown that (1+β )/α = m+2k+1 and (1−β )/α = m . Since
the last two number have opposite parity, it follows from Theorem 2 and Theorem 3
that M(α,β ) = 1/(m+2k+2) and m(α,β ) = −1/(m+2k) . �

EXAMPLE 4. Let α = 1/2, β = 3/4, s ∈ R . Then wα ,β ,s ∈ Φ(R) ⇐⇒ s ∈
[−2/5,0] .
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6. Proof of Theorem 4

The following theorem (see, e.g., [6]) is needed to prove Theorem 4.

THEOREM 6. (Hausdorff–Bernstein–Widder) f ∈ CM ⇐⇒

f (x) =
+∞∫
0

e−xtdμ(t), x > 0 (11)

where μ is a nonnegative Borel measure on [0,+∞) such that the integral (11) con-
verges for all x > 0 .

Let us prove Theorem 4. From equation (3) we see that

(1/2)ŵα ,β ,s(t) = (1− s)
1− cos(αt)

αt2
− s

1−β
1− cos(β t)

t2
+

s
1−β

1− cos(t)
t2

, t ∈ R.

It is obvious that (1/2)ŵα ,β ,s(t) � 0, t ∈ R ⇐⇒ g(t) := (t2/2)ŵα ,β ,s(t) � 0, t ∈
[0,+∞) . From Theorem 6 it follows that g(t) � 0, t ∈ [0,+∞) ⇐⇒ L [g] ∈ CM ,
where L [g] is the Laplace transform of g , i. e.

L [g](x) :=
+∞∫
0

g(t)e−xtdt, x ∈ (0,+∞).

It is easy to verify that

L [g](x) =
(1− s)α

x(x2 + α2)
− sβ 2

1−β
1

x(x2 + β 2)
+

s
1−β

1
x(x2 +1)

, x > 0.

Taking into account conditions (4), we obtain L [g] = f α ,β
a,b,c , so the assertion of Theo-

rem 4 follows from Theorem 2 and Corollary 1. Theorem 4 is proved. �
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